The *cbb* Operons of the Facultative Chemoautotroph *Alcaligenes eutrophus* Encode Phosphoglycolate Phosphatase

JENS SCHÄFERJOHANN, JE-GEUN YOO, BERNHARD KUSIAN, AND BOTHO BOWIEN*

Institut für Mikrobiologie, Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany

Received 14 July 1993/Accepted 9 September 1993

The two highly homologous *cbb* operons of *Alcaligenes eutrophus* H16 that are located on the chromosome and on megaplasmid pHG1 contain genes encoding several enzymes of the Calvin carbon reduction cycle. Sequence analysis of a region from the promoter-distal part revealed two open reading frames, designated *cbbT* and *cbbZ*, at equivalent positions within the operons. Comparisons with known sequences suggested *cbbT* to encode transketolase (TK; EC 2.2.1.1) as an additional enzyme of the cycle. No significant overall sequence similarities were observed for *cbbZ*. Although both regions exhibited very high nucleotide identities, 93% (*cbbZ*) and 96% (*cbbT*), only the chromosomally encoded genes were heterologously expressed to high levels in *Escherichia coli*. The molecular masses of the observed gene products, CbbT (74 kDa) and CbbZ (24 kDa), correlated well with the values calculated on the basis of the sequence information. TK activities were strongly elevated in *E. coli* clones expressing *cbbT*, confirming the identity of the gene. Strains of *E. coli* harboring the chromosomal *cbbZ* gene showed high levels of activity of 2-phosphoglycolate phosphatase (PGP; EC 3.1.3.18), a key enzyme of glycolate metabolism in autotrophic organisms that is not present in wild-type *E. coli*. Derepression of the *cbb* operons during autotrophic growth resulted in considerably increased levels of TK activity and the appearance of PGP activity in *A. eutrophus*, although the pHG1-encoded *cbbZ* gene was apparently not expressed. To our knowledge, this study represents the first cloning and sequencing of a PGP gene from any organism.

The Calvin carbon reduction cycle operates in CO₂ assimilation during autotrophic growth of the aerobic facultative chemoautotroph Alcaligenes eutrophus, which oxidizes hydrogen or formate to gain energy and reducing power (6). Several enzymes of the cycle are encoded within the two highly homologous cbb operons (formerly cfx operons [44]) located on the chromosome and on megaplasmid pHG1 of A. eutrophus H16 (7). Both operons form a regulon controlled by the product of regulatory gene cbbR, which is divergently oriented to and separated by only 167 bp from the chromosomal cbb operon (50). The cbbLS genes, encoding the carboxylating enzyme of the Calvin cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO; EC 4.1.1.39), form the 5' termini of the cbb operons. Among the genes with unknown functions are cbbXY, located in the promoter-proximal parts of the operons (27), and cbbZ, located in the promoter-distal parts of the operons. The present study focused on the latter gene and its 5'-preceding gene, *cbbT*, which had already been tentatively identified as coding for the Calvin cycle enzyme transketolase (TK; EC 2.2.1.1) (7). On the basis of nucleotide sequencing of the genes and their heterologous expression in Escherichia coli, we provide evidence that cbbT is in fact a TK gene and that cbbZ encodes a key enzyme of the glycolate oxidation pathway in aerobic autotrophs, 2-phosphoglycolate phosphatase (PGP; EC 3.1.3.18). Because of the function of RubisCO as an oxygenase in the presence of molecular oxygen, resulting in the unfavorable formation of 2-phosphoglycolate (31), the organism may take physiological advantage of the inclusion of the PGP genes within the cbb operons. There has been no previous report on the molecular analysis and identification of a PGP gene from any organism.

MATERIALS AND METHODS

Strains, plasmids, and culture conditions. Table 1 lists the bacterial strains and plasmids used in this study. Strains of *A. eutrophus* were grown as described previously (49) in mineral salts medium at 30°C lithoautotrophically in an atmosphere of H_2 -CO₂-O₂ (8:1:1; vol/vol/vol), organoautotrophically with 0.2% (wt/vol) formate, or heterotrophically with 0.2% (wt/vol) organic substrate. *E. coli* strains were cultured in LB medium (38) at 37°C. The media contained antibiotics, when needed, at the following concentrations: 50 µg of ampicillin per ml or 350 µg of kanamycin per ml. For gene expression experiments, *E. coli* strains harboring various pUC-derived plasmids were grown in LB medium containing ampicillin. When an optical density at 550 nm of 0.5 was reached, the *lac* promoter was induced with 0.5 mM isopropyl- β -D-thiogalactopyranoside (IPTG) and incubation was continued for an additional 4 h.

Preparation of cell extracts. Cells to be used for the preparation of extracts were harvested in the exponential growth phase, washed, and resuspended in ice-cold buffer (20 mM Tris-HCl [pH 7.6] containing 10 mM MgCl₂ and 1 mM dithioerythritol) at a density of about 20 mg of cell protein per ml. Cell disruption was achieved by either sonication (*E. coli*) or French press treatment (*A. eutrophus*). The supernatant resulting from a subsequent centrifugation of the homogenate at 100,000 $\times g$ for 1 h was used directly for assays. Protein concentrations were estimated by the method of Lowry et al. (32).

For sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), cells from 1-ml culture samples were harvested by centrifugation and resuspended in 100 μ l of SDS cracking buffer (50 mM Tris-HCl [pH 6.8], 100 mM dithoerythritol, 2% [wt/vol] SDS, 0.1% [wt/vol] bromophenol blue, 10% [wt/vol] glycerol). After boiling for 3 to 5 min, 10- μ l aliquots of the lysates were subjected to SDS-PAGE according to Laemmli (28). Silver staining (5) was used to visualize proteins in gels.

^{*} Corresponding author. Electronic mail address: bbowien @ gwdgv1.dnet.gwdg.de.

Strain or plasmid	Relevant phenotype or genotype"	Source or reference
Strains A. eutrophus H16 HB9 HB9(pHG1)	Cfx ⁺ Hox ⁺ pHG1 ⁺ Sm ^r Km ^r Cfx ⁻ Hox ⁻ pHG1 ⁻ ; chromosomal <i>cbb</i> operon inactivated by a Tn5 insertion Sm ^r Km ^r Cfx ⁺ Hox ⁺ pHG1 ⁺	ATCC 17699 49 49
E. coli		
JW1	ara $\Delta(lac-proAB)$ rpsL φ 80 lacZ Δ M15 F' lacI $^{9}Z\Delta$ M15 pro $A^{+}B^{+}$	25
JM109	endA1 recA1 syrA96 thi hsdR17 ($r_{K}^{-} m_{D}^{+}$) relA1 supE44 $\lambda^{-} \Delta$ (lac-proAB) F' traD36 proAB lacI ⁴ Z Δ M15	52
Plasmids ^b		
pUC18	Ap ^r <i>lacPOZ</i> ′	46
pUC19	Ap ^r lacPOZ'	46
pAEC8010	pUC18::2.9-kb <i>Bam</i> HI	This study ^c
pAEC8011	pUC18::2.9-kb BamHI	This study
pAEC4300	pUC19::1.4-kb AvaII-EcoRV (in SmaI)	This study
pAEC4301	pUC19::1.4-kb AvaII-EcoRV (in Smal)	This study
pAEP8230	pUC18::2.4-kb Sph1	This study
pAEP8231	pUC18::2.4-kb Sph1	This study
pAEP4310	pUC19::2.3-kb EcoRV (in Smal)	This study
pAEP4320	росту::1.3-кв <i>Есо</i> кт- <i>Xho</i> т	This study

TABLE 1. Bacterial strains and plasmids

" Ap^r, ampicillin resistant; Km^r, kanamycin resistant; Sm^r, streptomycin resistant; Cfx, ability to fix CO₂ autotrophically; Hox, ability to oxidize H₂; pHG1, megaplasmid pHG1 of *A. europhus* H16 (15).

^b The last digit of the pAE plasmid designations indicates the orientation of the subcloned *cbb* genes relative to the *lac* promoter (0, collinear; 1, divergent). ^c See Fig. 1.

^d See Materials and Methods.

Enzyme assays. PGP activity was determined by measuring the amount of P_i released upon hydrolysis of 2-phosphoglycolate at 30°C. The assay was run with a 0.3-ml reaction mixture containing 40 mM morpholinepropanesulfonic acid (MOPS)-NaOH (pH 7.0)–10 mM MgCl₂, 4 mM 2-phosphoglycolate, and cell extract. Following its start by the addition of 2-phosphoglycolate, the reaction was stopped after an appropriate time by the addition of 60 µl of 2.5 N H₂SO₄. The amount of liberated P_i was estimated colorimetrically as described by Ames (2).

TK activity was assayed in a coupled optical test by monitoring the oxidation of NADH at 340 nm and 30°C in a 0.6-ml reaction mixture containing 50 mM Tris-HCl (pH 7.8), 10 mM MgCl₂, 1 mM thiamine diphosphate, 2 mM xylulose-5-phosphate, 2 mM ribose-5-phosphate, 0.2 mM NADH, 3 U of α -glycerophosphate dehydrogenase, 9 U of triosephosphate isomerase, and cell extract. Enzyme activities are given in international units. One unit is defined as the amount of enzyme that converts 1 µmol of substrate per min into product(s).

Gel filtration. After the removal of insoluble material by centrifugation and an additional passage through a membrane filter with a 0.2- μ m-pore size, cell extracts of *E. coli*-(pAEC4300) or lithoautotrophically grown *A. eutrophus* H16 were chromatographed on a Sephacryl S-300 HR column (1.6 by 87 cm; bed volume, 175 ml) that had been equilibrated with 50 mM Tris-HCl (pH 7.5) buffer containing 10 mM MgCl₂ and 1 mM dithioerythritol. The PGP activity in the fractions (1 ml) was estimated as described above. To obtain the native M_r of PGP, the column was calibrated with proteins having known molecular masses (catalase [240 kDa], bovine serum albumin [136 or 68 kDa], and carbonic anhydrase [12.5 kDa]).

DNA techniques and sequence analysis. The following procedures were carried out by standard methods (3, 38): preparation of plasmid DNA, agarose gel electrophoresis, DNA

ligation, and bacterial transformation. Enzymes were used under the conditions recommended by the commercial suppliers. DNA fragments were extracted from agarose gels by the procedure described by Weichenhan (47). Sequencing was done on double-stranded plasmid DNA by the dideoxy chain termination method (39). To reduce the formation of secondary structures in the polynucleotide products, dGTP was substituted for by 7-deaza-dGTP. Both strands of the DNA fragment in question were completely sequenced by use of appropriately generated deletion clones (16) and/or sequencespecific oligodeoxynucleotide primers (17-mers) synthesized on a Gene Assembler Plus DNA synthesizer (Pharmacia, Freiburg, Germany). Nucleotide and derived amino acid sequences were analyzed by the latest available versions of the GENMON programs (GBF, Braunschweig, Germany) and the GCG program package of the University of Wisconsin (12), including similarity searches of the GenBank (Los Alamos National Laboratory, Los Alamos, N.Mex.), EMBL/SwissProt (Heidelberg, Germany), and PIR (Georgetown University Medical Center, Washington, D.C.) data bases by use of the TFASTA (35) and BLAST (1) programs.

Construction of plasmids. Plasmid vectors (pUC18 and pUC19) were digested to completion with restriction endonucleases and dephosphorylated by treatment with alkaline phosphatase. DNA fragments derived from recombinant phages λ AEC2 and λ AEP2 (17) and containing the chromosomal and plasmid-encoded *cbb* genes, respectively, were used for subcloning. The fragments (Table 1 and Fig. 1) were blunt ended, if necessary, by filling 5'-protruding ends with the aid of the Klenow fragment of DNA polymerase I, ligated to vector DNA, and eventually transformed into *E. coli* strains. For construction of plasmid pAEP4320, DNA of pAEP4310 was digested with *Eco*RI and *Xho*I, and the resulting 1.3-kb fragment was subsequently ligated to pUC19 that had been cleaved with *Eco*RI and *SaI*I.

FIG. 1. Physical and genetic maps of the analyzed regions from the two *cbb* operons of *A. eutrophus* H16. The genes, with their relative orientations and sizes, are indicated by arrows. Various subfragments cloned into expression vectors pUC18 and pUC19 are shown above (chromosome) and below (megaplasmid pHG1) the maps, together with the corresponding designations of the hybrid plasmids. Gene designations: *cbbP*, gene encoding phosphoribulokinase; *cbbT*, TK gene; *cbbZ*, PGP gene; *cbbG*, glyceraldehyde-3-phosphate dehydrogenase gene. Abbreviations for cleavage sites of restriction enzymes: A, *AvaII*; B, *Bam*HI; E, *Eco*RV; S, *SphI*; X, *XhoI*.

Enzymes and chemicals. Restriction enzymes, T4 DNA ligase, and alkaline phosphatase were obtained from GIBCO-BRL (Eggenstein, Germany), Boehringer GmbH (Mannheim, Germany), or Pharmacia and used as recommended by the manufacturers. Pharmacia was also the supplier of the Klenow fragment of DNA polymerase I, nucleotides and chemicals used for oligodeoxynucleotide synthesis, and the Sephacryl S-300 HR column. Antibiotics, ribose-5-phosphate, NADH, triosephosphate isomerase, and reference proteins for SDS-PAGE and gel filtration experiments were purchased from Boehringer. Sigma Chemie (Deisenhofen, Germany) provided 2-phosphoglycolate, thiamine diphosphate, and xylulose-5-phosphate.

Nucleotide sequence accession numbers. The nucleotide sequences have been deposited in the GenBank data base under accession numbers M68904 (chromosomal sequence) and M68905 (plasmid-encoded sequence).

RESULTS

Sequence analysis of the regions between cbbP and cbbG. The regions between the previously identified genes cbbP (23, 24, 26) and cbbG (48) were sequenced from both the chromosomal and the pHG1-encoded cbb operons. Within these regions, two additional closely linked open reading frames, designated cbbT and cbbZ (Fig. 2), were found to be oriented in the same direction as the other genes of the operon. The 5' end of cbbT had been detected in an earlier study (26). Because of a 31-bp deletion in the intergenic region, the plasmid-encoded cbbP and cbbT genes are more tightly linked than the two chromosomal copies. The start codons of both chromosomal (c) and plasmid-encoded (p) cbbT and cbbZ are separated from the corresponding putative ribosome-binding sequences by the usual distances observed in *A. eutrophus* (20, 26, 40, 50) and *E. coli* (41). The stop codons of $cbbT_{c/p}$ and the

start codons of $cbbZ_{c/p}$ even overlap by 1 bp. No further potential open reading frame of significant size or codon bias was detected in either orientation of the analyzed regions. The chromosomal and plasmid-encoded sequences showed the expected very high overall (nucleotide level and amino acid level) identities of 96 and 97% (cbbT) or 93 and 94% (cbbZ) typical for the duplicated cbb gene clusters. The calculated properties of the genes and their potential products are listed in Table 2. Comparisons of the deduced amino acid sequences with sequences in several data libraries revealed striking similarities of CbbT to the TK from the phototrophic bacterium Rhodobacter sphaeroides (9), the yeast Saccharomyces cerevisiae (14), and E. coli (43); the dihydroxyacetone synthase from the methylotrophic yeast Hansenula polymorpha (19); and the RecP protein from Streptococcus pneumoniae (36). No significant overall resemblance to any reported protein sequence was detected for CbbZ, but there were some partial similarities to various gene products (see Discussion).

Heterologous expression of the cbb genes. The identities and enzyme activities of the cbb gene products encoded on recombinant plasmids were verified by heterologous gene expression. For this purpose, plasmids carrying suitable subfragments cloned in expression vectors pUC18 and pUC19 (Table 1 and Fig. 1) were transformed into E. coli JW1 or JM109, and the cbb genes were expressed in the foreign host under the control of the lac promoter. The molecular masses of overproduced proteins CbbT (74 kDa) and CbbZ (24 kDa) detected by SDS-PAGE (Fig. 3) corresponded well to those estimated from the deduced amino acid sequences. In all cases, overexpression of the cbb genes depended on the lac promoter, indicating that the genes do not have a promoter that is functional in the E. coli host. Significantly enhanced TK activities were found in strains containing the cbbT genes, but they exceeded the background level in E. coli by 2.6- to 6.4-fold only in strains harboring the cbbT genes in a collinear orientation relative to the lac promoter on the expression vectors (Table 3). The pHG1-encoded *cbbT* gene was apparently less strongly expressed than the chromosomal copy, correlating with the amounts of overproduced TK proteins in the strains (Fig. 3). The level of TK activity in A. eutrophus, supposed to reflect the rate of synthesis of the enzyme, was high in autotrophically grown cells, whereas heterotrophic growth on fructose led to an activity level about twice that found in pyruvate-grown cells (Table 3). Pyruvate is known to completely repress the cbb operons, while fructose causes partial derepression (29).

E. coli is not known to contain PGP, as was confirmed by the lack of PGP activity in reference clone E. coli(pUC18). However, a very high level of PGP activity was present in transconjugant E. coli(pAEC4300). This finding is regarded to be unambiguous evidence that cbbZ encodes the PGP of A. eutrophus, although the plasmid-encoded cbbZ gene was apparently not expressed in E. coli(pAEP4320) (Table 4). The gene did not lead to detectable overproduction of a protein (Fig. 3), and in a clone harboring $cbbZ_{p}$ together with $cbbG_{p}$ [E. coli(pAEP4310)], only the product of the latter gene was found to be overproduced. Moreover, no PGP activity or overproduced protein was obtained with an alternative $cbbZ_{p}$ clone (data not shown). Lithoautotrophically grown wild-type A. eutrophus H16 exhibited significant PGP activity. In contrast, pyruvate-grown cells contained no detectable activity, like mutant HB9, a pHG1-free strain with the chromosomal cbb operon inactivated by Tn5 insertion (49), after growth on fructose plus formate (Table 4). Even lithoautotrophically grown transconjugant HB9(pHG1) showed no PGP activity, providing evidence that only the chromosomal cbbZ gene is

	cbbT										
	MNA	ΡE	RID	SAA	RC	ANA	LR	FLA	A D	AV É	26
c TAAGGACTCGACCGTGAAACGCCGACTCGCGAGGATCTCCTGA	ATGAACG	CACCAGA	ACGCATCG	ATTCCGCAG	CGCGCTGI	GCCAACGO	GCTGCGC	TTCCTGG	CCGCCGA	CGCGGTGG	A 120
	1111111	1111-11		1	1111-11		111111				I I
p TAAGGAGCCGAC	GATGAACG	CACCCGA	ACGCATCG.	ACCCCGCAG	CGCGTTGC	GCCAACGO	GCTGCGC	TTCCTGG	CCGCCGA	CGCGGTGG	A 89
	M N A	ΡE	R I D	PAA	R C	A N A	LR	FLA	A D	A V E	26
Q A K S G H P G A P M G M A	ЕМА	ΕV	LWR	RHL	RН	NPA	N P	A W P	DR	DRF	66
c GCAGGCCAAATCGGGCCACCCGGCGCACCCATGGGCATGGCC	GAAATGGG	CGAAGT	GCTGTGGC	GCGCCACC	TGCGACAC	AACCCGGC	CAACCCG	GCCTGGC	CGACCG	TGACCGCT	т 240
1 1111 11 11111111111111111111111111111			111111								1 240
p GTTGGCCCGCTCCGGCCACCCCGGCGCCCCCATGGGCATGGCC	GAGATGGC	CGAGGT	CGTGTGGCC	GCGCCACC	TGCGCCAC	AACCCGGC	CAACCCC	2007000	2002000		' TI 200
LARSGHPGAPMGMA	ЕМА	ΕV	VWR	RHL	вн		N D		D P		1 209
				2			NFI	- w r	DR	DRF	66
V L S N G H A S M L O Y A L	ьнь.	тс	V D L	D M C	0.1		D 0 1				
c CGTGCTGTCCAACGGCCATGCGTCCATGCTGCAGTATGCGCTG		CACCCCC					K Q I	ын а	АТ	РСН	106
			IACGACC	IGCCGAIGI	GCAGCIG	CGCCAG'I"I	CCGCCAG	CTGCACG	CGCCAC	GCCCGGCC	A 360
							111111	1111ÚU			l
		CACCGG	TACGACCI	GCCGATGTC	CGCAGCTG	CGCCAGTT	CCGCCAG	TGCACGO	GGTCACO	GCCGGGGGC	A 329
V B S N G II A B M L Q I A L	ь н ь	T G	YDL	PMS	QLI	R Q F	RQI	АНД	VТ	PGH	106
	PLG	Q G	LAN	A V G	MAI	, A E	KLI	AA	TF	N R P	146
C TCCGGAGCTTGGCGTGACGCCGGGCGTGGAAACCACCACCGGG	CCGCTGGG	ACAGGGC	CTGGCCAA	TGCCGTCGG	GCATGGCG	TGGCGGA	GAAGCTCC	TGGCCGC	CACCTTO	CAACCGGCC	2 480
		11111	11-1111			нин		111111	111111	11111-11	
p TCCGGAAGTCGACGTGACGCCGGGTGTGGAAACCACCACCGGG	CCGCTGGG	TCAGGGC	CTCGCCAA	TGCCGTCGG	CATGGCGC	TGGCGGA	GAAGCTGC	TGGCCGC	CACCTTO	AACCGCCC	449
PEVDVTPGVETTTG	PLG	Q G	LAN	A V G	MAI	, A E	K L L	AA	ΤF	NRP	146
GFDIVDHHTYVFLG	DGC	LM	EGL	SHE	ACS	LA	GTL	RL	GК	LIC	186
c CGGCTTCGACATCGTCGACCACCACCACGTCTTCCTTGGC	GATGGCTG	CCTGATG	GAAGGACT	CAGCCACGA	GCCTGCT	CGCTGGC	GGCACGC	TCAGGCT			600
	i i i i i i i i i i i i i i i i i i i							11 1111			000
p CGGCTTCGACATCGTCGACCACCACCACCTATGTCTTCCTCGGCC	GATGGCTG	CCTGATG	GAAGGGCT	CAGCCACGA	GGCCTGCT	CCCTCCCC					
GFDIVDHHTYVFLGI	GC	т. м	EGL	с ц г			o m v	ICGGGCT	GGGCAAG	CIGATCIG	569
				5 11 1	n Ç D	LA	GTL	GГ	GK	гіс	186
LYDDNGISIDGEVAG	. W F	A D	מ יתי ח	V D D		a					
C CCTGTACGACGACAACGGCATCTCCATCGACGGCGACGTCGCC						GW	нуі	A D	V D	GHD	226
		I GCCGAC	GACACCCC	GAAGCGCTT	IGUUGUUT	ATGGCTGG	CATGTGA	TTGCGGA	CGTCGAC	GGACACGA	720
					1111111	1111111	1111111				
	GCTGGTT	IGCCGAC	GACACCCC	GAAGCGCTT	TGCCGCCT	ATGGCTGG	CATGTGA	TTGCGGA	CGTCGAC	GGACACGA	689
E E E NGISIDGEVAG	W P	A D I	DTP	KRF	AAY	GW	нνі	A D	V D d	G H D	226
	DR	РТІ	LIC	CRT	V I G	K G	A P A	K A	GGI	H D V	266
e TGCGCACGCCCTCGATGCCGCGCTGCACGAGGCCAAGGCCGAGC	GCGACCGG	CCCACGO	CTGATCTG	CTGCCGCAC	CGTGATCG	GCAAGGGC	GCGCCCG	CAAGGC	CGCCGGG	CACGACGT	840
		111111			нини			шн			
p TGCGCACGCCCTCGATGCCGCGCTGCACGAGGCCAAGGCCGAGC	GCGACCGG	CCCACGO	TGATCTG	TGCCGCAC	GTGATCG	GCAAGGGC	GCGCCCGG	CAAGGC	GCCGGGG	CACGATGT	809
AHALDAALHEAKAER	DR	РТІ	IC	CRT	V I G	KG	АРА	KA	GGH	I D V	266
HGAPLGAPEIAAMRT	AL	GWE	E A E	PFT	VPA	D V	A D A	W D	ARA	0.6	3.06
c GCACGGCGCCCCGCTGGGCGCGCGGGGGGAGATCGCCGCCATGCGCA	ссососто	GGCTGGG	AAGCCGAG	CCCTTCACO	GTGCCGG	GGATGTC	GCCGACGC	CTGGGA			040
	min		1111111			1111111					900
p GCACGGCGCCCGGTGGGGCGCGCGGAGATCGCCGCCATGCGCA	CCGCGCTG	GGCTGGG	AAGCCGAG	CCCTTCACC	GTGCCCC		~~~~~~	0000000			
HGAPLGAPEIAAMRT	AL	GWE	AF	PFT	V D A		SCCGACGC	.CIGGGAI	GLACGUG	CGCAAGG	929
			1		V F A	U V I	A D A	w D	ARA	Q G	306
AAREAEWEAREVSVC	مَمَ										
			LA	EEF	VRR	ANO	GRL	РЕ	GFD	ΑE	346
	aceccece	CACCCCG	AACTGGCC	GAAGAATTC	GTGCGCCC	TGCCAATO	GCCGCCT	GCCCGAG	GGCTTCG	ATGCCGA	1080
			11111111		1111111	HIIII:	111111		1111111	111111	
	JUGCCGCG	CACCCCG	AACTGGCC	GAAGAATTC	GTGCGCCG	TGCCAATO	GCCGCCT	GCCCGAG	GGCTTCG	ATGCCGA	1049
	AAI	H P E	LA	EEF	VRR	ANC	RL	ΡE	GFD	ΑE	346
T M A T T P = -											
L M A L L D A P S P L Q G K I	АТИ	RKA	SQ	гсг	EAL	T P · A	LP	EL	LGG	SA	386
C ATTGATGGCGTTGCTGGACGCGCCGTCGCCGCTGCAAGGCAAGAT	CGCCACGO	CGCAAGG	CATCGCAG	CTGTGCCTG	GAGGCGCT	CACGCCCC	CCTTGCC	CGAGCTG	TGGGCG	GCTCGGC	1200
	нини										
p ATTGATGGCGTTGCTGGACGCGCCGTCGCCGCTGCAAGGCAAGAT	CGCCACGC	GCAAGG	CATCGCAG	TGTGCCTG	GAGGCGCT	CACGCCCG	CCTTGCC	CGAGCTG	TGGGCC	GCTCCCC	1169
LMALLDAPSPLQGKI	A T F	кка	s Q I	ссья	EAL	ТРА	LP	E I.		C X	304
		I	FIG. 2		-	- •	- •		_ 0 0	5 A	200

D L T G S N L T N V K A S V W V N H A G H G N I V S I G V K L F G H A A A A A A A A A A A A A A A A A A	426 1320
c CGACCTGACCGGGTCCAACCTGACCAATGTCAAGGCGTCGGTCTGGGTCAACCATGCCGGGCATGGCGACTACGGCGTGGGGGGGCGGGGCGGGGCGGGC	1520
The concentration of the conce	1289
D L T G S N L T N V K A S V W V N H A G H G N Y V S Y G V R E F G M A A V M N G	426
IALHGGLIPYGGTFMTFSDYSRNAIRMAALMRLRVVHVLT	466
C CATTGCGCTGCATGGCGGGCTGATCCCCTACGGCGGCACCTTCATGACCTTCTCGGACTACTCGCGCAATGCCATCGCGCGCG	1440
	1 4 0 0
P CATTGCGCTGCATGGCGGCCTGATCCCCTACGGCGGCGCCTCATGACGTTCTCGGGCATGCGCCGCATGCGCCGCGCGCG	466
I A L H G G L I P Y G G T F M T F S D Y S R N A I K M A L M K L K V H V L I	400
" DATATA DO DE VENASSIRI TONNOV WRPCDGAETA	506
A D S I G L G L D G F I A Q I V L A A A D L A L D L A CAGCCCCAGCCAGCCTGCGCCTGCGCCTGCGCGTCCCCTGCGACGGCGCCGAGACCCGC	1560
p CCATGACTCGATCGGACTTGGCGAGGACGGTCCCACCCAC	1529
H D S I G L G E D G P T H Q P V E H A A S L R L I P N N Q V W R P C D G A E T A	506
YAWLAALRREDGPSCLVLSRQALMPFERNPAQRAEIARGG	546
c GTACGCGTGGCTGGCCGCGCGCGCGCGGCGAGGATGGCCCGAGCTGCCTGGTGCTGCGCGGCAGGCGCTGATGCCGTTCGAGCGCAATCCGGCCCAGCGCGGGAGATTGCCGCGCGG	1680
	1640
p GTATGCGTGGCTGGCCGCGCGCGCGCGCGGCGGCGGCGGCCGGCCGGCGG	549
YAWLAALQRENGPTCLVLSKQALMPPERDAAQKADIAKGG	340
v u r p p v p p v v r r a m c s F V F r a M R A A L D L A D A G I A A R V V	586
	1800
p CTATGTGCTGCGCGATGTGCCGGCGCCGCGCGCGCGCGCG	1769
YVLRDVPAPRVVLIATGSEVEIAARAALDLADAGIAARVV	586
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V	626
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V c gtccatgccctgcgtggagctgttctacgcggagggggggg	626 1920
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V c gtccatgccttgcgtggagctgttctacgcgagagggggggg	626 1920
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V c gtccatgccctgcgtgcagctgttctacgcgcagcagctggcgtaccgcgcaccctgctgccacctggctgccgccgcgcgcg	626 1920 1889
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V c GTCCATGCCTGCGTGGAGCTGTTCTACGCGAGAGCGTGCGGCGACACCGTGCTGCCACCTGGCTGCCGCGCGCG	626 1920 1889 626
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V c GTCCATGCCTGCGTGGAGCTGTTCTACGCGCAGAGCGTGCGGCGCACCCTGGTGCGCCGCCGCGCGCG	626 1920 1889 626 646
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V C GTCCATGCCCTGCGTGGAGCTGTTCTACGCGCAGACGTGGGGGGGG	626 1920 1889 626 646 2040
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V c GTCCATGCCTGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGC	626 1920 1889 626 646 2040
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V $c GTCCATGCCTGCGTGGAGCTGTTCTACGCGAGACGTGGCGTACCGCGACCCGGCCGCCCCCGCCGCGCGCG$	626 1920 1889 626 646 2040 2009
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V c GTCCATGCCTGCGTGGAGCTGTTCTACGCGAGAGCGGGGGGGCGCGCGC	626 1920 1889 626 646 2040 2009 646
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V c GTCCATGCCTGCGTGGAGCTGTTCTACGCGAGAGCGGGGGGGCGACCGGGCGCCCCCGGCGCCCCCGGGGGG	626 1920 1889 626 646 2040 2009 646
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	626 1920 1889 626 646 2040 2009 646 35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	626 1920 1889 626 2040 2009 646 35 2160
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V $c GTCCATGCCTGCGTGGGGCTGTTCTACGCGCGGGGGGGGG$	626 1920 1889 626 646 2040 2009 646 35 2160
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V $c GTCCATGCCTGCGTGGGGCGGCGCGCGGCGGCGGCGCGCGGCGCGCGCGCGCGC$	626 1920 1889 626 646 2040 2009 646 35 2160 2129
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V C GTCCATGCCTGCGTGGGGGGGGGGGGGGGGGGGGGGGG	626 1920 1889 626 2040 2009 646 35 2160 2129 35
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V $c GTCCATGCCTGCGGGGGGGGGGGGGGGGGGGGGGGGGGG$	626 1920 1889 626 2040 2009 646 35 2160 2129 35 75
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V C GTCCATGCCTGCGGGGGGGGGGGGGGGGGGGGGGGGGG	626 1920 1889 626 2040 2009 646 35 2160 2129 35 75 2280
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V $c GTCATGCCTGCGGAGCTGTTCTACGCGAGAGCGGGGTACCGCGACCGGGCGCCCCGGCGCGCGC$	626 1920 1889 626 2040 2009 646 35 2160 2129 35 75 2280
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V C GTCCATGCCTGCGTGGAGCTGTTCTAGCGGAGAGCGGGGGTGCGGGGGGGG	626 1920 1889 626 2040 2009 646 35 2160 2129 35 75 2280 2249
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V C GTCCATGCCCTGCGTGGGAGCTGTTCTAGGGGGGGGGG	626 1920 1889 626 2040 2009 646 35 2160 2129 35 75 2280 2249 75
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V C GTCCATGCCTGCGTGGGAGCTGTTCTAGCGCGAGCGTGGGGGGGG	626 1920 1889 626 2040 2009 646 35 2160 2129 35 75 2280 2249 75
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V C GTCCATGCCCTGCGTGCAGCGTGTCTTCTACGCGCAGCGGGGCTGCGGCGGCGCCGCCGCGCGCG	626 1920 1889 626 2040 2009 646 35 2160 2129 35 75 2280 2249 75 115
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V C GTCCATGCCTGCGTGGAGCTGTTTCAGGGCAGGCGTGGCGGCGTGCGGCACCCGGGCGGCGGCGGCGGCGGGGGGGG	626 1920 1889 626 2040 2009 646 35 2160 2129 35 75 2280 2249 75 115 2400
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V C GTCCATGCCTCGTGGGCTGTGGGCGGGGGGGGGGGGGG	626 1920 1889 626 2040 2009 646 35 2160 2129 35 75 2280 2249 75 115 2400
S M P C V E L F Y A Q D V A Y R D T V L P P G L P R V S V E A G G T W F W R G V C GTCCATGCCTCCGTGGGCTGTGGCGCGGCGGCGGGGGGGG	626 1920 1889 626 2040 2009 646 35 2160 2129 35 75 2280 2249 75 115 2400 2369

FIG. 2

	v		Т	N		ĸ	Ρ		R	Α	L	,	Α	V	J	P	L	L	,	Α	L	Т	Ģ	;	L	s	Q	Y	! :	L	Е	v	L		v	Α	G	D		s	I	Α	Q	М	K		Ρ	D	Ρ	Е	Ρ	155
с	G	IC.	AC	CAI	AC.	AA	GC	CG	CG	CGC	GC	TG	GC	GG	TG	cco	GCI	rgc	то	GC	GCI	GAG	cco	GG	TT	GTC	GC	AGT	PAC	CT	CGA	AG'	rgc	TG	GT	GGC	GGG	GCG	AC'	TCG	АТ	CGC	GC	AGA'	F GA	AA	ccc	GA	тсс	CGA	ACCG	2520
	T	11	11		11	11	П	11	11	111	11	11	11	11	11			11	ŧ	11	111	111		П	11		11		11	H	H			П	П	113	11		11		11		11			1	11	ш	П		111	
n	G	IC.	AC	CA	AC	AA	GC	CG	CG	CGC	GC	TG	GO	GG	TG	200	CU	GC	·πc	GC	GCT	Υ AC	222	SO	T	ንጥና	GCI	A GT	יזמי	CTT	ഹം	۵C	TGC	יחרי	ദസ	aar	00	200	AC'	TCG	<u>λ</u> πα	nan	aci	202	TC A	20	 ccc	202	ccc	CGN	acca	2/89
	v		m	N		v	 D		D D					 v		_							~			~			, ,						.,						-	,	~				 				.00000	100
	v		1	14		ĸ	r		ĸ	'n	-	,	ĥ	v			5	1		A	Ц	1	G	,	D	5	Q	1		Ц	Б	v	L	,	v	А	G	U		5	1	А	Ŷ	м	Г		r	D	P	Е	P	155
С	L		R	н	-	A	С		N	L	L		D	v	I	C	т	A	•	Q	G	v	L	,	v	G	D	2		A	v	D	v		Α	Α	Α	R		A.	A	G	I	Ρ	v	(С	L	v	R	Y	195
	C'	ľG	CG	cci	AC	GC	СТ	GC	AA	CCI	GC	TC	GA	CG	TCO	GA'	ΓΑΟ	GG	CC	CA	GGG	CG	rgc	TG	GT	GGC	GGI	ATI	CG	GC	GGT	GGI	ACG	TG	GCO	GGC	GGG	CGC	GC	GCG	GCO	CGG	CAT	rcc	CGG	TC	TGC	CT.	GGT	TCC	стат	2640
	Т	11	L	П	L	11	П	11	H	11	П	П	П	П	E I	H.		11	П	$^{\pm1}$	111		111	11	П	111	11	111	П	П	11		111	П	11	111	11	111	П	ш	11	ш		11	111	П	111	11	111	11	1111	
p	C	IG	CA	GC/	ATO	GC	ст	GC	АА	тст	GC	тс	GA	CG	TCO	GA?	rgc	GG	CG	CA	GGG	TG	rgc	TG	GT	GGG	GGI	ATI	CGG	GC	CGT	GGI	ACG	TG	GC	GGC	GGG	CGC	GC	GCG	GCO	CGG	CAT	rcco	CGG	TC	TGC	ст	GGT	GCG	CTAT	2609
	L		о	н	į	A	с		N	L	L		D	v	I	5	А	А		о	G	v	L		v	G	D	S		Α	v	D	v	,	А	А	А	R		A	A	G	I	Р	v	. ,	с	L	v	R	Y	195
			~																	~																												-				
	~		~	,		~	-		~	~	г	,	2		,		c			P	,	т	Ŧ		_	~	Ŧ			,	Ŧ	_			Ŧ	Ŧ		~			n	Ŧ	,	-	,		,	•				221
	G		1	А		9	P		G	G	r		A	А	1	-	G	А		U	А	ц	L	•	U	5	ц	E		A	ц	P	А	•	Г	г	Т	P		A	ĸ	Ъ	А	P	А	4	A					231
С	G	GC	TA	CGC	cco	GG	сс	cc	GG	CGG	GC	cc	GC	GG	CG	CTO	GGC	CG	CC	GA	IGC	GCI	rgc	TC	GA'	FTC	GC	rgg	SAG	GC	GTT	GCO	CGG	CG	CTO	GCT	GAG	CGC	CG	GCG	CG	GCT	GGC	CGC	CAG	cco	GCC	TG.	ATG	TTC	CGCC	2760
	Т	П	П		11	11	11	14	Н	111	U	11	11	П	Ш			П	Н	П	П	111	11	П	П	Ш	111		11	П	111	Ш	111	П	П	111	11	111	11	111	Ш		111			н	111	11	11	111	ш	
p	G	GC	TA	CGC	cco	GG	сс	сс	GG	CGG	GC	cc	GC	GG	CGG	сто	GGC	CG	CG	GA	CGC	GCI	rgg	TC	GA'	FT C	GC	rgg	AG	GCO	GTT	GCO	CGG	CG	СТО	GCT	GAG	CGC	CG	GCG	CG	GCT	GGC	GC	CCG	cco	GCC	TG.	АТА	TTC	CGCC	2729
	G		Y	A	(G	Ρ		G	G	P	•	Α	Α	I	5	G	A		D	A	L	v	,	D	s	L	E		A	L	Ρ	A		L	L	т	Р	i i	A	R	L	A	Р	A	. ;	A	*				231
F	IG		2	Δ	lic	m	ed	n	uc	leo	tid	ما	an	d c	łeć	huz	-er	1 9	m	ino	20	id .	eer	1116	n	ec	of	the		nai	1	he	rec	nin	ne	fro	m	the	م ام د	hro	mc	100	ma	1 () 9	nd	nł	IG	1_0	nco	oded	(n) chh
1	10	•	۲.	ĉ	-12	511	cu		1		11		-				~	• a			a	iu i		140	1	~3	41.	un	- ai	1.	., 2.		108	510	-13	nu		unc	1.	1.0		1		. (0	<i>y</i> a		PI			лос т	Jucu National	(P) COU

operons of A. eutrophus H16. Amino acids are indicated in the unaryzed regions from the enrolmostinal (c) and prior encoded and operons of A. eutrophus H16. Amino acids are indicated in the one-letter code above or below the respective codons. The putative ribosome-binding sites are printed in boldface type. Gaps (dashes) were introduced to optimize the sequence alignment. Vertical lines indicate identical bases, and asterisks indicate stop codons. The nucleotide sequences overlap with those reported earlier (26) by 274 (c) and 243 (p) positions at their 5' ends.

functionally expressed in A. eutrophus, as in the heterologous host E. coli.

Molecular weight of native PGP. To gain information on the structure of native PGP from *A. eutrophus*, gel filtration experiments were performed with a Sephacryl S-300 HR column. Analyses of cell extracts from both recombinant *E. coli*(pAEC4300) and the authentic host *A. eutrophus* H16 yielded an M_r of 70,500 for native PGP (data not shown), compatible with a homotrimeric structure of the enzyme.

DISCUSSION

The data reported provided genetic and enzymatic evidence for two additional structural genes, *cbbT* and *cbbZ*, which are encoded within the *cbb* operons of *A. eutrophus* H16. Sequence analysis and heterologous expression showed that the products

 TABLE 2. Calculated characteristics of the identified genes and their products

Length (bp)	G+C content (mol %)	No. of amino acids	Molecular mass (kDa)	pI
2,013 2,013	70.54 70.79			
696	72.56			
696	72.56			
		670	71.6	5 00
		670	71.5	5.65
		231	23.8	1 77
		231	23.6	4.82
		2.51	23.0	02
	Length (bp) 2,013 2,013 696 696	Length (bp) G+C content (mol %) 2,013 70.54 2,013 70.79 696 72.56 696 72.56	Length (bp) G+C content (mol %) No. of amino acids 2,013 70.54 - 2,013 70.79 - 696 72.56 - 696 72.56 - 696 72.56 - 696 72.56 - 231 - -	Length (bp) G+C content (mol %) No. of amino acids Molecular mass (kDa) 2,013 70.54 - - 696 72.56 - - 696 72.56 - - 696 72.56 - - 697 71.6 - - 231 23.8 23.6 -

of both genes, TK and PGP, respectively, function as enzymes in the Calvin cycle (TK) or in the glycolate metabolism (PGP) of this chemoautotroph. As indicated by the corresponding enzyme activities, the expression of both genes in A. eutrophus follows a regulatory pattern similar to that observed for other enzymes of the Calvin cycle (7). This finding, together with the requirement for the lac promoter for cbbT and cbbZ expression in E. coli, supports the conclusion that the two contiguous genes are part of the large cbb operon, including also the 3'-flanking cbbG. Thus, as already shown for RubisCO (17), pentose-5-phosphate 3-epimerase (27), phosphoribulokinase (23), and glyceraldehyde-3-phosphate dehydrogenase (48), A. eutrophus forms two TK isoenzymes operating in the Calvin cycle. The dual involvement of TK in general pentose metabolism and in autotrophic CO₂ fixation has important metabolic consequences for the facultatively autotrophic organism. Since the *cbb* operons are completely repressed during growth on various organic acids and mutants with defective cbb operons are unaffected in heterotrophic growth (49), the organism must be able to form a third TK isoenzyme functioning in heterotrophic carbon metabolism. This additional isoenzyme is probably represented by the low TK activity in cells grown on pyruvate, which fully represses the cbb operons.

TK catalyzes the transfer of the two-carbon glycolaldehyde group from ketoses to aldoses with a relatively broad substrate specificity. Recently, the three-dimensional structure of TK from S. cerevisiae was determined (30), allowing deeper insights into the reaction mechanism and identifying the amino acid residues critical for cofactor binding. It has been shown that the enzyme is composed of two identical 75-kDa subunits, contains one molecule each of Ca2+ and thiamine diphosphate, and requires Mg^{2+} for catalytic activity (8, 30). Sequence alignments (Fig. 4) with TK from S. cerevisiae, R. sphaeroides, and E. coli, with dihydroxyacetone synthase from H. polymorpha, a novel type of TK, and the RecP protein from S. pneumoniae, which might be a TK, confirmed that CbbT from A. eutrophus is a TK protein. The primary structures of the enzymes are relatively conserved, showing identities to CbbT of between 35 and 51%. Particularly, amino acid residues essential for thiamine diphosphate binding (His-79, Gly-

FIG. 3. Heterologous expression of both chromosomal and plasmid-encoded cbbT (A) and cbbZ (B) genes in transformants of E. coli. Shown is SDS-PAGE of lysed E. coli JM109 containing pUC18 (lane a), pAEC8010 (lane b), pAEC8011 (lane c), pAEP8230 (lane d), or pAEP8231 (lane e) and of lysed E. coli JW1 containing pUC18 (lane f), pAEC4300 (lane g), pAEC4301 (lane h), or pAEP4320 (lane i). Cells were grown in LB medium supplemented with ampicillin, and the lac promoter on the plasmids was induced with 0.5 mM IPTG. Protein (about 1 [A] or 2 [B] µg per lane) was visualized by silver staining. The overproduced TK and PGP proteins are marked by arrowheads. Numbers indicate the sizes of molecular mass markers in kilodaltons.

116, Leu-118, Gly-159, Glu-163, Asp-186, Ile-192, His-264, Asp-383*, Leu-384*, Ile-418*, Glu-424*, Phe-448*, Phe-451*, Tyr-454*, and His-487* [the asterisk indicates a residue from the second subunit]), Ca²⁺ binding (Asp-158, Asn-188, and Ile-190), and substrate binding (Arg-94, Glu-482*, and Asp-483*) (30) are identical or conservatively exchanged in all cases, with the exception of RecP, for which the equivalents of Asp-186 and Asn-188 are missing (Fig. 4). The histidine residues His-30, His-103, and His-487*, which might be of importance in proton transfer during catalysis and in stabilization of the covalent intermediate between the substrate and thiamine diphosphate (30), are also conserved in the TK examined. The determined molecular mass of about 72 kDa for the subunits of the enzyme from A. eutrophus is comparable to that of other TK subunits, e.g., 69 kDa for the subunits of the enzyme from R. sphaeroides.

To our knowledge, *cbbZ* is the first PGP gene that has been cloned from any organism. The placement of this gene within the cbb operons is of particular interest. It might be considered the genetic manifestation of the usual metabolic situation in autotrophically growing A. eutrophus in the natural habitat. The formation of 2-phosphoglycolate by the action of bifunctional RubisCO in the presence of relatively low CO₂ and high O₂ concentrations would lead to an accumulation of the compound as a dead-end inhibitory metabolite (inhibition of triosephosphate isomerase [51]), unless it were dephosphorylated by PGP to yield glycolate. Further breakdown of glycolate would allow the major part of the carbon fraction flowing into 2-phosphoglycolate to be recycled into the Calvin cycle. Photorespiration in plants (34) is based on this carbon-salvaging glycolate metabolism. A. eutrophus has been observed to excrete glycolate under certain conditions (11, 21), confirming the physiological role of PGP. The coordinated synthesis of RubisCO and PGP achieved because of their being encoded within a common operon is probably favorable for keeping the critical metabolic balance at the interface of two interlocking pathways. It was surprising to find that, despite the very high homology between chromosomal and plasmid-encoded cbbZ

TABLE 3. Activities of TK in cell extracts of A. eutrophus grown with various substrates and in transformant strains of E. coli

Strain ^a	Growth substrate	Sp act (U/mg of protein)
A. eutrophus H16	H ₂ -CO ₂ ^b	0.152
A. eutrophus H16	Formate ^c	0.256
A. eutrophus H16	Fructose	0.029
A. eutrophus H16	Pyruvate	0.015
E. coli(pAEC8010)	$\tilde{\mathbf{LB}}^d$	1.307
E. $coli(pAEC8011)$	LB	0.194
E. coli(pAEP8230)	LB	0.536
E. coli(pAEP8231)	LB	0.205
E. coli(pUC18)	LB	0.203

" For completeness of information, the activity values given for A. eutrophus were taken from reference 7.

'Lithoautotophic growth.

Organoautotrophic growth.

^d LB, LB medium (induction of the *lac* promoter with 0.5 mM IPTG).

TABLE 4. Activities of PGP in cell extracts of A. eutrophus grown with various substrates and in transformant strains of E. coli

Strain	Growth substrate	Sp act (U/mg of protein)
A. eutrophus H16	H_2 - CO_2^a	0.30
A. eutrophus H16	Pyruvate	< 0.01
A. eutrophus HB9	Fructose-formate ^b	< 0.01
A. eutrophus HB9(pHG1)	H ₂ -CO ₂	< 0.01
E. coli(pAEC4300)	$L\bar{B}^{c}$	6.58
E. coli(pAEC4301)	LB	0.03
E. coli(pAEP4320)	LB	< 0.01
E. coli(pUC18)	LB	< 0.01

" Lithoautotophic growth.

^b Heterotrophic growth with fructose; at an optical density at 436 nm of 1.5, 0.2% (wt/vol) formate was added.

LB, LB medium (induction of the lac promoter with 0.5 mM IPTG).

```
J. BACTERIOL.
```

MN-----APERIDSAARCANALRFLAADAVEQAKSGHPGAPMGMAEMA-EVLWRRHLRHNPANPAWPDR Ae 63 MK-----DIGAAQET-RMANAIRALAMDAVEKAKSGHPGMPMGMADVA-TVLFNRFLTVDPSAPKWPDR Rs 62 MSSRKEL-----ANAIRALSMDAVQKAKSGHPGAPMGMADIA-EVLWRDFLKHNPQNPSWADR Ec 57 M T - - - - Q F T D I D K L A - - V S T I R I L A V D T V S K A N S G H P G R S P A H V L G E S N A H P N Q P K T G S T E ISC 62 Hp MSMRIPKAASVNDEQHQRIIKYGRALVLDIVEQYGGHPGSAMGAMAIG-IALWKYTLKYAPNDPNYFNR 69 MS-----NLS-----VNAIRFLGIDAINKANSGHPGVVMGAAPMAYSSLONNFISIOLNOTGLTAT Sp 56 His-30 DRFVLSNGHASMLQYALLHLTGY-DLPMSQLRQFR--QLHAATPGH-PELGVTP-GVETTTGPLGQGLAN 128 Ae Rs DRFVLSAGHGSMLLYAIHHLLGYADMDMDQIRSFR--QLGARTAGH-PEYGHAE-GIEVTTGPLGQGIAT 128 DRFVLSNGHGSMLIYSLLHLTGY-DLPMEELKNFR--QLHSKTPGH-PESGVTPLGVETTTGPLGQGIAN 123 EC DLSCLTVTRS--LCCIYLHLTGY-DLSIEDLKQFR--QLGSRTPGH-PEFEL-P-GVEVTTGPLGQGISN 124 SC Hp DRFVLSNGHVCLFQYIFQHLYGLKSMTMAQLKSYHSNDFHSLCPGH-PEIEHDA--VEVTTGPLGQGISN 136 ALFF----QQVMVQCSFMLFFTFLVLKMSAWMRLRV-SVNGVKNTRSPRICHTA-GIDATTGPLGKDF-N 119 Sp T His-103 His-79 Gly-116 Leu-118 Arg-94 Ae AVGMALAEKLLAATFNRP-GFDIVDHHTYVFLGDGCLMEGLSHEACSLAGTLRLGKLIC-LYDDNGISID 196 AVGMALAERMKNARY----GDDLVDHFTYVIAGDGCLMEGISHEAIDMGGHLGLGRLIV-LWDDNRITID 193 Rs AVGMAIAEKTLAAQFNRP-GHDIVDHYTYAFMGDGCCMMEGISHEVCSLAGTLKLGKLIA-FYDDNGISID 191 Ec AVGMAMAOANLDMPLTTSRAFTLSDNYTYVFLGDGCLOEGISSEASSLAGHLKLGNLIA-IYDDNKITID 193 SC SVGLAIATKNLAATYNKP-GFDIITNKVYCMVGDACLOEGPALESISLAGHMGLDNLIV-LYDNNOVCCD 204 Hp CYWFCPSRRFLAAKYNRE-GYNIFDHYTYVICGDGDLMEGVSSEAASYAG---LONLISWLF----FMIQ 181 Sp ↑ ↑ ↑ ↑ ↑ Asp-186 Ile-190 Asp-158 Glu-163 Gly-159 Asn-188 Ile-192 GEVAGWFADDT---PKRFAAYG---WHVIADVDGHD-AHALDAALHEAKAERDRPTLICCRTVIGKGAPA 259 Ae GDSGISTSTDQ---KAPFAASG---WHVLA-CDGHA-PEEIAAAIEAARRDP-RPSMIACRTVIGYGAPN 254 Rs GHVEGWFTDDT---AMRFEAYG---WHVIRDIDGHD-AASIKRAVEEARAVTDKPSLLMCKTIIGFGSPN 254 Ec GATSISFDED---VAKRYEAYG---WEVLYVENGNEDLAGIAKAIRQRKLSKDKPTFDQ-NDHNHWLRFL 256 SC GSVDIANTED---ISAKFKAC---NWNVIEVENASEDVATIVKALEYAQAEKHRPTLINCRTVIGSGAAF 268 Hp -MISTWMVRORIPLOKVFVTVTMLRLHTALVENGTD-LEAIHAAIETAKA-SGKPSLIEVKTVIGYGSPN 248 Sp kagghdvhgaplgapeiaamrtalgweae-pftvpadvadaw-d-araqgaareaewearfvsycaahpe 326 Ae KQGGHDVHGAPLGAAEIAAARERLGWDHP-PFEIPADLYEAW-GRIAARGADARAAWETRLQA----SP 317 Rs KAGTHDSHGAPLGDAEIALTREQLGWKYA-PFEIPSEIYAQW-D-AKEAGQAKESAWNEKFAAYAKAYPQ 321 Ec RSGSHSVHGAPLKADDVKQLKSKFGFNPDKSFVVPQEVYDHYQKTILKPGVEANNKWNKLFSEYQKKFPE 326 Sc ENHCAA-HGNALGEDGVRELKIKYGMNPAQKFYIPQDVYDFFKEKP-AEGDKLVAEWKSLVAKYVKAYPE 336 Hp KQGTNAVHGAPLGADETASTRQALGWDYE-PFEIPEQVYADFKEHVADRGASAYQAWTKLVADYKEAHPE 317 Sp His-264 LAEEFVRRANGR---LPEGFDAELMALLDAPSPLQGKIATRKASQLCLEALTPALPELLGGSADLTGSNL 393 Ae Rs LRAAFETAEAADTSALPPAIAA-YKARLSAEAP---KVATRKASEMALGVVNEALPFAVGGSADLTGSNL 383 EAAEFTRRMKGE---MPSDFDAKAKEFIAKLQANPAKIASRKASQNAIEAFGPLLPEFLGGSADLAPSNL 388 Ec SC LGAELARRLSGQ---LPANWESKLPTY----TAKDSAVATRKLSETVLEDVYNQLPELIGGSADLVLPIL 389 EGQEFLARMRGE---LPKNWKSFLPQ----QEFTGDAPTRAAARELVRALGQNCKSVIAGCADLSVSVN 398 Hp Sp LAAEVEAIIDGRDPV--EVTPADFPALENGFSQ----ATRNSSQDALNVVAAKLPTFLGGSADLAHSNM 380 Asp-383 Leu-384

FIG. 4. Alignment of the amino acid sequences (one-letter code) of the chromosomally encoded TK from *A. eutrophus* H16 (Ae), TKs from *R. sphaeroides* (Rs [9]), *E. coli* (Ec [43; GenBank accession number, X68025]), and *S. cerevisiae* (Sc [14]), dihydroxyacetone synthase from *H. polymorpha* (Hp [19]), and the RecP protein from *S. pneumoniae* (Sp [36]). Residues identical to those in TK of *A. eutrophus* are printed in boldface type. Residues in the enzyme from *S. cerevisiae* involved in cofactor or substrate binding and catalysis are indicated below the sequence. Dashes indicate gaps introduced to maximize alignment.

(about 95% nucleotide identity), only the chromosomal gene seems to be functional in both A. *eutrophus* and the foreign host *E. coli*. A possible explanation for this observation is the dramatic difference in the mRNA stabilities of the two genes,

although the formation of an enzymatically inactive plasmidencoded *cbbZ* product in *A. eutrophus* cannot be discounted.

Although PGP has been isolated from many organisms and characterized, only little is known about its structure. The Vol. 175, 1993

Ae Rs EC Sc Hp Sp	TNVKASVWVNHAG-HGNYVSYGVREFGMAAAMNGIALHG-G-LIPYGGTFMTFSDYSRNA TRSKGMVSVAPGAFAGSYIHYGIREHGMAAAMNGIALHG-G-LRPYGGTFMAFADYCRPS TLWSGSKAINEDA-AGNYIHYGVREFGMTAIANGISLHG-G-FLPYTSTFLMFVEYARNA TPSNLTRWKEALSFQPPSSGSGNYSGRYIRYGIREHAMGAIMNGISAFG-ANYKPYGGTFLNFVSYAAGA LQWPGVKYFMDPSLSTQCGLSGDYSGRYIEYGIREHAMCAIANGLAAYNKGTFLPITSTFFMFYLYAAPA TYIKTDGLQDDANRLNRNIQFGVREFAMGTILNGMALHG-G-LRVYGGTFFVFSDYVKAA 111e-418 Glu-424 Phe-448 Phe-448 Phe-448 Phe-451	451 443 445 458 469 439
۵۵	TRMAALMELEVVHVLTHDSTGLGEDGPTHOPVEHAASLELIPNNOVWEPCDGAETAYAWLAALREEDGPS	521
Rs	IRLSALMGVPVTYVMTHDSIGLGEDGPTHOPVEHLASLRAIPNLAVIRPADAVETAEAWEIAMTATSTPT	513
EC	VRMAALMKOROVMVYTHDSIGLGEDGPTHOPVEOVASLRVTPNMSTWRPCDOVESAVAWKYGVERODGPT	515
Sc	VRLSALSGHPVIWVATHDSIGVGEDGPTHOPIETLAHFRSLPNIQVWRPADGNEVSAAYKNSLESKHTPS	528
Hp	IRMAGLOELKAIHIGTHDSINEGENGPTHOPVESPALFRAYANIYYMRPVDSAEV-FGLFQKAVELPFSS	538
Sp	VRLSALOGLPVTYVFTHDSIAVGEDGPTHEPVEHLAGLRAMPNLNVFRPSRCAWNEAAWYLAVTSEKTPT	509
-	- ↑↑ ↑ Glu-482 His-487 Asp-483	
20	CLUL SPOALMDEFPNDAOPAETAPCGVULPDUDAPRUUL.TATGSEVETAMRAALDI.ADAGTAARVUSM	589
Re	LINI. SPONI. DTVPTEHEDENI. TABCAVI. I. BDDCFROVT I. TATCSEI. ELAI. AAADI. I. AAEGTAAAVVSA	581
FC	ALLISBONLACOERTEFOLANTARGGYVIKDCAGOPELI-FTATGSEVELAVAAYEKLTAEGVKARVVSM	584
SC	TIALSPOK-TCHNWKVALLESASKGGYVLODVANPDIILVATGSEVSLSVFAAKTLAAKNIKARVVSL	595
Hp	ILSLSRNEVI, OYI, ASRAORRINA - AGYILEDAENAEVO IIGVGAEMEFADKAAKILGRK-FRTRVLSI	604
Sp	ALVLTRONLTVEDGTDFDKVAKGAYVVYEMQRPTLIPSLIATGSEVNLAVSAAKELASQGEKSRVVSM	577
Ae	PCVELFYAQDVAYRDTVLPPGLPRVSVEAGGTWFWRGVVGEQGLALGIDTFGESAPAEALYQHFGLT	656
Rs	PCFELFAAQPADYRATVLGRA-PRVGCEAALRQGWDLFLGPQDGFVGMTGFGASAPAPALYQHFNIT	647
Ec	SSTDAFDKQDAAYRESVLPKAVTARVAVEAGIADYWYKYVGLNGAIVGIETFGESAPAELLFEEFGFT	652
Sc	PDFFTFDKQPLEYRLSVLPDNVPIMSVEVLATTCWGKYAHQSFGIDRFGAPVRHQKSSSSSVSP	659
Нp	PCTRLFDEQSIGYRRSVLRKDGRQVPTVVVDGHVAFGWERYATASYCMNTYGKSLPPEVIYEYFGYN	671
Sp	PSTDVFDKQDAAYKEEILPNAVRRRVAVEMGASQNWYKYVGLDGAVLGIDTFGASAPAPKVLAEYGFT	645
Ae	PAHVAA A AR V LLE EA 671	
Rs	AEAIVKS A K E RI E RI 659 55 % identity to Ae	
Ec	VDNVVAKAKELL 664 59 % identity to Ae	
Sc	QKVLLKELKRPLHSIRVTS 678 41 % identity to Ae	
Hp	PATIAKKVEAYVRACQRDPLLLHDFLDLKEKPNHDKVNKL 711 37 % identity to Ae	
Sp	VENLVKIV R NLKLK 657 40 % identity to Ae	

FIG. 4-Continued.

specificity of PGP (at least of the enzymes from spinach and erythrocytes) is known to be rather limited to the hydrolysis of 2-phosphoglycolate and ethylphosphate. PGP from erythrocytes also hydrolyzes L-phospholactate (37). Studies on the enzymes from the green alga *Chlamydomonas reinhardtii* and the cyanobacterium *Anacystis nidulans* revealed somewhat different properties with regard to stability and pH optimum, but these enzymes generally resemble those of higher plants (18). Compared with the M_r of native PGP from plants and green algae (81,000 to 93,000 [10]), the M_r of the *A. eutrophus* enzyme seems to be significantly lower (70,500). The presumed homotrimeric structure is rather unusual, although other PGP enzymes have not been studied in this respect.

CbbZ sequence alignments with other known gene products revealed only few overall resemblances. However, some similarities to sequence motifs within potential products of a few completely or incompletely sequenced open reading frames were found, with overall identities of up to 30% (Fig. 5). In all cases, either the functions of the encoded proteins are not known yet or the open reading frames were not even identified to code for functional proteins. The *cbbY* gene is located approximately 6 kb upstream of cbbZ (27). Its product, CbbY, is still of unknown function but showed a remarkable overall similarity of 27% to PGP without exhibiting any detectable PGP activity. Nevertheless, PGP and CbbY from A. eutrophus may have certain structural or functional relationships. Pep27 (30% identity relative to PGP) is encoded within the E. coli dam operon (33). Its gene is closely linked to a gene showing a high level of similarity to *cbbE* of *A. eutrophus*, which encodes ribulose-5-phosphate 3-epimerase (27). Similar sequence motifs were found in a potential gene product that is encoded downstream of the folylpoly-y-glutamate synthetase gene of Lactobacillus casei (45). The His3 protein from the plantpathogenic fungus Phytophthora parasitica is an imidazoleglycerolphosphate dehydratase with a rather unusual N-terminal amino acid sequence that is not present in other dehydratases (4). This N terminus shares similarities with CbbZ. Most of the sequence motifs also appear to be conserved in the human GS1

Ae	MATVSMPCTAVLIDLDGTLVDSAPDIVEAANRMLADFGSPALPFDTVAGFIGRGVPNLVRRVL-	63
Aey	MQALIFDVDGTLADTESAHLQAFNAAFAEVGLDWYWDAPLYTRLLKVAGG	50
Ec	MNKFE-DIRGVAFDLDGTLVDSAPGLAAAVDMALYALELPVAGEERVITWIGNGADVLMERALT	63
Рр	GTLIDSVPDLAAAVDRMLLELGRPPADLEAVRHWVGNGAQVLVRRALA	48
Dm	EFILEAVVGTGLSREDAARFIEVRRKLV	28
$\mathbf{L}\mathbf{C}$	MTATVIFDLDGTLVNTEALYLKSNVKAAAVLGLHRTEADFRPLVGSAGPSEAKIIADLVG	60
Pa	MASPVQALLLDMDGVMAEVSQSYRQAIIDTARHFGVSVTHEDIDHTKL	48
Hs	M DG L LLD TERLYSVVFQEIC NR YDKKYSWDVKSL VMG KKALEAAQIIID VL -	51

Ae	AMFHRHYAETNGRLGSVF-P-GVEAAEAVAMFHRHYAETNGRLGSVF-P-GVEAG	102
Аеу	KERLMHYWRMVDPEEARGCKVKETIDAVHAIKTRHYAERVGAGGLPLRP-GIARL	104
Ec	WARQERATQRKTMGKPPVDDDIPAEEQVRILRKLFDRYYGEVAEEGTFLF-P-HVADT	119
Рp	LFMEAYAQ-SHELTVVY-P-GVKDT	88
Dm	QENWFKHVRL F-P -D V IPV	45
$\mathbf{L}\mathbf{C}$	ADHAAWFQQVL-P-GADKT	93
Pa	AGNANNDW-QLTHRLVVDGLNGASSAPTLEAVTAQFEALYQGVGNTLGLCELETLLTPKGLLRE	111
Hs	TKLKEVFPMAALM-P-GAEKL	84

Ae	$\label{eq:learner} Learner \\ \textbf{Q} \textbf{G} \textbf{Y} \textbf{L} \textbf{A} C \textbf{V} \textbf{T} \textbf{K} \textbf{P} \textbf{R} \textbf{-} \textbf{L} \textbf{A} \textbf{V} \textbf{P} \textbf{L} \textbf{L} \textbf{A} \textbf{L} \textbf{-} \textbf{-} \textbf{T} \textbf{G} \textbf{L} \textbf{S} \textbf{Q} \textbf{Y} \textbf{L} \textbf{E} \textbf{V} \textbf{L} \textbf{A} \textbf{G} \textbf{D} \textbf{-} \textbf{-} \textbf{S} \textbf{I} \textbf{A} \textbf{Q} \textbf{M} \textbf{K} \textbf{P} \textbf{D} \textbf{P} \textbf{P} \textbf{L} \textbf{R} \textbf{H} \textbf{A} \textbf{C} \textbf{N} \textbf{L} \textbf{L} \textbf{D} \textbf{V} \textbf{D} \textbf{D} \textbf{A} \textbf{A} \textbf{A} \textbf{A} \textbf{A} \textbf{A} \textbf{A} A$	166
Aey	$\label{eq:constraint} IDEAGEAGLPLAIATTTTPA-NLDALLQAPLGADWRRRFAAIGDAGTTAIKKPAPDVYLAVLERLGLE$	171
Ec	LGAL QAKGLPL GLVTNKP TP-FVAPLLE ALDIAKY FSV VIGGDDV QNKKP HPDPL LLVAERMGIA	183
Рр	$\mathbf{L} RW \mathbf{L} QK \mathbf{Q} Q V E \mathbf{M} \mathbf{A} L \mathbf{I} \mathbf{T} \mathbf{N} \mathbf{K} \mathbf{P} E R - F V A \mathbf{P} \mathbf{L} L D Q \mathbf{M} K \mathbf{I} G R \mathbf{Y} F RW \mathbf{M} \mathbf{I} G \mathbf{G} \mathbf{D} \mathbf{T} L P \mathbf{Q} K \mathbf{K} \mathbf{P} \mathbf{D} \mathbf{P} A A \mathbf{L} L F V \mathbf{M} Q \mathbf{M} A G \mathbf{V} T$	152
Ps	LQKMGVEMALITNKPER-FVAPLLDEMKLGRFFRWIIGGDTMPQKKPDPAALFFVMKMAGVP	61
Dm	LLQLSSTGYML GVASSSIRE-RVELFLSHLGVSGYFKVVSGLE-PGVKGKPEPDVIVNALKAAGVP	109
$\mathbf{L}\mathbf{C}$	LQTLDQMGYRLALATSSAKH-YVDVVLAATGWVKRFDPILTGS-DVTAHKPDPEIYHVMKTKLP	155
Pa	$\mathbf{L} HRRQPK \mathbf{G}\mathbf{M} \mathbf{A} \nabla \mathbf{V} \mathbf{T} \mathbf{G} R \mathbf{P} \mathbf{R} K - \mathbf{D} CAKF \mathbf{L} T T H\mathbf{G} \mathbf{I} \mathbf{E} \mathbf{D} \mathbf{L} \mathbf{F} \mathbf{P} \mathbf{V} \mathbf{Q} \mathbf{I} \mathbf{W} \mathbf{L} \mathbf{E} \mathbf{D} \mathbf{C} \mathbf{P} \mathbf{P} - \mathbf{K} \mathbf{P} \mathbf{S} \mathbf{P} \mathbf{E} \mathbf{P} \mathbf{I} \mathbf{L} \mathbf{L} \mathbf{A} \mathbf{L} \mathbf{K} \mathbf{A} \mathbf{L} \mathbf{G} \mathbf{V} \mathbf{E}$	172
Hs	$\verb IIHLRKHGIPFALAT SSGSASFDMKTSRHKEFFSLFSHIVLGDDPEVQHGKPDPDIFLACAKRFSPP $	151

Ae	$\mathbf{TAQ} \mathbf{G} \mathbf{V} \mathbf{L} \mathbf{V} \mathbf{G} \mathbf{D} \mathbf{S} \mathbf{A} \mathbf{V} \mathbf{D} \mathbf{V} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{G} \mathbf{G} \mathbf{P} \mathbf{G} \mathbf{G} \mathbf{P} \mathbf{A} \mathbf{A} \mathbf{L} \mathbf{G} \mathbf{A} \mathbf{D} \mathbf{A} \mathbf{L} \mathbf{D} \mathbf{S} \mathbf{L} \mathbf{E} \mathbf{A} \mathbf{L} - \mathbf{P} \mathbf{A} - \cdots - \mathbf{L} \mathbf{L} \mathbf{T} \mathbf{P} \mathbf{A} \mathbf{R}$	226
Aey	GGDCLAIE DSA NGLR AARAAGIP TVVTPTAFSAQ DSFE GAL L VL P HL	218
Ec	PQQMLFFGDSRNDIQAAKAAGCPSVGLTYGYNYGEAIDLSQPDVIYQSINDLLPALGLPHS	244
Рр	PQQSLFVGDS RSDVLAAKAAG VQCVGLTYGY NHGRPIHDETPSLVIDDLRALLP GCEDPATGITLADL	222
Ps	ASQALFVGDS RSDVQAAKAAG VACVALSYGY NHGRPIAEENPAMVIDDL RKLIP GCLDMDAEILLPDI	182
Dm	RSEALYVGDRMVDCIAARRAGVKVVIVDRGSVNRWKQEECVPDAWISSLLELVDD	164
$\mathbf{L}\mathbf{C}$	ETPAIVVEDTHVGVAAAEGAGLPVVMIPGIGQGPDHKATAILAAAITDL-PD	206
Pa	ACHAAMVGDTVDDIIAGRKAGAVAYGVLTPQTYAKSILEQTPAAIGKVLEQVGASVVLT	231
Hs	PAMEKCLVFEDAPNGVEAALAAGMQAVMVPDGNLSRDLTTKATLVLNALQDFQPELFGLPSY	213

L AP AA	231
GDPGEPMPQHVPGAANRW-ADLAALRAWHHGTLIEAT	254
ENQE-SKND	252
QASQ-DRESTVAVTGKFWMKVIKALARWRWRA	251
KR P S-PRESIVVVTRKLWMKVIKALARWRWRA	160
ASTP-TREATRHD	176
WLQNHPTFA	215
P G	233
E	214
	LAPAA GDPGEPMPQHVPGAANRW-ADLAALRAWHHGTLIEAT ENQE-SKND QASQ-DRESTVAVTGKFWMKVIKALARWRWRA KRPS-PRESIVVVTRKLWMKVIKALARWRWRA ASTP-TREATRHDWLQNHPTFA E

FIG. 5. Alignment of the amino acid sequences (one-letter code) of the chromosomally encoded PGP from *A. eutrophus* H16 (Ae), CbbY from *A. eutrophus* H16 (Aey [27]), Pep27 from *E. coli* (Ec [33; GenBank accession number, Z19601]), potential products of incompletely sequenced open reading frames encoded upstream of the *trpE* operons of *P. putida* (Pp [13]) and *P. syringae* (Ps [42]), a protein encoded in the upstream region of a 16S rRNA gene from *D. mobilis* (Dm [22]), a protein encoded downstream of the *fgs* gene from *L. casei* (Lc [45]), the imidazoleglycerol-phosphate dehydratase from *P. parasitica* (Pa [4; GenBank accession number, Z11591]), and the human GS1 protein (Hs [53]). Residues identical to those in PGP of *A. eutrophus* are printed in boldface type. Dashes indicate gaps introduced to maximize alignment.

protein (53) as well as in the potential products of incompletely sequenced open reading frames located immediately upstream of the *trpE* operons of *Pseudomonas putida* (13) and *Pseudomonas syringae* (42) and within the upstream region of a 16S rRNA gene of *Desulfurococcus mobilis* (22). Although the regions of similarity between PGP and the gene products mentioned are dispersed throughout the total sequences, all the proteins contain three or four such regions (residues 14 to 21, 117 to 120, 150 to 153, and 222 to 236 [numbering of *A. eutrophus* PGP]). Thus, the proteins perhaps share some functional features despite their probably different basic functions. It was surprising that no distinct similarities of PGP to other known phosphatases were found, indicating that the enzyme from *A. eutrophus* possibly is a representative of a new type of phosphatase.

ACKNOWLEDGMENT

This study was supported by a grant from the Deutsche Forschungsgemeinschaft.

REFERENCES

- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
- 2. Ames, B. N. 1966. Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol. 8:115-118.
- 3. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1988. Current protocols in molecular biology. Greene Publishing Associates and John Wiley & Sons, Inc., New York.
- 4. Baltrusch-Weiter, M., P. Karlovsky, and H. H. Prell. Unpublished data.
- Blum, H., H. Beier, and H. J. Gross. 1987. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99.
- Bowien, B., and H. G. Schlegel. 1981. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu. Rev. Microbiol. 35:405–452.
- Bowien, B., U. Windhövel, J.-G. Yoo, R. Bednarski, and B. Kusian. 1990. Genetics of CO₂ fixation in the chemoautotroph *Alcaligenes eutrophus*. FEMS Microbiol. Rev. 87:445–450.
- Cavalieri, S. W., E. N. Kenneth, and H. Z. Sable. 1975. Enzymes of pentose biosynthesis. The quarternary structure and reacting form of transketolase from baker's yeast. Arch. Biochem. Biophys. 171:527-532.
- Chen, J. H., J. L. Gibson, L. A. McCue, and F. R. Tabita. 1991. Identification, expression and deduced primary structure of transketolase and other enzymes encoded within the form II CO₂ fixation operon of *Rhodobacter sphaeroides*. J. Biol. Chem. 266: 20447-20452.
- Christellar, J. T., and N. E. Tolbert. 1978. Phosphoglycolate phosphatase. Purification and properties. J. Biol. Chem. 253:1786– 1790.
- Codd, G. A., B. Bowien, and H. G. Schlegel. 1976. Glycollate production and excretion by *Alcaligenes eutrophus*. Arch. Microbiol. 110:167–171.
- Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395.
- 13. Essar, D. W., L. Eberly, and I. P. Crawford. 1990. Evolutionary differences in chromosomal locations of four early genes of the tryptophan pathway in fluorescent pseudomonads: DNA sequences and characterization of *Pseudomanas putida trpE* and *trpGDC*. J. Bacteriol. 172:867–883.
- Fletcher, T. S., I. L. Kwee, C. Largman, and B. M. Martin. 1992. DNA sequence of the yeast transketolase gene. Biochemistry 31:1892–1896.
- Friedrich, B., C. Hogrefe, and H. G. Schlegel. 1981. Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of *Alcaligenes eutrophus*. J. Bacteriol. 147:198–205.
- 16. Henikoff, S. 1984. Unidirectional digestion with exonuclease III

creates targeted breakpoints for DNA sequencing. Gene 28:351-359.

- Husemann, M., R. Klintworth, V. Büttcher, J. Salnikow, C. Weissenborn, and B. Bowien. 1988. Chromosomally and plasmidencoded gene clusters for CO₂-fixation (*cfx*) genes in *Alcaligenes eutrophus*. Mol. Gen. Genet. 214:112–120.
- Husic, H. D., and N. E. Tolbert. 1985. Properties of phosphoglycolate phosphatase from *Chlamydomonas reinhardtii* and *Anacystis nidulans*. Plant Physiol. 79:394–399.
- Janowicz, Z. A., M. R. Eckart, C. Drewke, and R. O. Roggenkamp. 1985. Cloning and characterization of the DAS gene encoding the major methanol assimilatory enzyme from the methylotrophic Hansenula polymorpha. Nucleic Acids Res. 13:3043–3062.
- Jendrossek, D., N. Krüger, and A. Steinbüchel. 1990. Characterization of alcohol dehydrogenase genes of derepressible wild-type *Alcaligenes eutrophus* H16 and constitutive mutants. J. Bacteriol. 172:4844–4851.
- 21. King, W. R., and K. Andersen. 1980. Efficiency of CO_2 fixation in a glycollate oxidoreductase mutant of *Alcaligenes eutrophus* which exports fixed carbon as glycollate. Arch. Microbiol. **128**:84–90.
- Kjems, J., and R. A. Garrett. 1987. Novel expression of the ribosomal RNA genes in the extreme thermophile and archaebacterium *Desulfurococcus mobilis*. EMBO J. 6:3521-3530.
- Klintworth, R., M. Husemann, J. Salnikow, and B. Bowien. 1985. Chromosomal and plasmid locations for phosphoribulokinase genes in *Alcaligenes eutrophus*. J. Bacteriol. 164:954–956.
- Klintworth, R., M. Husemann, C. Weissenborn, and B. Bowien. 1988. Expression of the plasmid-encoded phosphoribulokinase gene from *Alcaligenes eutrophus*. FEMS Microbiol. Lett. 49:1–6.
- Kolmar, H., K. Friedrich, J. Pschorr, and H.-J. Fritz. 1990. Hybrids of circular DNA single strands as intermediates in DNA cloning, nucleotide sequence analysis, and directed mutagenesis. Technique 2:237-245.
- Kossmann, J., R. Klintworth, and B. Bowien. 1989. Sequence analysis of the chromosomal and plasmid genes encoding phosphoribulokinase from *Alcaligenes eutrophus*. Gene 85:247-252.
- Kusian, B., J.-G. Yoo, R. Bednarski, and B. Bowien. 1992. The Calvin cycle enzyme pentose-5-phosphate 3-epimerase is encoded within the cfx operons of the chemoautotroph Alcaligenes eutrophus. J. Bacteriol. 174:7337-7344.
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680-685.
- Leadbeater, L., K. Siebert, P. Schobert, and B. Bowien. 1982. Relationship between activities and protein levels of ribulosebisphosphate carboxylase and phosphoribulokinase in *Alcaligenes eutrophus*. FEMS Microbiol. Lett. 14:263–266.
- Lindqvist, Y., G. Schneider, U. Ermler, and M. Sundström. Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 Å resolution. EMBO J. 11:2373– 2379.
- Lorimer, G. H., T. J. Andrews, and N. E. Tolbert. 1973. Ribulose diphosphate oxygenase. II. Further proof of reaction products and mechanism of action. Biochemistry 12:18–23.
- Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.
- 33. Lynstadaas, A., and E. Boye. Unpublished data.
- 34. Ogren, W. L. 1984. Photorespiration: pathways, regulation, and modification. Annu. Rev. Plant Physiol. 35:415-442.
- Pearson, W. R., and D. J. Lipman. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85:2444-2448.
- Radnis, B. A., D.-K. Rhee, and D. A. Morrison. 1990. Genetic transformation in *Streptococcus pneumoniae*: nucleotide sequence and predicted amino acid sequence of *recP*. J. Bacteriol. 172:3669– 3674.
- Rose, Z. B., D. S. Grove, and S. N. Seal. 1986. Mechanism of activation by anions of phosphoglycolate phosphatases from spinach and human red blood cells. J. Biol. Chem. 261:10996–11002.
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

- Sanger, F., S. Nicklen, and A. R. Coulsen. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467.
- Schubert, P., N. Krüger, and A. Steinbüchel. 1991. Molecular analysis of the *Alcaligenes eutrophus* poly(3-hydroxybutyrate) biosynthetic operon: identification of the N terminus of poly(3hydroxybutyrate) synthase and identification of the promoter. J. Bacteriol. 173:168–175.
- Shine, J., and L. Dalgarno. 1975. Determinants of cistron specificity in bacterial ribosomes. Nature (London) 254:34–38.
- 42. Silva, O., and T. Kosuge. 1991. Molecular characterization and expression analysis of the anthranilate synthase gene of *Pseudomonas syringae* subsp. *savastanoi*. J. Bacteriol. 173:463–471.
- 43. Sprenger, G. A. Unpublished data.
- 44. Tabita, F. R., J. L. Gibson, B. Bowien, L. Dijkhuizen, and W. G. Meijer. 1992. Uniform designation for the genes of the Calvin-Benson-Bassham reductive pentose phosphate pathway of bacteria. FEMS Microbiol. Lett. 99:107-110.
- 45. Toy, J., and A. L. Bognar. 1990. Cloning and expression of the gene encoding *Lactobacillus casei* folylpoly-γ-glutamate synthetase in *Escherichia coli* and determination of its primary structure. J. Biol. Chem. 265:2492-2499.
- 46. Vieira, J., and J. Messing. 1982. The pUC plasmids, an M13mp7-

derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene **19:**259–268.

- 47. Weichenhan, D. 1991. Fast recovery of DNA from agarose gels by centrifugation through blotting paper. Trends Genet. 7:109.
- Windhövel, U., and B. Bowien. 1989. Cloning and expression of chromosomally and plasmid-encoded glyceraldehyde-3-phosphate dehydrogenase genes from the chemoautotroph *Alcaligenes eutrophus*. FEMS Microbiol. Lett. 66:29–34.
- 49. Windhövel, U., and B. Bowien. 1990. On the operon structure of the *cfx* gene clusters in *Alcaligenes eutrophus*. Arch. Microbiol. **154**:85-91.
- Windhövel, U., and B. Bowien. 1991. Identification of cfxR, an activator gene of autotrophic CO₂ fixation in Alcaligenes eutrophus. Mol. Microbiol. 5:2695–2705.
- Wolfenden, R. 1970. Binding of substrate and transition state analogs to triosephosphate isomerase. Biochemistry 9:3404–3407.
- Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119.
- 53. Yen, P. H., J. Ellison, E. C. Salido, T. Mohandas, and L. Shapiro. 1992. Isolation of a new gene from the distal short arm of the human X chromosome that escapes X-inactivation. Hum. Mol. Genet. 1:47-52.