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In genetic screens, the number of mutagenized gametes examined is an important parameter for evaluating screen progress,
the number of genes of a given mutable phenotype, gene size, cost, and labor. Since genetic screens often entail examination
of thousands or tens of thousands of animals, strategies for optimizing genetics screens are important for minimizing effort
while maximizing the number of mutagenized gametes examined. To date, such strategies have not been described for
genetic screens in the nematode Caenorhabditis elegans. Here we review general principles of genetic screens in C. elegans,
and use a modified binomial strategy to obtain a general expression for the number of mutagenized gametes examined in
a genetic screen. We use this expression to calculate optimal screening parameters for a large range of genetic screen types. In
addition, we developed a simple online genetic-screen-optimization tool that can be used independently of this paper. Our
results demonstrate that choosing the optimal F2-to-F1 screening ratio can significantly improve screen efficiency.
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INTRODUCTION
The identification of mutant animals is usually the first step in the

genetic analysis of a biological process. In animals amenable to

genetic study, such mutants are commonly identified by random

mutagenesis, followed by screening for the trait under study. The

mutation frequencies conferred by different mutagens in different

organisms have been extensively documented [1]. Furthermore,

for a given mutagen dose, the probability of identifying a mutant

in a specific gene is a function of the number of mutagenized

gametes (or haploid genomes) examined. Typically, mutagens are

employed at doses inducing 10–100 mutations per haploid

genome. At such mutagenesis frequencies the number of induced

mutations is orders of magnitude above the accumulation of

spontaneous mutations, yet is not too large as to preclude

organismal viability [1].

For screens in the nematode Caenorhabditis elegans, typical

mutagenesis regimens require isolation and examination of

thousands of animals to approach saturation. Depending on the

screening approach, examination of such numbers of animals can

be quite labor intensive. In these situations, therefore, it is

advantageous to identify optimal screening strategies that

maximize the number of genomes screened, while minimizing

the work involved. Indeed, as we show here, choosing a reasonable,

yet suboptimal ratio of F2 to F1 animals, can double or triple the

work involved in screening a given number of mutagenized F1

animals, as compared to screening using optimal parameters.

Thus, suboptimal screen strategies may unnecessarily prolong

screens, and use up excess reagents.

Currently, a description of how to optimize genetic screens in C.

elegans is not available. We therefore set out to develop a general

algorithm for optimizing genetic screens in this organism. Here we

examine such an optimization approach. We begin by reviewing

the variables affecting the number of mutagenized haploid

genomes needed to achieve saturation screening. We then derive

a general expression, valid for most genetic screening approaches

used in C. elegans, for counting the number of mutagenized F1

animals examined in a genetic screen. The expression we derive is,

as we show, essentially independent of the total number of animals

scored during the course of the screen, and is independent of

variations in locus mutability. Although the number of mutagen-

ized F1 animals is often approximated by the Poisson distribution,

we demonstrate that for at least one major screen class, the Poisson

approximation leads to large errors.

Using the generalized expression described above, we solve

optimization equations to maximize the efficiencies of two

common genetic screen types. Our solutions reveal that an

optimal F2-to-F1 screening ratio always exists for these screens,

and that this ratio is dependent neither on the total number of

animals scored, nor on the number of mutagenized gametes

examined. Rather, the optimal screening ratio depends only on the

type of mutation sought (e.g. recessive, dominant) and on the

relative work involved in picking and scoring F1 and F2 animals.

We use our results to delineate a simple algorithm for setting up

and following the progress of genetic screens in C. elegans.

Although valid for C. elegans, our results can be simply extended

to genetic screens in other organisms.

RESULTS
(Readers not interested in the mathematical exposition that follows

can skip to the last section of the Discussion, which describes

a simple algorithm for optimizing genetic screens in C. elegans).

The Probability of Identifying a Mutant F1 Animal
The nematode C. elegans is a self-fertilizing hermaphrodite that, at

least under laboratory settings, rarely uses males for reproduction
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[2]. Genetic screens in C. elegans generally follow a scheme

similar to the one outlined in Figure 1A. First, animals (the P0

generation) are exposed to a mutagen inducing mutations in

sperm and oocytes [1]. The mutagen ethyl methanesulfonate

(EMS), for example, when used at a concentration of 50 mM,

induces loss-of-function mutations in a given C. elegans gene at

an average frequency of one every 2,500 mutagenized P0

gametes [1–6]. Generally, fourth-larval-stage (L4) or young-adult

animals are used as mutagenesis targets to maximize the

probability that the mutations generated are derived from

independent events [1].

Next, P0 animals are allowed to self-fertilize, to produce F1

progeny. If mutations in either copy of a gene under consideration

can be revealed in subsequent analysis, and if n F1 animals are

examined, then the number of haploid genomes screened, defined

as the number of P0 gametes examined, is given by 2n. More

generally, however, the number of haploid genomes examined is

given by a times n (an) where a takes on the value of either 1 or 2.

For example, if a mutation in a gene of interest is suspected to be

lethal or sterile, attempts to induce it on a marked chromosome,

opposite a balancer chromosome, are often undertaken [7]. For

such a screen, only mutations induced on the marked, non-

balancer chromosome are sought, and a = 1.

Following mutagenesis, the probability of finding at least one F1

animal heterozygous for a mutation in a specific gene of interest is

influenced by a number of parameters, and can often vary greatly

from gene to gene. Thus, for example, smaller genes may be less

likely to be hit by mutagen. Furthermore, some mutagens, such as

EMS, preferentially alter certain nucleotides [8–11], thus nucle-

otide content of a gene may also affect its mutation frequency. It is

also possible that chromatin structure and packing of DNA in the

environs of a gene may play a role in its mutagenesis frequency.

Thus, obtaining an exact estimate for the number of F1 animals to

be screened is difficult, and screens are generally considered near

saturation when multiple alleles of a given gene have been

identified.

Nonetheless, in many instances, assuming an average mutagen-

esis frequency can lead to useful estimates regarding screen

progress, and deviations from these estimates can often hint at

unique features of a gene, such as unusually large or small size

[1,12,13]. To calculate such average probabilities we can proceed

as follows.

The probability of finding at least one F1 animal heterozygous

for a mutation in a gene of interest among n F1 progeny of

mutagenized P0 animals, assuming a = 2, is 12(probability no F1

animals carry a mutation)2(probability an F1 animal carries

independent mutations in each copy of a gene of interest). For

common mutagenesis frequencies, the last term is exceedingly

small and can be ignored without significant loss of accuracy.

Thus, the probability of finding a heterozygous F1 animal, p(n), is

given by

p nð Þ~1{ 1{
1

r

� �n

, ð1Þ

where 1/r is the fraction of F1 animals expected, on average, to

carry a mutation in a gene of interest. As described above,

r = 1,250 for loss-of-function mutations obtained by EMS

mutagenesis.

Using equation (1), we can calculate how many F1 animals

should be examined, on average, to obtain at least one animal

carrying a loss-of-function mutation in a gene of interest. For

example, to achieve a 95% probability (p(n) = 0.95) of obtaining an

F1 carrier, we subtract 1 from both sides of equation (1), divide

both sides by 21, take the logarithm of both sides of the equation,

and rearrange to obtain n = ln0.05/ln(121/r). For large values of

r, as is the case for most mutagenesis regimes, ln(121/r)<21/r.

We thus obtain the expression n/r = 2ln0.05, or n/r<3,

a commonly used result (see also Materials and Methods section

of ref. 14).

A similar calculation for a = 1 (see example above) is more

complex if the F1 animals, in which the mutation of interest is

induced on the balancer chromosome, cannot be readily

distinguished from those in which the mutation is induced on

the marked chromosome, and we proceed as follows. Of

a collection of n F1 animals, assume that q are heterozygous for

mutations in a given gene. The odds that this is the case are given

by the probability of obtaining q heterozygotes, (1/r)q, multiplied

by the probability of the remaining n2q F1 animals being non-

carriers, (121/r)n2q, multiplied by the number of ways such an

Figure 1. General genetic screening scheme in C. elegans. (A) P0
animals are mutagenized, and allowed to self-fertilize to produce F1
animals. To identify recessive mutations, F1 animals are allowed to self-
fertilize to produce the F2 generation. In this paper we consider the
case of n F1 animals giving rise to m F2 animals. (B) Plots describing the
probability, p(n), that among n F1 animals screened, following
mutagenesis by EMS (r = 1,250), will be found at least one F1 animal
heterozygous for a loss-of-function mutation in a gene of interest. The
parameter a is as defined in the text. The plots were generated by the
program Mathematica 5.0 (Wolfram Research), using n as a continuous
variable.
doi:10.1371/journal.pone.0001117.g001
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arrangement can occur, given by the binomial coefficient

n

q

� �
~

n!

n{qð Þ!q!
. The probability that at least one of the q

animals carries the mutation on the marked chromosome is given

by 12(1/2)q, where (1/2)q is the probability that all q heterozygotes

carry the mutation on the balancer chromosome. Thus, the

probability that of n F1 animals, q are heterozygous for mutations

in a given gene, and at least one of these q animals carries

the mutation on the marked chromosome is

n

q

� �
1

r

� �q

1{
1

r

� �n{q

1{
1

2

� �q� �
. Therefore, to obtain the

probability that at least one informative F1 animal is present

among the n F1 animals picked, we sum the individual

probabilities for each value of q to obtain

p nð Þ~
Xn

q~1

n

q

� �
1

r

� �q

1{
1

r

� �n{q

1{
1

2

� �q� �
: ð2Þ

For large n and r, equation (2) can be accurately approximated

using the Poisson distribution (see Materials and Methods),

yielding:

p nð Þ~1{e{ n
2r, ð3Þ

For a given n it is expected that pa = 2(n). pa = 1(n), a

result illustrated in Figure 1B where the probabilities p(n)

are plotted for values of n between 1 and 20,000, assuming

r = 1,250.

Counting F1 Animals Screened- an Example
The discussion of the previous section suggests that gene-to-gene

variations in mutability make it difficult to predict precisely how

many mutagenized F1 animals must be sifted through to identify

a mutant of choice. However, the question arises as to whether an

optimal screening strategy, independent of locus mutability, might

exist, and if so, what are its properties.

To begin to address this issue, we must first determine how

many mutagenized F1 animals have been examined during

a genetic screen. In this section and the following sections we

make a distinction between the number of F1 animals picked for

analysis, n, and the number of F1 animals whose mutation content

has actually been examined, nact. If the mutation being sought is

predicted to behave in a simple dominant fashion, then counting

how many F1 animals were examined is trivial, and is precisely

equal to the number of F1 animals picked, that is, nact = n (e.g.

Table 1). However, in most schemes, as illustrated in Figure 1A,

recessive mutations are sought, whose presence cannot be

discerned in the F1 generation. Thus, F1 animals are allowed to

self-fertilize, to produce F2 animals, among which may be

identified homozygous mutants in the gene of interest, displaying

a scorable phenotype. In this case it is generally the case that

nact?n, and nact must be used instead of n in equations (1), (2), and

(3) to obtain p(n).

To obtain a general expression for nact, we begin by considering,

as an example, a genetic screen in which all n F1 animals are

picked to a single plate, from which m F2 animals are then scored

for the mutant phenotype. We assume that all F1 animals produce

approximately the same number of F2 animals. Indeed, for

standard EMS screens in C. elegans, only about 5% of F1 animals

Table 1. Optimal Numbers of F1 and F2 Animals Required to Screen 5,000 Mutagenized F1 Animals for Different Screen
Parameters.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Screen type
Screen
parameters

F1 plating
methoda

No. F1s
(n)

No. F2s
(m) Work (W) Examples of types of mutants sought

F1 screen N/A N/A 5,000 0 Depends on ease of
scoring phenotype

1. Dominant visible mutants.

2. Non-complementation screen for recessive mutants.

3. Intragenic suppression of a dominant mutation.

Ia a = 1.01b 1 F1/plate 11,429 22,857 34,514 1. Male visible mutants where mating must be avoided
during the screen.

c = 1c 2. Maternal-effect sterile mutants.

Ib a = 0.01 Small number of plates 25,738 22,238 248 1. Visible mutants.

c = 0.001d 2. Selections (a,c very small in this case)e.

II a = 0.01 1 F1/plate 5,164 61,963 5,783 1. Sterile mutants.

c = 1 2. Lethal mutants.

III a = 1.01 Small number of plates 224,732 20,226 20,653 1. Maternal-effect visible mutants.

c = 0.001 2. Mutants enhancing a weakly penetrant phenotype.

3. Mutants affecting population behavior.

4. Male sterile mutants.

5. Maternally-rescued visible mutants.

All values are for fully penetrant recessive mutations for which p = 0.75. Screen types are defined in the text. N/A, not applicable. All screens are for recessive mutants
unless otherwise noted.
aF1 animals are either individually plated at 1 F1 per plate, or plated in bulk (e.g. from a liquid culture) on one or a small number of plates.
ba = 1.01, the amount of work to pick 1 F2 animal to a plate is, by definition, equal to 1; it is estimated that to score a visible mutant requires about 1/100 the amount of
work of picking 1 F2 animal to a plate (a = 0.01), thus, a is the sum of these.

cc = 1 is, by definition, the work to pick one F1 animal to a plate using a worm pick.
dc = 0.001, it is estimated that the amount of work to bulk plate 1 F1 animal is equal to 1/1000 the amount of work to pick one F1 animal using a worm pick.
eIn this case the values of a and c essentially approach 0.
doi:10.1371/journal.pone.0001117.t001..
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have greatly reduced fertility, and fewer than 1% of F1 animals

have reduced fertility using one common protocol for trimethylp-

soralen and ultraviolet light mutagenesis (S.S., unpublished

results). Furthermore, for many mutagenesis schemes, only healthy

F1 animals are picked for subsequent screening, further reducing

the number of animals producing low brood counts.

For such a screen design, nact can be approximated fairly

accurately in two limiting cases. First, we consider a screen in

which m&n. In this case, many F2 progeny have been scored for

each F1 animal, making it very likely that the mutation content of

all F1 animals has been established. Therefore, nact<n.

Second, we consider the case for which n&m. Here, the

likelihood that two or more of the F2 animals scored derive from

the same F1 animal is small. Thus, nact<m(12p), where p, is the

probability that a scored F2 has failed to reveal whether its F1

parent had the mutation of interest. In the case of simple screening

schemes involving recessive mutations, p = 3/4.

Although these limiting cases have important uses, genetic

screens that involve manually picking F1 animals, F2 animals, or

both, may fail to satisfy the limiting conditions considered above.

To calculate nact for the general case of this example, we proceed as

follows.

The probability that among the m scored F2 animals are

represented q progeny of a particular F1 animal is given by the

binomial term

B q,m,nð Þ~
m

q

� �
1

n

� �q

1{
1

n

� �m{q

, ð4Þ

where (1/n)q is the probability of scoring q progeny of a particular

F1 animal, (121/n)m2q is the probability of the remaining scored

F2 animals not being progeny of the particular F1 animal under

consideration, and
m

q

� �
representing the number of ways such

a combination can be picked.

The probability that at least one of the q scored F2 animals is

informative about the presence of a mutation of interest in the

particular F1 animal under consideration, is given by 12pq, where

p is the probability of the F2 animal not being informative.

Therefore, by analogy to the calculation in the previous section,

the probability that at least one informative F2 progeny of

a particular F1 animal is found among the m F2 animals scored is

given by

P m,nð Þ~
Xm

q~1

B q,m,nð Þ 1{pqð Þ: ð5Þ

In this paper we aim to describe optimal genetic screening

strategies, and are, in general, interested in the optimal screening

ratio of F2 to F1 animals, y = m/n. It will become useful, therefore,

to represent the functions B(q,m,n) and P(m,n) as functions of y and

N = n+m, the total number of animals picked in the screen. By

making the appropriate substitutions we can rewrite these

functions as

B q,y,Nð Þ~
Ny

1zy

q

 !
1zy

N

� �q

1{
1zy

N

� � Ny
1zy{q

, ð6Þ

and

P y,Nð Þ~
XNy
1zy

q~1

B q,y,Nð Þ 1{pqð Þ: ð7Þ

The number of F1 animals examined for possession of a mutation

in a specific gene, then, is given by

nact~nP m,nð Þ~n
Xm

q~1

B q,m,nð Þ 1{pqð Þ

~
N

1zy

XNy
1zy

q~1

B q,y,Nð Þ 1{pqð Þ:

ð8Þ

In Figure 2A we plot the quantity nact/N as a function of log10y

for a simple recessive mutation with p = 0.75 and N = 1000. As

expected, for n&m, nact/N is asymptotic to the curve m/(4N) = y/

(4(1+y)) (red line). For m&n, nact/N is asymptotic to the curve n/

N = 1/(1+y) (blue line). As is evident from the figure, for p = 0.75,

the asymptotic curves overestimate nact by only 5% or less for n and

m such that y = m/n#0.4 or m/n$12.2. However, in between these

values, a very large error, that may exceed 100% of the true value

of nact, can occur (not shown), justifying the more detailed analysis

presented in this section. For large m and n, equations (7) and (8)

are very closely approximated using the Poisson distribution (see

Materials and Methods) to obtain

P yð Þ~1{e{y 1{pð Þ, ð9Þ

and

nact~
N

1zy
1{e{y 1{pð Þ
� �

: ð10Þ

Figure 2B demonstrates this graphically, showing the tight

agreement between equation (8) and the Poisson approximated

equation (10) (black line), for values of N as small as 10.

Figure 2B also demonstrates the advantage of using the scaled

parameter nact/N in our analysis. Although equation (8) shows that

nact/N is dependent on the value of N, Figure 2B reveals that this

dependence is very weak. Indeed, equation (10) shows that for

large m and n, nact/N becomes entirely independent of N, making

nact/N useful for the analysis of most screens.

Single-Plate Screens for Mutants That Are Not

Strictly Recessive
Although fully penetrant recessive mutations for which p = 0.75

are the most commonly sought mutations [15], other screening

modes are frequently used for which p?0.75. For example, if the

F1 animals are heterozygous for a balancer chromosome and an

unmarked homologous chromosome, such that animals homozy-

gous for the balancer are dead, or easily identifiable, then p

becomes 2/3 = 0.67 for a fully penetrant recessive mutation. As

another example, dominant mutations that are rescued by a wild-

type maternal genotype cannot be isolated in the F1 generation,

but can be sought among F2 animals. For strictly dominant

mutations of this type, p = 0.25.

The case p = 0 occurs when F1 animals are heterozygous for

a balancer and a marked chromosome, with the mutation of

interest induced on the latter. In this case, only marked F2 animals

are scored, and these should all be homozygous for the mutation of

interest. The condition p = 0 also holds for rare screens where

dominant maternal-effect mutants are sought. In such screens,

heterozygous F1 animals do not have the phenotype of interest,

but all of their progeny do.

Optimizing Genetic Screens
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The condition p = 0 arises frequently in genetic screens of

haploid organisms. In this case, nact/N is a measure of the

representation of an initial pool of mutagenized organisms in the

progeny that have been examined.

In Figure 2C we plot curves of nact/N vs. log10y for a number of

possible values of p. The curves agree with the expectation that the

more informative an F2 animal is about the mutation state of its F1

parent (i.e., the smaller p is), the fewer F2 animals must be

examined to achieve a specific value of nact/N.

The General Expression for the Number of F1

Animals Screened
The analysis described in the preceding two sections holds for the

specific case in which all F1 animals are placed on a single plate,

from which F2 progeny are sampled. However, usually, it is

necessary for F1 animals to be placed individually, or in groups, on

multiple plates. F2 animals are then drawn from each plate.

Individual plating of F1 animals is a particularly common scheme

that is utilized if the expected mutation is lethal, and heterozygous

F2 siblings need to be recovered, or in a situation where males are

present in the population and mating between F1 animals must be

avoided. Should F1 plating strategy affect nact? Consider the case

where single F1 animals are placed on individual plates, and equal

numbers of F2 progeny are drawn from each plate. Because we

know for certain that in such a scheme F2 animals scored are

derived from every F1 animal picked, it is predicted that for a given

y, nact should be greater than in a scheme in which all F1 animals

were plated on a single plate, where some F1 animals may not be

sampled in the F2 generation. Thus, for the same number of F1

and F2 animals, nact will indeed be dependent on plating strategy.

To calculate the general expression for nact explicitly, we let n
equal the number of F1 animals picked to a plate, and m equal the

number of F2 animals scored per plate. In general, n and m can be

different for every plate. ni
act, the actual number of F1 animals

examined on the ith plate, is given, as in equation (8), by

ni
act~ni

Xmi

q~1

b q,ni,mi
� �

1{pqð Þ, ð11Þ

Figure 2. The effects of different parameters on the number of haploid genomes screened. (A–C) Plots assuming all F1 animals are placed
together on a single plate. p = 0.75, unless otherwise indicated. All plots were generated using the program Mathematica 5.0 (Wolfram Research). (A)
Black line, graph of nact/N vs. log10y for N = 1,000. Blue and red lines, graphs of asymptotes and their equations. (B) Graphs of nact/N vs. log10y.
Different colors indicate nact/N for different specified values of N. Black line, Poisson approximation, colored lines, exact solutions. Inset, magnification
of the graph for the region of log10y between 0.3 and 0.5. For each value of N, y can only take on values such that 1/(N21)#y#N21. Furthermore,
although for illustration purposes we have drawn the curves as continuous, y is not a continuous variable, and treating it as such only works for large
N. This is most obvious for N = 10 where y can only take on the values 1/9, 1/4, 3/7, 2/3, 1, 3/2, 7/3, 4, and 9. (C) Graphs of nact/N vs. log10y for varying
values of p, as defined in the text. Graphed using the Poisson approximation. (D) Graphs depicting the fractional error incurred when using the
Poisson approximation to estimate nact/N for screens in which one F1 animal is plated per plate. Although graphs are continuous, only integer values
of y are relevant. Also note that the smallest allowable value of y is chosen so that at least 1 F2 animal is chosen per plate.
doi:10.1371/journal.pone.0001117.g002
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where

b q,n,mð Þ~
m

q

� �
1

n

� �q

1{
1

n

� �m{q

: ð12Þ

The general expression for nact/N, is, therefore, obtained by

summing the actual number of F1 animals examined over all

plates, or

nact

N
~

1

N

X
i

ni
Xmi

q~1

b q,ni,mi
� �

1{pqð Þ
 !

: ð13Þ

Equation (13) is valid for essentially every type of genetic screen,

involving any plating strategy. The equation can be significantly

simplified if we assume that the same number of F1 and F2 animals

are plated and scored per plate. In this case, ni, mi, and b(q, ni, mi) are

identical for each plate, and equation (13) can be written as

nact

N
~

kn

N

Xm

q~1

b q,n,mð Þ 1{pqð Þ, ð14Þ

where k is the number of plates examined.

Equation (14) can be expressed in terms of y as follows. To

express m as a function of y we note that y = m/n = km/(kn) = m/n.

Rearranging terms yields m = ny. Also, kn/N = n/(n+m) = 1/(1+m/

n) = 1/(1+y), yielding

nact

N
~

1

1zy

Xny

q~1

b q,n,yð Þ 1{pqð Þ: ð15Þ

Four points regarding equation (15) are of note. First, for the

common plating strategy of one F1 animal/plate, equation (15)

can be reduced to

nact~
N

1zy
1{pyð Þ~n 1{p

m
n

� �
, ð16Þ

an equation of considerable practical value. Furthermore, as

expected, for a single plate with all F1 animals on the same plate, n
becomes n, and b(q,n,y) becomes B(q,y,N), as in equation (8).

Second, unlike equations (5) and (8), equation (15), even for

large N, is not well-approximated by the Poisson distribution if

a small number of F1 animals is plated per plate, which is

generally the case for clonal screens. In Figure 2D we plot the

error introduced in nact/N by using the Poisson approximation for

different values of p for the case of one F1 animal per plate. Note

that for p = 0.25, the error can be nearly 30% off the exact value.

Indeed, it can be shown that the fractional error, [(nact/

N)exact2(nact/N)Poisson]/(nact/N)exact, plotted in Figure 2D approaches

a maximal value of p2e(p21)/(p21) as yR1 (see Materials and

Methods).

Third, equation (15) reveals that nact/N is independent of N,

although for a given N only values of m+n that are divisors of N are

possible.

Fourth, for a given N, the larger the number of F1 animals per

plate (kØ1), the better is equation (15) approximated by equation

(10). Simulations for different ratios of n to k reveal that for n/k$30

equation 10 gives an excellent estimate of nact (error,5%; data not

shown).

Optimizing Genetic Screens- Preliminaries
The results described in the previous sections provide us with the

appropriate tools to consider how to optimize genetic screens in

C. elegans. In general, a measure of screen efficiency should take

into account the amount of work performed in a screen as well

as the total number of mutagenized F1 animals examined, nact.

Work can be defined in a number of ways. Here, we will

generally define work as the amount of time spent picking and

scoring animals. Alternatively, work can be a measure of the total

amount of reagents needed for the screen, etc., and much of the

analysis that follows would still be valid using this definition.

Regardless of the precise definition of work used, the work

expended in a screen must be of the form cn+am, where c and

a represent work per animal and have values between 0 and ‘.

If we measure work in such a way that c = a = 1 defines a unit of

work, we can write the total work expended as W = cn+am.

Given this definition, we now propose to define the efficiency of

a genetic screen as

e~
nact

W
: ð17Þ

That is, the efficiency is a direct measure of the number of

mutagenized F1 animals examined per unit of work. As we will

demonstrate below, this definition allows us to make quantitative

estimates of the optimal screening ratio, y, for use in a broad

range of genetic screen types.

We note that for screens in which a unit of work is defined as the

time spent picking a single animal to a plate, and in which equal

work is expended to pick F1 and pick and score F2 animals, we

define c = a = 1; then, W = N, and e = nact/N, which is the

parameter we have used throughout this paper (e.g. Figure 2A).

We can now pose the optimization problem for genetic screens

as follows: what is the F2-to-F1 screening ratio that minimizes the

amount of work needed to screen a required number of

mutagenized F1 animals, nreq. Before we address the problem, it

is worth considering whether the problem is itself a reasonable

one. That is, is it reasonable to assume that a minimal value of W

exists for every genetic screen? An examination of Figure 2A shows

that nact/N has a maximum with respect to y, suggesting that at

least for the specific case of c = a = 1, an optimal F2-to-F1

screening ratio, ymax, exists. Extending this result, it can be

demonstrated (see next section) that a maximum indeed exists for

every value of c and a.0.

Consider Figure 3, where we have plotted nact as a function of

log10y for three different values of W where c = a = 1. The minimal

amount of work, Wmin, required to screen 5,000 mutagenized F1

animals, nreq = 5,000, occurs at W = 37,642. Values of W smaller

than this will never achieve nreq, while values of W greater than

37,642 do not minimize W, by definition. We can therefore

formulate the following general criteria: Wmin is the value of W

satisfying the two conditions,
Lnact

Ly
ymaxj ~

Le

Ly
ymaxj ~0, and

nact(Wmin,ymax) = nreq. Although these equations can be numerically

solved for the general case represented by equation (13), we restrict

our analysis below to the two most common screen cases for which

either equations (10) or (16) are valid.

Optimizing Genetic Screens- All F1 Animals on

a Single Plate
For genetic screens involving plating all F1 animals on a single

plate or on a small number of plates relative to the total number of

F1 animals examined, we can use the Poisson approximation to
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write the efficiency of a screen as:

e~
nact

W
~

n

cnzam
1{e{m

n
1{pð Þ

� �
~

1

czay
1{e{y 1{pð Þ
� �

: ð18Þ

We differentiate this equation with respect to y and set the result

equal to 0 to obtain the following transcendental equation for ymax,

the optimal F2-to-F1 screening ratio:

ymax 1{pð Þ~ ln 1z
c

a
zymax

� �
1{pð Þ

� �
: ð19Þ

Two features of this equation are of interest. First, the equation

cannot be solved analytically, and must be evaluated numerically.

Second, and more importantly, the value of ymax is only dependent

on the relative values of c and a. Thus, the optimal screening ratio,

ymax, is independent of the absolute work expended to pick and

pick and score F1 and F2 animals, respectively.

Does ymax always exist? Inspection of equation (19) reveals that it

is of the general form x = ln(a+x), where x = y(12p), and a is always

greater than 1. Consider the range of possible values of x, from 0 to

‘. At x = 0, the left hand side of the preceding equation is always

smaller than the right hand side (lna). As xR‘, ln(a+x)<ln(x), and

thus the right hand side of the equation is always smaller than the

left hand side. Since both x and ln(a+x) are continuous functions,

these observations mean that there always exists an intersection

point of the functions x and ln(a+x), defining ymax. Therefore, ymax

exists for all values of a and c. Differentiation of e twice with

respect to y shows that
L2e

Ly2
ymaxj v0 for all values of ymax,

guaranteeing that ymax indeed represent a global maximum of e.

Figure 4D depicts values of the optimal screening ratio for

a range of ratios of a and c. Insertion of ymax into equation (18)

yields emax for given values of a and c. Figure 4A depicts emax for

a range of values of a and c and for different values of p. As

expected, the smaller the values of a and c, the larger is e, and the

more efficient the screen.

Optimizing Genetic Screens- One F1 Animal per

Plate
For genetic screens involving plating one F1 animal per plate, the

Poisson approximation cannot be used (see above), and instead we

use equation (16) to write the efficiency of a screen as:

e~
nact

W
~

n

cnzam
1{p

m
n

� �
~

1

czac
1{pyð Þ: ð20Þ

As above, we differentiate equation (20) to obtain the following

transcendental equation for ymax:

{y ln p~ ln 1{
c

a
zy

� �
ln p

� �
: ð21Þ

Similar reasoning to that of the previous section guarantees the

existence of a solution for y. However, the value of y obtained here

cannot be used directly to compute ymax or to calculate emax, for two

reasons. First, unlike the previous section, y cannot be treated as

a continuous variable here, and the maximum calculated in

equation (21) makes this assumption. Second, y can only take on

integer values $1. Thus, to identify ymax, we numerically calculate

the solution to equation (21). We then check whether the obtained

value of y is smaller than 1. If so, then ymax = 1. If not, we calculate

the efficiency of screening, using equation (20) for the two nearest

integer values of y, and choose ymax as the value giving the highest

value of e. The results of these calculations for emax and ymax are

presented in Figures 4C and 4E, respectively. Note that in these

figures we have assumed c = 1, since this is most often the case

when performing a screen of the type considered here. However,

other values of c may be possible, in which case a in this figure

should be replaced by a/c.

Figure 3. Determining parameters for maximally efficient screens. Graphs of nact vs. log10y are plotted for three different values of W. For
nreq = 5,000 (horizontal line), the minimal value of W is 37,642. log10ymax is indicated. Plots generated by the program Mathematica 5.0 (Wolfram
Research).
doi:10.1371/journal.pone.0001117.g003
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Deviations from Maximal Screening Efficiency
In Figure 4B we plot the ratio of the work expended in a genetic

screen, W, to the minimal work, Wmin, calculated using equations

(17), (18), and (19), as a function of m/n, for a screen in which

scoring and picking F2 animals requires ten times more work than

picking F1 animals (a/c = 10). Such parameters are often

encountered, and may serve as a model for screens in which F2

animals need to be examined individually on a compound

microscope, for example. As the figure demonstrates, relatively

small deviations in the screening ratio can have a large impact on

Figure 4. Optimal F2-to-F1 screening ratios and screen efficiency calculations. (A) Contour plots examining maximal screen efficiency, emax, as
a function of a and c, for different values of p, for screens where all F1 animals are plated on one or a small number of plates. Plots generated using
the program MatLab (MathWorks). (B) Graphs examining fold increase in work performed as screening ratio (m/n) deviates from its optimal value, for
screens where all F1 animals are plated on one or a small number of plates and a/c = 10. (C) Graphs depicting maximal screen efficiencies as a function
of a for screens in which F1 animals are plated individually. In these graphs c = 1, which is the most common value for this screening mode. (D)
Graphs of the optimal F2-to-F1 screening ratios (m/n) for different values of p as functions of a/c, for screens where all F1 animals are plated on one or
a small number of plates. Note that the vertical axis is the natural log of m/n and not the base 10 log. (E) Graphs of the optimal F2-to-F1 screening
ratios (m/n) for different values of p as functions of a, for screens in which F1 animals are plated individually. In these graphs c = 1, which is the most
common value for this screening mode.
doi:10.1371/journal.pone.0001117.g004
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the amount of work carried out to screen the same number of

mutagenized F1 animals. For example, screening five F2 animals

for every F1 parent for recessive mutations nearly doubles the work

required to screen the same number of mutagneized F1 animals

compared to the optimal screening ratio of 0.86. The differences are

even more dramatic when dominant mutations are sought.

These results clearly show that using optimized screen

parameters can have a significant impact on the progress and

output of genetic screens in C. elegans.

DISCUSSION

Summary of Key Points
In this paper, we derive a strategy for optimizing genetic screens in

the nematode C. elegans. We demonstrate two key points. First, an

optimal screening strategy always exists for every genetic screen of

the types considered here. Second, calculation of this optimal

strategy is possible. Figures 4D and 4E depict the results of such

calculations, displaying the optimal F2-to-F1 screening ratios for

a large range of screen parameters. As shown in Figure 4B, using

optimal screening parameters for screens of any type can make

a significant difference in the amount of time, labor, and/or

reagents used to identify mutants of interest. This difference in

efficiency between optimal and suboptimal screening strategies is

most accentuated under two condition: when there is a significant

difference in the work done picking F1 animals and picking and

scoring F2 animals; and when the mutations sought manifest

themselves in the F2 population in increased proportion (as might

occur with a dominant mutation; Figure 4B).

Our results suggest a general rule of thumb: in pursuing

a genetic screen, optimal efficiency is achieved by minimizing as

much as possible the more difficult task between picking F1

animals or picking and scoring F2 animals.

In addition to the key results discussed above, we have also derived

a number of other useful results. First, we have shown that the

optimal screening strategy does not depend on the total amount of

effort expended in a screen, but only depends on the ratio of the work

involved in picking F1 animals to the work expended in picking and

scoring F2 animals, and on the type of mutation being sought.

Second, our studies reveal that use of the Poisson approximation to

count the number of mutagenized F1 animals examined in a screen

is not appropriate for all situations. Third, instead, we derive an

equation (equation (13)), that is valid for a large number of genetic

screens. Fourth, we demonstrate that two limiting cases of this

equation, in which a large number of F1 animals are placed on

a small number of plates, or in which F1 animals are plated

individually, yield simplified equations (equation (10), based on the

Poisson approximation, and equation (16)), that are well known and

of considerable practical use. Finally, analysis of these limiting cases

also reveals that the number of mutagenized F1 animals examined is

dependent on the mode in which F1 animals are plated. In general,

we show that plating F1 animals individually, followed by scoring

their F2 progeny, allows more mutagenized F1 animals to be

examined than plating the same number of F1 animals on a single or

small number of plates. However, it should be noted that because

plating F1 animals individually can be more time consuming and

may require more reagents, the overall screen efficiency may or may

not be higher using this strategy (see below).

A Classification of Genetic Screens
Our analysis suggests that genetic screens in C. elegans can be

divided into three general categories, based on the difficulties

involved in picking F1 animals (the value of c, see Results and

Figure 5) and picking and scoring F2 animals (the value of a, see

Results and Figure 5).

Type I Picking F1 animals and picking and scoring F2 animals

is of similar magnitude of difficulty. A remarkable consequence of

our analysis is that regardless of the type of screen, or the work

involved, all screens for which a/c is fixed, have the same optimal

screening ratio. Thus, for screens of this type the ratio of a and c
will determine the precise F2-to-F1 screening ratio. For screens of

this type, equations (10) and (16), can be used to determine nact and

follow screen progress.

Type II Picking F1 animals is much harder than picking F2

animals (a/cR0). As shown in Figure 4D, for very small values of a/c,

the optimal screening ratio becomes large, and thus, many F2 animals

should be scored for each F1. As we showed in the beginning section

of the paper, under such conditions nact<n, and screen progress is

limited by the number of F1 animals that can be examined.

Type III Picking/scoring F2 animals is much more difficult than

picking F1 animals (a/cR‘). Figure 4D reveals that as a/c becomes

large, the optimal screening ratio becomes small, so that the number

of F1 animals picked should be much greater than the number of F2

animals scored. Under these conditions, nact<m(12p), and progress is

determined by the type of mutation being sought (e.g. recessive,

dominant), and by the number of F2 animals screened.

The merits of the classification system described above are that

it allows a quick determination of whether an in-depth analysis of

screen parameters is required to follow screen progress. Specifi-

cally, for screens of types II and III, calculating screen progress

(nact) is very simple and does not depend on plating strategy.

Screens of type I, however, require a more detailed study of the

screen and plating parameters.

In Table 1 we compare the optimal screening ratios to screen

5,000 mutagenized F1 animals for recessive mutations for different

estimated values of a and c (see table legend for estimation

procedure; also see next section). The table illustrates a number of

points. First, it provides estimates of the amount of work expended

for each screen. Although the table provides exact numbers, it is

important to note that these numbers only approximate the actual

work involved because some of the parameters used in calculating

the work, such as a and c, may not be exact. Second, it provides

specific applications of the different screen strategies to common

screens undertaken in C. elegans. Third, the table demonstrates that

strategies that minimize both a and c are, as expected, most

efficient (see also Figure 4A).

Interestingly, examination of Figure 4A shows that screen

efficiency is not perfectly symmetric with respect to a and c. This

lack of symmetry is partially a function of p and, it is easily shown

that the maximal efficiency, (emax), of screens of type II approaches

1/c, whereas the efficiency of screens of type III approaches

(12p)/a. Thus, if one is debating between screening strategies of

type II and III where c(type II)<a(type III), screens of type II will

always be more efficient.

Estimating a and c
As we describe in the Results section, precise values of a and c are

not important for calculating the optimal F2-to-F1 screening ratio.

Indeed, as equations (19) and (21) show, only the ratio of a to c is

relevant. It turns out, however, that even an exact measurement of

this ratio is not needed in practice. The reason for this is shown in

Figure 4D. As shown in this figure, varying a/c over six orders of

magnitude, only changes the F2-to-F1 screening ratio by two

orders of magnitude (note that the vertical axis is the natural log,

and not base 10 log of the screening ratio). Thus, the screening

ratio is not very sensitive to variations in a and c. This observation

is of clear practical importance, since it is not always easy to
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precisely compare the work involved in picking F1 animals and

picking and scoring F2 animals. These results suggest that order-

of-magnitude estimates of the relative work involved will give good

estimates of the appropriate screening ratio.

In Table 1 we provide estimates for a and c for picking and scoring

animals in the course of different genetic screens. The estimates are

based on personal experience of the author (see legend to Table 1),

and may vary with individual expertise and protocol. However, since

the values of a and c are essentially user defined, individual variations

in estimating screen parameters do not affect the results presented

here. More accurate values of a and c can be obtained from pilot

screens, which are often carried out anyway, where these parameters

can be measured directly by keeping track of the amount of work

done (time spent) to pick a fixed number of F1 animals and pick and

score a fixed number of F2 animals. Each work segment is then

divided, respectively, by either the number of F1 or F2 animals to

obtain c and a, respectively. Values for these parameters can also be

adjusted as a screen proceeds, based on estimates derived from

earlier stages of screening.

An Algorithm for Optimal Screening
Our results suggest that the design of many types of genetic screens in

C. elegans can follow a simple set of rules. In Figure 5 we present

a simple algorithm for designing a genetic screen and for following

screen progress. Initially, a choice must be made as to whether F1

animals will be plated onto individual plates (individually) or onto

a small number of plates (bulk). This choice is usually not driven by

efficiency, but by constraints of the screen. For example, screens that

require a clonal strategy, because the identity of the F1 parent is

important (as might occur in screens for recessive lethals, where

heterozygous siblings are to be isolated), demand plating F1 animals

individually.

If both plating strategies are applicable, the choice of which

plating strategy to use will be determined by comparing the

efficiencies of each strategy. For example, consider a screen for

recessive mutations in which it is not necessary to keep tabs on

the F1 parents, and for which F2 animals must be picked to

individual plates for scoring (a<1; for definitions of a and c see

Glossary of Figure 5, or Results section). Two possible screen

options are: F1 animals will be plated individually and therefore

a<1 and c = 1; or, F1 animals will be plated in bulk where

instead of picking F1 animals with a pick, they are loaded from

a synchronized liquid culture, and thus c<0.001, but a is still

about 1. Examination of Figures 4C and 4A, respectively (or

using the webcalculator, see below), reveals that the efficiency of

the first screen is 0.145, whereas the efficiency of the second

screen is 0.245. Therefore, if the screens are carried out at

maximal efficiency, the second screen is about 1.7 times more

efficient. On the other hand, if in the second screen, animals are

Figure 5. Algorithm for performing an optimal genetic screen. Flowchart begins on the top left corner at ‘‘START’’. All parameters and equations are
described and derived in the text. Parameters of relevance are also described in the Glossary portion of the figure. Diamond shapes indicate steps
where a choice must be made.
doi:10.1371/journal.pone.0001117.g005
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plated on a small number of plates, but picked individually to

those plates, instead of being loaded from a liquid culture, then

c<1, and the efficiencies of the first and second screens are 0.145

and 0.133, respectively. Thus, in this case, even though there is

no need to preserve the identity of each F1 parent, an individual

plating strategy is more efficient.

Once plating strategy is established, a determination of whether

a fixed number of mutagenized F1 animals is to be screened, or

whether the screen will be open ended is made. Estimates of a and

c are obtained (if these have not been obtained already), and these

are used to identify the optimal F2-to-F1 screening ratio ( = m/n)

(Figures 4D, and 4E). From this ratio, the indicated equations in

Figure 5 may be used to obtain the numbers of F1 and F2 animals

to be screened. If the screen is open ended, progress can be

followed using the indicated equations.

To aid with the calculations described here, in Figure 5, and

throughout the paper, we have developed a website with

a simple interface that can be used independently of this paper.

The site yields precise numerical results, and is thus more

accurate than Figure 4, where, by necessity, precise values are

difficult to read from the graphs. The site can be accessed at

‘‘http://b5.rockefeller.edu/cgi-bin/labheads/shaham/genetic_sc-

reens/screenfrontpage.cgi’’.

Conclusion
We have presented a systematic approach for optimizing genetic

screens in C. elegans, and calculated optimal F2-to-F1 screening

ratios for a large range of screen parameters. Calculation of these

parameters was aided by obtaining a general expression for

counting the number of mutagenized gametes examined in the

course of a genetic screen. The strategies described here can, in

principle, be applied, with relevant modifications, to the evaluation

of equivalent parameters in genetic screens in other organisms.

MATERIALS AND METHODS

Derivation of Poisson approximations
In this paper, we employ expressions of the following form

Xm

q~1

m

q

� �
1

n

� �q

1{
1

n

� �n{q

1{pqð Þ:

Such expressions can be simplified using Poisson terms to

approximate the respective binomial terms. Specifically, it is well

known that for large m and n,
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Expanding parentheses, this term can be rewritten as
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Using the series expansion ex&
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for large m and n, we

simplify the expression above to
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leading to the approximation
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Derivation of maximal error in using the Poisson

approximation when plating F1 animals singly
The fractional error in using the Poisson approximation is defined

as f = [(nact/N)exact2(nact/N)Poisson]/(nact/N)exact. Using equations 10

and 16, the fractional error is written as

f ~
n 1{p

m
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which upon rearrangement yields
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:

As y approaches 1, this expression, therefore becomes

f ~
p{e p{1ð Þ

p{1
:
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