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Abstract
In this article, the steady state condition for the multi-compartment models for cellular metabolism
is considered. The problem is to estimate the reaction and transport fluxes, as well as the
concentrations in venous blood when the stoichiometry and bound constraints for the fluxes and the
concentrations are given. The problem has been addressed previously by a number of authors, and
optimization based approaches as well as extreme pathway analysis have been proposed. These
approaches are briefly discussed here. The main emphasis of this work is a Bayesian statistical
approach to the flux balance analysis (FBA). We show how the bound constraints and optimality
conditions such as maximizing the oxidative phosphorylation flux can be incorporated into the model
in the Bayesian framework by proper construction of the prior densities. We propose an effective
Markov Chain Monte Carlo (MCMC) scheme to explore the posterior densities, and compare the
results with those obtained via the previously studied Linear Programming (LP) approach. The
proposed methodology, which is applied here to a two-compartment model for skeletal muscle
metabolism, can be extended to more complex models.
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1 Introduction
Computational models for cellular metabolism play an important role in the quest for
understanding the complex biochemical interactions between different organs, different cell
types within an organ and the biochemistry within the cells. As our understanding of the
functioning of the cells increase, the models become more complex and the number of
parameters needed to identify them increase. The determination of a unique set of model
parameters based on scarce and uncertain data is usually not possible, and the estimation of
the parameters has to rely on additional information concerning the system. The model
identification can thus be seen as a statistical inference problem and, in this context, a Bayesian
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statistical framework has turned out to be useful as it allows the incorporation of various levels
of uncertain information into the model (Calvetti & Somersalo, 2006; Calvetti et al., 2006b).

In the study of the dynamic response of a metabolic system to varying conditions such as
hypoxia or ischemia, it is common to assume that initially the system is at rest, corresponding
to a biochemical steady state. The flux balance analysis (FBA) is used to determine the initial
fluxes and consequently, a set of parameter values is often manually adjusted to satisfy the
steady state. Due to the non-uniqueness of the parameter values identifying a steady state, the
analysis of dynamic response based on the chosen values may depend strongly on how the
values are chosen. Therefore, it is useful to understand to what extent the flux balance equations
are able to identify the steady state and to what extent the steady state is stable with respect to
perturbations in quantities which are assumed known. The present paper addresses this issues.
The analysis is based on the Markov Chain Monte Carlo (MCMC) techniques, commonly used
in statistical inference problems (Gilks et al., 1996; Kaipio & Somersalo, 2004; Liu, 2003).

In the literature it has been proposed to identify a feasible steady state by minimizing or
maximizing a suitable objective function (Bonarius et al., 1997; Ramakrishna et al., 2001;
Varma & Palsson, 1996; Ramakrishna et al., 2001). While such approach can usually single
out a reasonable, feasible steady state, it is important to also investigate the stability of such
solutions with respect to perturbations in the input parameters and to assess how representative
statistically such solutions are.

The paper is organized as follows. In Section 2, we discuss the two-compartment metabolic
model for skeletal muscle and the constraints that are appropriate for the fluxes. In Section 3,
we review the steady state flux balance analysis from the classical optimization point of view.
More specifically, we briefly describe the Linear Programming (LP) solution to FBA proposed
in the literature, that will serve as a benchmark for the subsequent statistical analysis, and
provides a feasible initial value for statistical simulations. In addition, we discuss the stability
of the LP estimators estimators, i.e., the dependency of the result on the bound constraints and
on uncertainties in the model input values. In Section 4, the statistical framework is presented,
and the problem is recast in the form of Bayesian inference problem. Conclusions and comment
on future work are found in Section 5. The details concerning the model are presented in
Appendix A.

2 Multi-compartment models
The simplest example of the general multi-compartment models for cell metabolism is a two-
compartment model consisting only of blood and lumped tissue compartments, see, e.g.,
Calvetti & Somersalo (2006); Calvetti et al. (2006b); Salem et al. (2004); Zhou et al. (2005).
More complex models take into account the partitioning of the cells into cytosol and organelles
such as mitochondria, and may differentiate between different cell types such as neurons and
astrocytes in the brain metabolism models. Although in this paper we apply our Bayesian
approach only to the case of a two-compartment model, the analysis can be extended to more
complex models with the same structure.

2.1 Dynamic model and steady state
The model of metabolic system that we consider here consists of two domains, blood and a
single cell type, where the cytosol and mitochondria are lumped together (see Appendix A,
Figure 8). The state of the system at time t is described by vectors Cc(t) and Cb(t) that contain
the concentrations of the biochemical species in the cell domain and the venous blood,
respectively. As some of the species are interchanged between the compartments, their
respective concentrations change. In the blood domain the concentrations change also due to
convection, while in the cell domain, biochemical reactions consume or produce the
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metabolites and the intermediates. Thus, the dynamics of the concentrations are described by
a system of differential equations of the form

(1)

(2)

The convection term depends on the difference of total arterial Ca,tot and venous Cb,tot
concentrations of the species, where “total” means that in the oxygen and carbon dioxide
concentrations, the oxy-hemoglobin, carbamino-hemoglobin and bicarbonate concentrations
are taken into account in addition to the free dissolved concentrations (Dash &
Bassingthwaighte, 2006; Lai et al., 2006). The factor Q(t) represents the blood flow, and F is
the mixing ratio. The transport flux vectors Jc→b and Jb→c contain the non-negative transport
fluxes of the species from cell to blood and blood to cell, respectively, and the matrix M
describes which compounds participating in the metabolic processes in the cell domain are
exchanged with the blood domain. Hence, if the jth compound in Cc is not transported to the
blood domain, the corresponding row in the matrix M vanishes, otherwise the row contains a
one in an appropriate place to pick the flux of the jth species. The reaction term consists of the
product of a vector Φ of reaction fluxes, with each component accounting for one biochemical
reaction, multiplied by the stoichiometric matrix S, whose nonzero components sij indicate
how many units of compound i is created (sij > 0) or consumed (sij < 0) in reaction j. The
coefficients Vc and Vb are the virtual volumes of the compartments, and since we represent
them as diagonal matrices, we may assign different volumes to different species, e.g., to correct
uneven distribution of the compounds or to take into account the hemoglobin/myoglobin
concentrations.

In this study, we are interested in flux balance analysis at steady state condition, i.e., Q(t) =
constant, Ca,tot = constant and dCc/dt = 0, dCb/dt = 0.

We write the steady state condition as the matrix equation

or briefly,

(3)

Note that we have dropped the subindex “total” to simplify the notation. For later reference,
we partition the matrix A as

(4)

The steady state flux balance analysis is concerned with estimating the vector u when the vector
r is known either exactly or approximately. Although the problem can be stated formally as a
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linear algebraic equation, the matrix does not have full rank and the entries of the solution need
to obey a set of constraints which will be discussed later.

2.2 Parametric model: Michaelis–Menten formulas
The net transport fluxes between the blood and tissue domains are related to the substrate uptake
that can be estimated from blood concentrations, for which some estimates have been presented
in the literature, see, e.g., Calvetti et al. (2006a) and references therein. Reaction fluxes, on the
other hand, are harder to estimate and information concerning them is often based on in
silico experiments.

The reaction fluxes in our model are expressed in Michaelis–Menten form. If Φ represents the
reaction flux of a single substrate facilitated reaction,

where A, B are metabolites and E,  are the facilitators and assuming that the reaction
coefficients are unity for simplicity, we express the flux in the form

(5)

where Vmax is the maximum reaction velocity, the C's are the corresponding concentrations
and μ and K are reaction specific affinity coefficients. Similarly, for a facilitated bi-substrate
reaction

we use the modified Michaelis-Menten form

If the reaction is not facilitated, the factor P/(μ + P) is set to unity. The transport fluxes can be
modeled similarly. The rate of a carrier facilitated transport of substrate A from compartment
x to compartment y is expressed on the form

(6)

and for passive, diffusive transport, the rate is expressed as

These approximations were used earlier in the dynamic context, see Calvetti & Somersalo
(2006); Calvetti et al. (2006b); Salem et al. (2004); Zhou et al. (2005). For a justification of
such approximations, we refer to the textbooks Keener & Sneyd (1998); Marangoni (2003). If
we stack all the model parameters Vmax, K, μ, T, M and γ in a long vector that is denoted by
θ, we can express the mapping F from these parameters to the flux vectors as

(7)
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where C is a vector of the cell and blood concentrations of all the species.

2.3 Constraints
The components of the vector u need to satisfy a set of constraints. The most natural constraint
coming from the assumptions in our model formulation, that the fluxes and concentrations are
non-negative, u ≥ 0, already complicates the flux balance analysis, since it may exclude the
pseudo-inverse solution of (3). Furthermore, since nonnegativity alone is not enough to specify
a meaningful solution as it does not exclude the trivial solution where Cb = Ca and all fluxes
vanish, we need to impose strictly positive lower bounds for some vital fluxes. Also, the
reaction fluxes have natural upper bounds, which can be seen in the expressions of Michaelis–
Menten forms: equations (5) and (6) imply that Φ ≤ Vmax and JA,x→y ≤ T, respectively. We can
express the bound constraints in vectorial form as umin ≤ u ≤ umax. We remark that finding
physiologically meaningful bounds is not a trivial issue, and that too strict and biasing bounds
may result in misleading results.

In addition to the bound constraints described above, in general additional constraints on the
fluxes arise from the requirement that the metabolic system respects the Second Law of
Thermodynamics (Beard et al (2002); Nelson & Cox (2005); Siesjö (1978)). Checking the
thermodynamic constraints requires that estimates of the concentrations of the substrates
participating in reversible reactions are available. Since these concentrations are not estimated
in the present work, we will not consider the thermodynamic constraints.

2.4 Optimality
The steady state condition (3) together with bound constraints is, in general, not enough to
uniquely identify a steady state, and additional conditions are needed to single out the
physiologically feasible steady state. In the literature, different criteria for optimality have been
proposed to identify particular steady states (see, e.g., Bonarius et al. (1997);Ramakrishna et
al. (2001); Varma & Palsson (1996)). In this article, following the optimality condition
proposed by Ramakrishna et al. (2001), we assume that the metabolic chain is driven by the
energetic efficiency principle: the system prefers a steady state where the mitochondriac ATP
production via oxidative phosphorylation is at a maximum. Thus, we may pose the steady state
problem as follows: find the solution u that satisfies the steady state condition (3), obeys a
priori constraints and maximizes the reaction flux of the oxidative phosphorylation reaction.

3 Constrained Optimization Approach
In this section, we study the flux balance analysis from the classical optimization point of view,
considering the optimality condition introduced in Section 2.4. If uj is the reaction flux of
oxidative phosphorylation Φ21, (see Appendix A, Table 2), the objective function h to be
maximized is

(8)

and we seek to maximize the objective function h(u) among those vectors u satisfying

(9)

The solution of this linear constrained optimization problem can be computed by Linear
Programming (LP), a methodology that is briefly reviewed in the following section.
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3.1 Linear Programming Solution
The Linear Programming problem can be formulated in its standard form as follows. Given

, , , find the vector , which maximizes cTx subject to constraints

(10)

see, e.g., Vanderbei (1996). The steady state flux estimation problem with the objective
function (8) and the constraints (9) can be expressed as an LP problem of this form by using
standard techniques. The details of the transformation to standard form can be found in the
literature (see, e.g., Vanderbei (1996)) and therefore are omitted here. Numerous algorithms
for the solution of the LP problems have been proposed in the literature, including interior
point methods and the classical simplex algorithm. The flux balance problem has been solved
by linear programming, see, e.g., Kauffman et al. (2003). In the present work, the LP solution
will be used as a benchmark to which we compare to the results of the Bayesian FBA proposed
in this article. In general, the data defining the bounds in LP problems are assumed to be exact.
This is not necessarily the case in the FBA application that we consider here, in view of the
natural fluctuations of the measurements over a population and the limitations of the collection
and measurements procedure. Therefore, we will start with analyzing the stability of the LP
solution with respect to uncertainties in the data, in our application consisting of the arterial
concentration values. This sensitivity analysis will be a precursor to more extensive FBA that
follows.

The sensitivity analysis of the LP solution contains two aspects: the sensitivity of the optimal
solution to perturbations in the right-hand side of (10), and the possibility of having several
optimal solutions without changing the value of the objective function. In this work, we are
mostly interested in the former question.

Before computed examples, we conclude this section by mentioning that the LP approach is
closely related to the extreme pathway analysis. In the past decade, a significant amount of
research has been done to understand and describe a metabolic system using extreme pathway
analysis, see Papin et al. (2002b, 2003, 2004); Schilling et al. (2000); Schilling & Palsson
(1998). Similar to the flux balance analysis, the extreme pathways analysis imposes a steady
state condition, but instead of a single optimal solution, it produces a set of feasible solutions
in finite dimensional space. This is done by finding a system of basis pathways, called extreme
pathways, that is unique for the metabolic network under consideration and which fully
describes its properties. All possible steady-state flux solutions can then be represented as
nonnegative linear combinations of these extreme pathways. Further analysis using a number
of tools, such as SVD and α-spectrum analyses, is performed, see Price et al. (2003a); Wiback
et al. (2003) for details.

A number of metabolic models, e.g., Haemophilus influenzae (Schilling & Palsson, 2000), the
human red blood cell (Wiback & Palsson, 2002), Escherichia coli (Wiback et al., 2004), have
been investigated with extreme pathway analysis. Since the number of extreme pathways can
be very large for large-scale metabolic network systems (Papin et al., 2002a, 2003), a set of
improved tools was developed to solve these problems (Barrett et al., 2006; Price et al.,
2003b; Wiback et al., 2003).

3.2 Computed examples
In this section, we solve the steady state flux estimation problem for the skeletal muscle model
(1)-(2) using the LP approach with the objective function (8) under the constraints (9). Note
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that, in general, several simultaneous objective functions can be considered, see, e.g., Vo et al.
(2004).

To demonstrate the sensitivity of the LP solution to the upper and lower bounds, we calculate
the solution with two different sets of lower bounds umin and upper bounds umax. The values
of bound vectors are listed in Appendix B, Table 4. Figure 1 displays these two sets of bounds
and the corresponding LP solutions. A more detailed discussion of the bounds, and in particular,
their relation to bounds concerning the concentrations of the metabolites as well as model
parameters will be discussed later in this work. At this stage, the bounds are applied without
questioning how they were obtained. Figure 1 clearly shows that the LP solution depends on
the boundary constraints. We remark that the two solutions obtained by using the two different
sets of bounds yield different values for the objective function; more specifically, h(u) = 3.9377
for the wider bounds and h(u) = 1.2903 for the tighter bounds.

In addition to the bounds for the entries of the solution vector, the LP solution depends on the
input values, i.e., on the concentrations of the biochemical compounds in arterial blood, whose
values, in turn, may be contaminated by measurement noise and fluctuate over a population.
We model this uncertainties in the input by replacing the equation (3) by r = Au + e, where

 is a noise vector. In order for (3) to hold in the mean value sense, we may assume that
e is a zero mean random vector. In our numerical experiments, we shall assume that e is
normally distributed with mutually independent components, e ∼ N(0, Γ), with covariance

matrix , where the diagonal element  is the variance of the jth
component. Observe that the k first equations are related to the steady state condition in the
cell domain. If we assume that the only uncertainties are in the input arterial concentrations,
we must choose , hence the steady state condition Acu = 0 in the cell domain is
strictly enforced.

To numerically investigate the stability of the LP solution, we generated a sample of 1000
normally distributed random realizations of the arterial values around the known mean value
rb,mean = (Q/F)Ca with a given variance, and calculate the relative discrepancy of the
corresponding LP solutions,

where u0 is the LP solution corresponding to the mean value rb,mean, and ui is the LP solution
corresponding to the ith realization of the noise vector. The left panel of Figure 2 shows the
histogram of the relative discrepancies di when the standard deviation σj of the noise is 5% of
the corresponding component of the noiseless vector rb,mean. In the calculation of the LP
solutions, which was done by using the built-in Matlab function linprog, we used the wider
bound constraints. For each noise level ranging from 0.5% to 20% with the step 0.5%, we
computed the mean of the discrepancies, as displayed in the right panel of Figure 2. Clearly
the discrepancy of the LP solutions increases in a linearlike fashion as a function of the noise
level.

In some cases it was not possible for the LP solver to find a feasible solution within the given
bounds, and the frequency of non-feasible problems increased with the noise level. The tighter
the bound constraints are, the more easily the problem fails to have a solution. For example,
when using the tighter bounds of Table 4, with 5% noise level in the right-hand side the LP
solver could not find a feasible solution in 83% of the cases.
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4 Bayesian approach
In this section, we propose a Bayesian alternative for the constrained optimization based FBA.
The advantage of a statistical framework is that it is naturally suited for modelling the
uncertainties and variabilities inherent to a metabolic steady-state.

We begin by giving a brief overview of the basic principles of Bayesian parameter estimation.

4.1 General framework
In the Bayesian framework, we model uncertainties by random variables and encode the
available information in terms of probability distributions. If  and  denote two
multivariate random variables whose joint probability density is denoted by π(x, y), their
marginal probability densities are related to the joint density by

The marginal densities express the probability distributions of the values of x and y,
respectively, provided that no information about the other random variable is available. If y is
a directly observable variable and x is the variable of primary interest, we call the marginal
density of x the prior density and denote it by π(x) = πprior(x). The prior density expresses the
belief of the value of x prior to any observations of y.

The conditional probability densities π(x | y) and π(y | x) are defined via the formula

The conditional density expresses the distribution of one variable provided that the other takes
on a given value. The above formula yields immediately the Bayes formula,

(11)

In statistical parameter estimation, this formula is fundamental, because it expresses the
probability density of the variable x of primary interest given the observation of y and all
possible prior information concerning x. The conditional density (11) is called the posterior
density.

Since the posterior density is a probability density over a space whose dimension equals the
number of components in the unknown x it cannot be immediately visualized. Instead, it is
used for computing statistical estimates. One of the most commonly used estimates is the
posterior mean,

which is the expectation of x with respect to the posterior probability density. The posterior
mean is optimal in the sense that it is the estimator with the minimum estimation error variance.

The computation of the posterior mean from the posterior density requires an integration which,
in high dimensional space, cannot be done by numerical quadratures. The most popular method
for computing this integral and more generally, to explore the posterior probability density, is
to use Markov Chain Monte Carlo techniques. The basic idea is to generate a Markov chain
whose realizations are asymptotically distributed according to the posterior probability density.
This is achieved by defining a rule q of random draw: given the current point xj, draw xj+1
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from the distribution . Repeating the random draw with some initial point x0, one
generates a large sample, S = {x0, x1, …, xN}. If the drawing rule q is judiciously constructed,
this ensemble is distributed asymptotically, as N → ∞, according to π(x | y). The most
commonly used MCMC strategies are the variants of the Metropolis-Hastings scheme and
Gibbs sampler. In this work we use the latter one. To describe the drawing strategy, we need
only to specify the move xj → xj+1. Denoting the posterior density by πpost(x) = π(x | y), the
Gibbs sampler is described as follows. Given xj = (xj,1, xj,2, …, xj,n −1, xj,n),

In other words, we update one component at a time, conditioning on the old, or the currently
updated values of the remaining components. Details of the updating scheme are discussed
later.

When basing estimates on an MCMC chain, it is important to assess whether the chain is long
enough to guarantee convergence of computed estimates.

Sample based estimates of the type

typically rely on convergence results derived from the Law of Large Numbers or from the
Central Limit Theorem. The latter one asserts that if the samples xj are independent and
identically distributed, the convergence rate is . MCMC methods, however, do not
necessarily yield independent realizations. Therefore, a complete analysis of the chain requires
that we also estimate the correlation length. If the correlation length of the sampled values g
(xj) is k, every kth sample is approximately independent and we may assume that the rate of
convergence is . For large k, the rate may be painfully slow; a slow convergence is
seen also by looking at the sample history: rather than resembling a realization of white noise,
the sample value keeps drifting.

To obtain an estimate for the correlation length, denote by gc(xj) the centered sample point,

and define the normalized autocovariance of the sample by the formula

where .

The correlation length of the sample {g(xj)} is then defined as the smallest integer for which
 drops below a given threshold.
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4.2 Setting up the statistical model
The Bayesian analysis consists of three key steps: (1) setting up the prior density that reflects
our belief of the unknowns of primary interest, (2) definition of the likelihood function that
links the unknown to any possible observed quantity, and, (3) exploration of the posterior
density, including the computation of statistical estimates. In this section, we discuss the first
two steps.

4.2.1 Likelihood—We start the discussion by defining the likelihood function. In the present
context, the vector u represents the unknown of primary interest, and it is modeled as a random
variable to reflect our lack of information of its value. The equation (3) is the starting point for
observation equation, i.e., the vector r is interpreted as observation. When discussing the LP
solutions, we already indicated that the vector r may be poorly known. We may not be sure
about how strictly steady state condition holds, nor may we assume that the arterial
concentration values are known exactly. In fact, it is quite reasonable to assume that
concentrations of biochemical compounds fluctuate over a population.

Therefore, we write a stochastic extension of the equation (3), namely

(12)

where the probability density πnoise reflects our degree of uncertainty about the data and
strictness of steady state. Here, we model the uncertainty e as noise. From now on, we shall
assume for simplicity that the vectors e and u are mutually independent, thus leading to a
likelihood model

To further simplify the discussion, we shall assume that e is zero mean Gaussian with
covariance matrix Γ, yielding a likelihood function of the form

(13)

Observe that here we are implicitly assuming that Γ is symmetric and positive definite.
However, if we are confident that the steady state condition holds strictly and that the only
uncertainty is in the arterial concentration values, the matrix Γ becomes singular. To cope with
this situation, the model needs to be reduced so as to ensure that the steady state is strictly
enforced. We shall discuss the details of such model reduction later in this section.

4.2.2 Prior—The prior probability density should contain all available information that we
may have of the primary unknown before observations. In the application at hand, the prior
contains our belief concerning the bounds and the belief that the cell metabolism is driven by
the principle of maximizing ATP production.

The bound constraints umin ≤ u ≤ umax can be encoded into the prior by requiring that

(14)

where χ[umin,j,umax,j] denotes the characteristic function of the admissible interval [umin,j,
umax,j] of the jth component. Observe that the form of the prior indicates that we are not
expecting a priori any interdependence between the components of u.
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Since in the Bayesian framework we are not interested in finding a single estimator, the
principle of maximizing the ATP production cannot be enforced as an optimization objective.
Rather, according to the general Bayesian philosophy, we take the energy principle as a prior
belief and seek to construct a probability density that favors solutions with high oxidative
phosphorylation flux, i.e., we let u ∼ πphos(u), where the density πphos is concentrated on
energetically correct solutions. In particular, we choose the density to be

(15)

where uj is the reaction flux corresponding to oxidative phosphorylation. This density attains
its maximum at uj = umax,j and minimum at uj = umin,j, so it favors high ATP production.

4.3 Exploring the posterior
In this section, we explore the posterior distribution of the fluxes by generating representative
samples via Gibbs samplers. Once the samples are available, we analyze the histograms,
compute the posterior mean and compare it with the corresponding LP solution.

We first consider the case of a uniform prior (14), without including the part that favors high
aerobic ATP production.

Traditionally, in FBA the steady state is strictly enforced, i.e., the concentrations of the
biochemical species are assumed constant. This means that in the likelihood model above the
matrix Γ is singular and therefore the model must be reduced. More precisely, consider the
matrix A in the partitioned form (4). Strictly enforcing steady state implies, in particular, that

(16)

i.e., u must be in the null space of Ac.

To find a basis for the null space of Ac, we introduce its singular value decomposition
, where  and  are orthonormal matrices and 

is a diagonal matrix whose nonnegative diagonal entries, dc,1 ≥ dc,2 ≥ … ≥ dc,k ≥ 0 are called
singular values (Golub & Van Loan, 1989). Assume that dc,r, r ≤ k is the last numerically
nonzero singular value of Ac. Partitioning the matrix Vc accordingly,

and observing that the columns of  form an orthonormal basis for the null space
of Ac, in order for (16) to hold, u must be of the form

This representation reduces the dimension of the unknown vector, since we may now write the
likelihood model for the ℓ-dimensional vector z.

Consider now the observation model where we assume that the arterial concentrations are
corrupted by noise,
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Here  is the observed vector, and  is the noise vector which we
assume normally distributed, with zero mean and covariance matrix . The
reduced likelihood model for the new variable z is then

Since  admits a symmetric factorization of the form , we can write the likelihood
function as

If m − k ≤ ℓ, as is the case in the application at hand, even after the reduction the problem
remains underdetermined. Replacing  by its singular value decomposition

and using the orthogonality of , it follows that

(17)

where  and . The original variable u can be expressed in terms
of y as

In the remainder of this paper, we refer to this as the minimal likelihood model. Without any
bound constraints on the components of u, the yj are independent Gaussian random variables,
and the components yj, with j > m − k, have infinite variance since the likelihood (17) does not
restrict them in any way. It is with the introduction of the prior that we restrict their variance.

We now outline a componentwise Gibbs sampling algorithm for this model. Starting from an
initial vector y0 that satisfies the componentwise bounds

we generate a sample S = {y0, y1, …, yN} through the following componentwise updating
scheme. The initial value y0 can be found, e.g., by the LP solver, assuming that the system is
consistent and a solution exists. Indeed, if u0 is the LP solution, then Acu0 = 0 and we may set
y0 = VTu0. Given the current vector yk in the chain, generate yk+1 componentwise by drawing
yk+1,j, for 1 ≤ j ≤ ℓ, from the distribution

Denote by  and  the arrays
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and find the maximal interval [tmin, tmax] for which the system of inequalities

holds. For t ∈ [tmin, tmax], the vector v(t) = tvj + V′y′ has positive prior probability. Then, if j
≤ m − k and db,j > 0, draw yk+1,j from the truncated Gaussian distribution

while if db,j = 0 or j > m − k, draw it from the uniform distribution over the interval [tmin,
tmax].

4.3.1 Relaxing the steady state condition—The strict enforcement of the steady state,
although convenient from the computational complexity perspective, might not always be
desirable or fully justified. In the present application, for example, it may not be known if the
muscle is under constant energy demand during the experiment. Further, the initial value y0
for the reduced model may not be available, as we do not know if the strict steady state is
consistent with the imposed bound constraints.

By not requiring that the steady state condition holds strictly, we no longer restrict the vector
u to the null space of Ac. As a result, in the additive noise model (12), the error covariance
matrix Γ in the likelihood model is non-singular. Note that under these assumptions, in our
application the components of the noise vector corresponding to the matrix Ab contain the
uncertainty of the steady state plus possible measurement errors of the arterial concentrations.
The Gibbs sampling can be applied to the whole model by relaxing the condition that the
solution is in the null space of Ac. Introducing a symmetric decomposition for the inverse of
the error covariance Γ−1 = RTR, we can express the likelihood function (13) in the form

From the singular value decomposition RA = UDVT, D = diag(d1, d2, …, dm), by using the
orthogonality of U it follows that the likelihood function can be written in the form

where b = UTRr and y = VTu. From here on, the componentwise Gibbs sampling with the
bound constraints proceeds as before. In this case the dimensions of the problem are
significantly larger than for the minimal model, thus requiring a greater computational load
for the exploration of the posterior probability density via MCMC analysis.

Heino et al. Page 13

J Theor Biol. Author manuscript; available in PMC 2008 September 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Finally, we note that the Gibbs sampling of the full model can be done directly using the original
coordinates u without passing to the new coordinates using the SVD.

4.3.2 Implementation of energy principle: rejection sampling—So far, our prior has
only contained the upper and lower bound information on the unknowns, ignoring the portion
that favors high oxidative phosphorylation flux values. The inclusion of (15) into the prior
density is straightforward, but the Gibbs sampler algorithm requires modifications, in particular
because the sampling is done in the y-space. One possibility is to implement the prior
information sequentially: having computed the sample {u1, …, uN} using the bound constraint
prior, we perform a resampling: for each vector uj, we calculate the acceptance ratio, α =
πphos(uj), 0 ≤ α ≤ 1, and accept uj, with probability α, into the final sample. The resulting sample
will be, in general, smaller and richer in vectors for which πphos(u) is higher, i.e., that comply
better with the energy principle. The above strategy is equivalent to what is known in the
literature as rejection sampling, see, e.g., Liu (2003).

4.3.3 Parametric prior distributions—One of the motivations for adopting a Bayesian
perspective for the flux estimation problem is that it allows the inclusion of a priori beliefs
about the distribution of the vector u into the estimation. This prior belief may be based on
preliminary studies, additional data sets or assumptions about the mathematical model.

For example, in Calvetti & Somersalo (2006) the probability density of the Michaelis-Menten
parameters, collected in the model vector θ, was estimated by Bayesian sampling techniques
using ischemic biopsy data from the literature (Katz (1988)). Since this information does not
concern directly the fluxes at steady state, the question becomes then how to enter this available
information about the Michaelis-Menten parameters in the form of a prior for the fluxes, which
are the variables of primary interest in the present investigation. Observe that although in the
cited article the steady state condition was included in the model before the onset of the
ischemia, the flux balance was not enforced, and the steady state was assumed to be a resting
steady state. Therefore, the FBA can provide complementary information of the system.

We propose the following straightforward procedure based on sampling. Consider the

Michaelis-Menten model (7), and assume that we have a probability density  available
for the model parameters and the steady state concentrations. We may draw a representative
sample {(θ1, C1), …, (θM, CM)} from this distribution, and then calculate the corresponding
flux sample, {u1, …, uM}, where ui = F(θi, Ci). The flux sample can then be used, e.g., to
estimate upper and lower bounds for the fluxes or, more generally, to fit a given parametric
model for the random variable u. Since in the Gibbs sampling methods presented above the
sampling is done for the variable y, we can calculate the sample {y1, …, yM} using the formula
y = VTu, and use it to fit a parametric model for the random variable y.

4.4 Results
This section presents the results of computed examples illustrating the Bayesian flux estimation
method and compares them to the optimization based results discussed earlier. All
computations were performed using Matlab.

4.4.1 Prior distributions and bounds—In order to set suitable bounds or parametric prior
distributions for the components of the vector u, we proceed as described in Section 4.3.3. In
the article Calvetti & Somersalo (2006), a Markov Chain Monte Carlo sample of the vector
x = (C0, θ) was calculated based on biopsy data of Katz (1988). Although we could use directly
this sample to calculate a sample of vector u via the model (7), to avoid using a too committal
prior, we follow a different approach. First, we assume that the components of the vector x are
mutually independent. Then, using the sample generated in Calvetti & Somersalo (2006), we
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estimate a parametric distribution for each component separately, using a log-normal
distribution for the Michaelis-Menten parameters, collected into the vector θ, and a uniform
distribution for the initial concentrations over the interval , where  is the
componentwise mean. Similarly, for the log-normal distribution, we first compute the mean

 and then select a lognormal density which preserves  and is such that 97.5% of the sample
is below . Having the parametric distributions for the components of x, we then generate a
sample of 10 000 independently drawn vectors, calculate the corresponding flux vectors, and
set the bounds for the fluxes so that 95% of the sample vectors are within the confidence
interval.

We remark that fitting a log-normal prior to the sample in the maximum likelihood sense would
lead to considerably tighter prior for the Michaelis-Menten parameters and for the flux vector
u. The narrower bounds used in the LP computations are a result of the latter approach.

Before discussing the results of the MCMC sampling, a few comments concerning the priors
for different parameters are in order. The first one concerns committal and non-committal
priors. For simplicity, consider a Michaelis-Menten flux model without facilitators,

assuming that Vmax and K are fixed, and denote Φ = Φ (C). In general, it is commonly believed
that the wider the prior of the variable C is, the more uninformative and less committal it is.
This is no longer obvious if the variable of primary interest is Φ instead of C. To understand
why, denote by πC(C) the probability density of C. After a change of variables, the probability
density πΦ of Φ is

Since the mapping  saturates for large values of C, the derivative tends to zero and
hence, the probability density of Φ is large for large values of C. Therefore, the wider
(noninformative) the probability density of C is, the more confident we are that Φ is close to
its saturation value as C → ∞. This phenomenon is illustrated in Figure 3, where we have
probability densities of Φ corresponding to uniform distributions of C over two different
intervals.

Our second point is that the uniform priors for the components of u could be replaced with
other parametric priors. We found that, by using the Weibull distributions (see, e.g., Miller &
Freund (1977)), we could get a relatively good fit to the histograms of the components of u,
and further, for histograms of the minimal model vector y. However, since the use of different
parametric priors had little effect on the final results, we will not discuss this issue any further.

4.4.2 Gibbs sampling computations—In our computed examples we applied Gibbs
sampling MCMC for the analysis for the steady state to both the whole and the minimal model.
For each model, we computed a sample of 200 000 elements.

The values for the arterial concentrations Ca were taken from Dash & Bassingthwaighte
(2006) (see also Appendix A, Table 3). To set up the likelihood model, we assumed a standard
deviation of 5% for the arterial concentration values. For the whole model, where we also
needed to set uncertainties for the steady state condition, the standard deviation for the steady
state conditions was chosen to be 1% of the value of the right-hand side of Abu and Acu,
respectively, calculated at the mean of the prior density. The initial point for the sampling was
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calculated from the mean of the sample obtained in Calvetti & Somersalo (2006) (this sample
was used also for the priors) using the Michaelis-Menten model (7).

We use the correlation length of the component sample as a measure of convergence. Thus,
the correlation lengths are calculated using for g a function that picks a given component p
from the vector x, i.e., g(x) = xp (see Section 4.1). In our calculations, we define the correlation
length using a threshold value of 0.25, i.e., γℓ < 0.5. The calculation of the autocovariance is
repeated up to the value ℓ=1000.

We recall that for both the minimal and the whole model, the sampling is done for y, while the
variable of primary interest is u. From our numerical simulations, we saw that while some of
the components of y converge fast, for others the convergence can be painfully slow. We also
noticed that the correlation length of a y component clearly depends on the value of the
corresponding singular value of the system matrix, with large singular values displaying low
correlation length, thus good convergence rate, of the coefficient of the corresponding singular
vector. This phenomenon, which we have observed for both the minimal and the whole model,
is illustrated in Figure 4.

The singular values for the whole model that are clearly distinct from zero are very markedly
separated from the near vanishing ones, and it is in correspondence of the gap that the
correlation length increases dramatically. This phenomenon is independent of the Gibbs
sampling strategy in the sense that it is present whether we perform the updating starting from
the component corresponding to highest or lowest singular value.

In order to get a measure of the reliability of the estimates of u, we computed the correlation
lengths for the components of u. Table 5 in Appendix B lists the correlation lengths of the
components of the Gibbs samples for the whole and minimal model, respectively.

In addition to the posterior mean estimates, the histograms of the components of u from the
samples {ui}, i = 1, …, N, contain valuable information on how well the respective quantities
are defined by the system. Figure 5 shows the histograms of some of the components of the
solution u for the whole and minimal model. The posterior mean estimates and the
corresponding LP solution are also shown. It should also be pointed out that different sampling
strategies may lead into slightly different results.

The initial point of the sampling may also affect the results in particular for the components
that have not yet converged. To investigate the effect of the initial point, we calculated the
Gibbs samples using two other initial points. For both the whole model and minimal model
the LP solution was used. For the whole model, also the midpoint between the bounds was
used, for the minimal model this natural choice for a starting point would not work as the initial
point has to lie in the null space of Ac. The results show that for the components for which the
correlation length is small, two different initial points produce in practice the same histograms,
whereas for poorly converged components (high correlation length) the effect of the initial
point is clearly visible. Figure 6 demonstrates the effect of the initial point.

In our computed simulations we implemented the prior belief that the system favors steady
states with a high oxidative phosphorylation reaction flux by rejection sampling, i.e., we
resampled the existing sample {u1, …, uN}, corresponding to the uniform prior, favoring those
u for which πprior(u) is large. Figure 7 shows the histograms from a Gibbs sample generated
using the minimal model sampler before and after rejection sampling. We observe that the
optimality criterion, as implemented here, has a visible but not dramatic effect on the posterior
distribution, shifting the histograms slightly towards the energetically more efficient (higher
aerobic ATP production) direction.
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5 Discussion and further studies
By looking at the histograms, it is clear that some of them have identical shapes. For instance,
the histograms of the glycolytic reactions are all identical up to scaling, since at steady state
the fluxes should indeed coincide. The same is true for the TCA cycle reaction fluxes.
Mathematically, these fluxes depend linearly on the same underlying independent components,
and it is possible to calculate correlation coefficients to find out the correlated fluxes. Note,
that although the independent components are not necessarily equal to the singular vectors of
the system matrix, since the coefficients of the singular vectors get correlated via the bound
constraints in a non-trivial way, the singular vectors provide a good first approximation to the
independent components.

The histograms of the reversible reactions, glycogen synthesis and utilization and
phosphocreatine synthesis and breakdown, are identical and spread over the feasible region,
indicating that the net flux vanishes while the one-way fluxes are not determined.

It is interesting to observe that the prior favoring high oxidative phosphorylation flux has a
marginal effect on the means of the distributions. The LP solution, however, may differ
dramatically from the mean, and it is often at a tail of the distributions. While it is not surprising
that the optimization approach leads to a solution of high TCA fluxes, it is maybe less obvious
that the glycolytic fluxes tend to the minimum in our computed example. This phenomenon
may be due to the instability of the LP solution: from Figure 1, we observe that with the
narrower bound constraints, the glycolytic fluxes (j = 1, 4, 5, 6) are closer to their maximum.
This observation suggests that a distribution based estimation strategy, being less prone to
instabilities, may be preferable to computing single estimates. Notice also that the LP solution
requires that the steady state condition and the bound constraints are consistent, which may
not be easy to check, in particular when bound constraints from different sources are used. The
Bayesian approach is more flexible in the sense that since the steady state is not enforced
strictly, inconsistency with the prior bounds leads only to low likelihoods.

The trade-off in using sampling methods is that sampling strategies are generally slower than
methods that produce single point estimates such as LP solution. However, the obtained
solution is also much more informative; the estimate of the probability density of the solution,
rather than a single point estimate that may be rather unstable. To give more practical feeling
on computational effort, the computing time of a sample of 200 000 elements was
approximately 160 minutes for the whole model, which amounts to roughly 0.05 seconds per
sample point, and 72 minutes for the minimal model, which amounts to roughly 0.02 seconds
per sample point, on a PC with 2 GHz processor and 2 Gb of RAM. The computing time of a
single LP solution at the same setup was of the order of a fraction of a second.

There are several directions where this analysis can be extended. The most straightforward one
is the study of more complex models, including sub-compartments of different cell types and
sub-domains within them. Another natural extension is the analysis of independent
components, since they define subsystems in the metabolic networks that can be estimated
separately. The study of conditional distributions is also of interest if we have partial
information about the system available. Furthermore, a Bayesian FBA which take into account
concentration data (Katz, 1988; Korth et al., 2000) as well as thermodynamic constraints, will
be the topic of future work.
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Appendix A. Skeletal muscle model
This appendix gives the details of the two-compartment skeletal muscle model considered in
this article. Table 1 lists the biochemical species included in the model with their abbreviations.
All 30 species are present in the tissue domain, and the first 9 also in the blood domain. The
26 biochemical reactions implemented in the model are listed in Table 2. Table 3 specifies the
type of transport flux (facilitated or passive) between blood and tissue for each species in the
blood domain, and gives the numerical values (from Dash & Bassingthwaighte (2006)) for the
arterial blood concentrations. In our calculations, the units for the concentrations are mmol/l,
for the reaction and transport fluxes mmol/min and for the blood flow l/min. The numerical
values used for the blood flow Q(t) and the mixing ratio F are 0.9 l/min and 2/3, respectively.
Finally, Figure 8 presents a schematic diagram of the two-compartment skeletal muscle model.

Appendix B. Bounds and correlation lengths
Table 4 presents the numerical values for the bounds for the solution vector u. The LP solution
was calculated with both the set of tight bounds and the set of wide bounds. In the Bayesian
statistical computations, the set of wide bounds was used. Table 5 presents the numerical values
of the correlation lengths for the components of u from the Gibbs sampling.

References
Barrett CL, Price ND, Palsson BO. Network-level analysis of metabolic regulation in the human red

blood cell using random sampling and singular value decomposition. BMC Bioinformatics 2006;7
(132)10.1186/1471-2105-7-132

Beard DA, Liang S, Quian H. Energy balance for analyzing complex metabolic networks. Biophys J
2002;83(1):79–86. [PubMed: 12080101]

Bonarius HPJ, Schmid G, Tramper J. Flux analysis of underdetermined metabolic networks: the quest
for the missing constraints. TRENDS Biotechnol 1997;15:308–314.

Calvetti D, Dash RK, Somersalo E, Cabrera ME. Local regularization method applied to estimating
oxygen consumption during muscle activities. Inverse Problems 2006a;22:229–
243.10.1088/0266-5611/22/1/013

Calvetti D, Hageman R, Somersalo E. Large-scale Bayesian parameter estimation for a three-
compartment cardiac metabolism model during ischemia. Inverse Problems 2006b;22:1797–
1816.10.1088/0266-5611/22/5/016

Calvetti D, Somersalo E. Large-scale statistical parameter estimation in complex systems with an
application to metabolic models. Multiscale Modelling and Simulation 2006;5(4):1333–1366.

Dash RK, Bassingthwaighte JB. Simultaneous blood-tissue exchange of oxygen, carbon dioxide,
bicarbonate and hydrogen ion. Ann Biomed Eng 2006;34(7):1129–1148.10.1007/s10439-005-9066-4
[PubMed: 16775761]

Gilks, WR.; Richardson, S.; Spiegelhalter, DJ. Markov Chain Monte Carlo in Practice. Chapman & Hall;
1996.

Golub, GH.; Van Loan, CF. Matrix Computations. The Johns Hopkins University Press; 1989.
Kaipio, J.; Somersalo, E. Statistical and Computational Inverse Problems. Springer-Verlag; 2004.
Katz A. G-1,6-P2, glycolysis, and energy metabolism during circulatory occlusion in human skeletal

muscle. Am J Physiol Cell Physiol 1988;255(24):C140–C144.
Kauffman KJ, Prakash P, Edwards JS. Advances in flux balance analysis. Current Opinion in

Biotechnology 2003;14:491–496.10.1016/j.copbio.2003.08.001 [PubMed: 14580578]
Keener, J.; Sneyd, J. Mathematical Physiology. Springer-Verlag; 1998.
Korth U, Merkel G, Fernandez FF, Jandewerth O, Dogan G, Koch T, van Ackern K, Weichel O, Klein

J. Tourniquet-induced changes of energy metabolism in human skeletal muscle monitored by
microdialysis. Anesthesiology 2000;93(6):1407–1412. [PubMed: 11149434]

Heino et al. Page 18

J Theor Biol. Author manuscript; available in PMC 2008 September 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lai N, Dash RK, Nasca MM, Saidel GM, Cabrera ME. Relating pulmonary oxygen uptake to muscle
oxygen consumption at exercise onset: in vivo and in silico studies. Eur J Appl Physiol 2006;97:380–
394.10.1007/s00421-006-0176-y [PubMed: 16636861]

Liu, JS. Monte Carlo Strategies in Scientific Computing. Springer-Verlag; 2003.
Marangoni, AG. Enzyme Kinetics. A Modern Approach. Wiley Interscience; Hoboken: 2003.
Miller, I.; Freund, JE. Probability and Statistics for Engineers. 2nd. Prentice-Hall, Inc.; Englewood Cliffs,

NJ: 1977.
Nelson, DL.; Cox, MM. Lehninger Principles of Biochemistry. 4th. W.H. Freeman & Company; New

York: 2005.
Papin JA, Price ND, Edwards JS, Palsson BO. The genome-scale metabolic extreme pathway structure

in Haemophilus influenzae shows significant network redundancy. J Theor Biol 2002a;215(1):67–
82. [PubMed: 12051985]

Papin JA, Price ND, Palsson BO. Extreme pathway lengths and reaction participation in genome-scale
metabolic networks. Genome Research 2002b;12:1889–1900.10.1101/gr.327702 [PubMed:
12466293]

Papin JA, Price ND, Wiback SJ, Fell DA, Palsson BO. Metabolic pathways in the post-genome era.
TRENDS in Biochemical Sciences 2003;28(5):250–258.10.1016/S0968-0004(03)00064-1
[PubMed: 12765837]

Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO. Comparison of network-based pathway
analysis methods. TRENDS in Biotechnology 2004;22(8):400–405. [PubMed: 15283984]

Price ND, Reed JL, Papin JA, Famili I, Palsson BO. Analysis of metabolic capabilities using singular
value decomposition of extreme pathway matrices. Biophysical Journal 2003a;84:794–804.
[PubMed: 12547764]

Price ND, Reed JL, Papin JA, Wiback SJ, Palsson BO. Network-based analysis of metabolic regulation
in the human red blood cell. J Theor Biol 2003b;225:185–194.10.1016/S0022-5193(03)00237-6
[PubMed: 14575652]

Ramakrishna R, Edwards JS, McCulloch A, Palsson BO. Flux-balance analysis of mitochondrial energy
metabolism: consequences of systemic stoichiometric constraints. Am J of Physiol Regulatory,
Integrative and Comp Physiol 2001;280:R695–R704.

Salem JE, Cabrera ME, Chandler MP, McElfresh TA, Huang H, Sterk JP, Stanley WC. Step and ramp
induction of myocardial ischemia: comparison of in vivo and in silico results. J Physiol Pharmacol
2004;55(3):519–536. [PubMed: 15381824]

Schilling CH, Letscher D, Palsson BO. Theory for the systemic definition of metabolic pathways and
their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol
2000;203:229–248.10.1006/jtbi.2000.1073 [PubMed: 10716907]

Schilling CH, Palsson BO. The underlying pathway structure of biochemical reaction networks. Proc
Natl Acad Sci USA 1998;95:4193–4198. [PubMed: 9539712]

Schilling CH, Palsson BO. Assessment of the metabolic capabilities of Haemophilus influenzae Rd
through a genome-scale pathway analysis. J Theor Biol 2000;203:249–283.10.1006/jtbi.2000.1088
[PubMed: 10716908]

Siesjö, BK. Brain Energy Metabolism. Wiley & Sons; 1978.
Vanderbei, RJ. Linear Programming: Foundations and Extensions. Kluwer Academic Publishers; Boston:

1996.
Varma A, Palsson BO. Metabolic flux balancing: basic concepts, scientific and practical use. Bio/

Technology 1994;12:994–998.10.1038/nbt1094-994
Vo TD, Greenberg HJ, Palsson BO. Reconstruction and functional characterization of the human

mitochondrial metabolic network based on proteomic and biochemical data. J Biolog Chem 2004;279
(38):39532–39540.

Wiback SJ, Mahadevan R, Palsson BO. Reconstructing metabolic flux vectors from extreme pathways:
defining the α-spectrum. J Theor Biol 2003;224:313–324.10.1016/S0022-5193(03)00168-1
[PubMed: 12941590]

Wiback SJ, Mahadevan R, Palsson BO. Using metabolic flux data to further constrain the metabolic
solution space and predict internal flux patterns: The Escherichia coli spectrum. Biotechnology and
Bioengineering 2004;86(3):317–331.10.1002/bit.20011 [PubMed: 15083512]

Heino et al. Page 19

J Theor Biol. Author manuscript; available in PMC 2008 September 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Wiback SJ, Palsson BO. Extreme pathway analysis of human red blood cell metabolism. Biophysical
Journal 2002;83:808–818. [PubMed: 12124266]

Zhou L, Salem JE, Saidel GM, Stanley WC, Cabrera ME. Mechanistic model of cardiac energy
metabolism predicts localization of glycolysis to cytosolic subdomain during ischemia. Am J Physiol
Heart Circ Physiol 2005;288:2400–2411.10.1152/ajpheart.01030.2004

Heino et al. Page 20

J Theor Biol. Author manuscript; available in PMC 2008 September 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Two sets of the bounds and the corresponding solutions. The dotted curve is the LP solution
for the wider bounds, the solid line is the LP solution for the tighter bounds. The plots are in
logarithmic scale.
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Fig. 2.
Histogram of the discrepancies di with 5% noise level (left), and the dependency of the mean
discrepancy on the noise level of the arterial concentration values (right).
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Fig. 3.
Probability densities of Φ corresponding to uniform distributions of C over an interval [1/t,
t], with two different values of t. Here, Vmax = 1 and K = 1.
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Fig. 4.
Singular values and correlation lengths for (a) the whole model and (b) the minimal model
sampler. The values are based on samples with 200 000 elements. The correlation length was
calculated as explained in Section 4.1, using a value ℓ = 1000 for the maximum value of the
correlation length.
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Fig. 5.
The histograms and corresponding posterior mean estimates of some of the reaction and
transport fluxes and the concentration of oxygen with Gibbs sampling using the whole model
(thicker blue) and minimal model (thinner black). For reversible reactions and transport fluxes,
the net flux is plotted. The maximum value of each histogram is normalized to unity. The units
for the reaction and transport fluxes are mmol/min and for the concentrations mmol/l. The LP
solution (dashed red) is also depicted (except for net fluxes). The highlighted area defines the
bounds, or in case of net fluxes, the span of the histogram.
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Fig. 6.
The histograms of a well converged (left panels) and a poorly converged (right panels)
component of u using the minimal model (top) and whole model (bottom) for different starting
points of the sampling. For the minimal model the starting points were the LP solution (thicker
blue) and the mean of the sample used for priors (thinner black). For the whole model the
starting points were the midpoint between bounds (thicker blue) and the mean of the sample
used for priors (thinner black). The LP solution (dashed red) is also shown. The units for the
reaction fluxes are mmol/min and the maximum value of each histogram is normalized to unity.
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Fig. 7.
The histograms and the corresponding CM estimates of all the components of the solution u
from Gibbs sampling using the minimal model before (thicker blue) and after (thinner black)
applying rejection sampling. For reversible reactions and transport fluxes, the net flux is
plotted. The maximum of each histogram is normalized to unity. The units for the reaction and
transport fluxes are mmol/min and for the concentrations mmol/l. The LP solution (dashed red)
is also depicted (except for net fluxes). The highlighted area in the plots defines the bounds,
or in case of net fluxes, the span of the histogram.
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Fig. 8.
A schematic diagram of the biochemical pathways in the two-compartment skeletal muscle
model.
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Table 1
Biochemical compounds.

1. GLU (glucose) 16. CIT (citrate)
2. PYR (pyruvate) 17. AKG α-ketoglutarate
3. LAC (lactate) 18. SCoA (succinyl-CoA)
4. ALA (alanine) 19. SUC (succinate)
5. TGL (triglyceride) 20. MAL (malate)
6. GLC (glycerine) 21. OXA (oxaloacetate)
7. FFA (free fatty acid) 22. PCR (phosphocreatine)
8. CO2 (carbon dioxide) 23. CR (creatine)
9. O2 (oxygen) 24. Pi (inorganic phosphate)
10. G6P (glucose 6-phosphate) 25. CoA (coenzyme A)
11. GLY (glycogen) 26. NADH
12. GA3P (glyceraldehyde 3-phosphate) 27. NAD+

13. BPG (bisphosphoglycerate) 28. ATP
14. FAC (fatty acyl-CoA) 29. ADP
15. ACoA (acetyl-CoA) 30. AMP
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Table 2
Biochemical reactions. The non-integer stoichiometry of oxidative phosphorylation corrects the effect of lumping
together the concentrations in cytosol and mitochondria.

Reaction Stoichiometry

1. Glucose Utilization GLU+ATP → G6P+ADP
2. Glycogen synthesis G6P+ATP → GLY + ADP + 2 Pi
3. Glycogen utilization GLY + Pi → G6P
4. Glucose 6-phosphate breakdown G6P+ATP→2 GA3P+ADP
5. Glyceraldehyde 3-phosphate breakdown GA3P+Pi+NAD+ →BPG + NADH
6. Pyruvate production BPG + 2 ADP → PYR + 2 ATP
7. Pyruvate reduction PYR + NADH → LAC + NAD+

8. Lactate oxidation LAC + NAD+ → PYR + NADH
9. Alanine production PYR→ ALA
10. Pyruvate oxidation PYR + CoA + NAD+ →ACoA + NADH +CO2
11. Lipolysis TGL→GLC + 3 FFA
12. Triglyceride synthesis GLC+3 FFA + 3 ATP→ TGL+3 ADP + 3 Pi
13. Free fatty acid utilization FFA + CoA + 2 ATP→FAC +2 ADP+2 Pi
14. Fatty Acyl-CoA Oxidation FAC + 7 CoA + (35/3) NAD+ → 8 ACoA + (35/3) NADH
15. Citrate production ACoA + OXA → CIT + CoA
16. α-ketoglutarate production CIT + NAD+ → AKG + NADH + CO2
17. Succinyl-CoA production AKG + CoA + NAD+ → SCoA + NADH + CO2
18. Succinate production SCoA + ADP + Pi → SUC + CoA + ATP
19. Malate production SUC + (2/3) NAD+ →MAL + (2/3) NADH
20. Oxaloacetate production MAL + NAD+ → OXA + NADH
21. Oxidative phosphorylation O2 + 5.64 ADP + 5.64 Pi + 1.88 NADH → 2 H2O + 5.64 ATP + 1.88 NAD+

22. Phosphocreatine breakdown PCR + ADP→CR+ATP
23. Phosphocreatine synthesis CR + ATP→ PCR + ADP
24. ATP hydrolysis ATP → ADP+Pi
25. AMP utilization AMP+ATP→ADP+ADP
26. AMP production ADP+ADP→ AMP+ATP
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