THE EFFICIENT DESIGN OF TRANSPLANTABLE TUMOUR ASSAYS

E. H. PORTER AND R. J. BERRY,

From the Radiotherapy Department and the Radiobiology Laboratory, The Churchill Hospital, Headington, Oxford

Received for publication March 21, 1963

BACTERIOLOGISTS have long used assays based on a dilution series to estimate the number of organisms in water (see for example, Cruickshank, 1960). The same principle has recently been applied to the assay of cells in certain mammalian tumours (Hewitt, 1958; Silini and Hornsey, 1961; Berry and Andrews, 1961). Serial dilutions of a suspension of tumour cells are injected into groups of animals, and the development of a tumour in a recipient animal implies that the inoculum contained at least one reproductively intact cell. Recipient animals for such assays are more expensive than the tubes of nutrient broth used by bacteriologists, and the supply of highly-inbred animals is usually the limiting factor on the amount of experimentation possible : hence it is reasonable to enquire how the best use may be made of a limited number of assay animals. An inefficient statistical method will of course waste information, and this is discussed in Appendix A.

METHODS

In this discussion the term "dose" is reserved for the number of morphologically typical tumour cells injected into a recipient animal. A reproductively intact cell is one that is capable of forming a tumour in the recipient. If a wellstirred suspension of cells is used and there is no clumping, the number of reproductively intact cells will follow a Poisson distribution (as pointed out by Hewitt, 1958): that is, the chance of no tumour developing is e^{-x} , where x is the mean number of intact cells per "dose". For example : if a dose containing on average 3 morphologically typical tumour cells were given to each of 100 animals, and if 37 of these failed to develop tumours, then the mean number of reproductively intact cells per "dose" would be estimated as the solution of $e^{-x} = 0.37$: in this case x = 1. This would imply that about one in three of the morphologically typical tumour cells used were in fact reproductively intact.

An experimental assay will normally use several different "doses", each injected into a group of assay animals : the problem becomes that of combining the information from all the groups, into one estimate of the proportion of tumour cells that are reproductively intact. Finney (1952) has discussed the maximum likelihood solution of this problem, using the ingenious device of an equivalent deviate. He points out that if an estimate is sought of the *logarithm* of the number of intact cells per "dose", the analysis is simplified,* and the distribution of errors becomes more nearly normal. This manoeuvre is also convenient for studies of radiation and drug toxicity, where interest centres on the logarithm of a surviving fraction (i.e. on the logarithm of the intact proportion after treatment, minus the logarithm of the intact proportion of untreated control cells).

A computational method will be presented here for the maximum likelihood analysis of this type of assay. It is a modification of Finney's method (see note to Appendix B, Table II); and the logical and mathematical justification will be found in Finney's masterly treatise (1952). An iterative process is necessary : from an initial estimate of the logarithm of the proportion of intact cells we obtain a better second estimate; this second estimate may be used to form an even better third estimate, and so on until the successive estimates differ negligibly, and the solution has been closely approached. In practice a judicious first estimate will often lead, after only one iterative cycle, to an adequate approximation; more than two cycles will only be needed if the first choice proves illjudged, or if the data are very irregular.

The calculations

For each "dose "we tabulate :

- (i) The "dose" in morphologically typical cells per assay animal.
- (ii) n: the number of animals given this "dose".
- (iii) r: the number of animals responding (i.e. developing tumours).
- (iv) q = r/n: the proportion of animals responding at this "dose".
- (v) Y: the initial estimate of log (number of intact cells per "dose").

A method of forming the initial estimates for the Y column will be discussed later, but it will be obvious that once Y is established for any one "dose", all the remaining Y's will be fixed by the relationship between the various "dose". Thus, if for a "dose" of 10 morphologically typical cells the initial estimate of Y were 0.0, then for a "dose" of 40 cells the initial estimate of Y would have to be +0.6 (adding the difference between log 40 and log 10).

Two further columns are tabulated for the first cycle :

- (vi) nw: the weight. This is the product of n (from column (i)), and w which depends only on Y, and is tabulated against Y in Appendix B, Table II.
- (vii) ϕ : the correction deviate. This measures the extent to which the data for each "dose" disagree with the theory about the number of intact cells per "dose" expressed by the Y column. Consequently it depends both on Y and on q, and may be found from the relationship:

$$\phi = \phi_0 + q \cdot A$$

$$Y = \log\left(-\log P\right)$$

so that :

$Y = \log E + \log z$

and we may also define y as log $(-\log p)$. The advantage of this transformation is that it makes the relationship linear in log z. We could proceed by fitting a straight line of unit slope to the y's, plotted against log z, but because the slope of this line is fixed the calculation can be rearranged so that only a weighted mean need be evaluated. If we wish for the maximum likelihood solution (which is known to give, in a certain sense, the most efficient estimate) an iterative process is needed, such as the process to be described in the text.

^{*} If the proportion of cells which are reproductively intact is E, and a "dose" of z morphologically typical cells is given, the chance of no tumour developing is $P = e^{-Ez}$, from the Poisson distribution. An estimate of P is given by p, the observed proportion of tumour-free animals. Now taking natural logarithms twice, we may define Y as:

The quantities ϕ_0 and A are tabulated against Y in Appendix B, Table II, which also gives ϕ_1 , the value assumed by ϕ when q = 1 (i.e. when all animals tested at this "dose" respond).

The first iterative cycle ends with the calculation of a weighted mean of the ϕ 's, which may be expressed (following Finney's use of the symbol S to signify summation) as :

$$\phi = \frac{Snw\phi}{Snw}$$

The sum of the weights, Snw, and the algebraic sum of products $Snw\phi$ can be accumulated conveniently on a desk calculator, but a slide-rule will suffice for the formation of $\boldsymbol{\delta}$.

This mean correction ϕ , is added to each of the Y's to give a new Y column, with which the next cycle can begin. When ϕ becomes satisfactorily small, iteration can cease and two relationships now hold :

(1) The variance of ϕ is given by 1/Snw, and this is hence also the variance of the final estimate of the logarithm of the proportion of morphologically typical cells that are reproductively intact. This estimate will be symbolised by $\log E$.

(2) An inconsistency χ^2 can be rapidly calculated after a column has been formed of the squares of the individual ϕ values. It is given by :

$$\chi^2 = Snw\phi^2 - rac{(Snw\phi)^2}{Snw}$$

and has degrees of freedom one less than the number of "doses". If this χ^2 is significant, it is evidence of internal inconsistency in the assay: the formula is easier than calculation of expected numbers to compare with the observed ones.

An example of the calculations

The data shown in Table I were accumulated over several months : considera-

.

									F	irst cy	cle	
" Dose "		\boldsymbol{n}		r		$q = \frac{r}{n}$		Ŷ		nw		φ
8		95		88		0.926		+0.40		281		+0.012
4		164		114		0.695		+0.10		546		-0.026
2		164		77		0.470		-0.20		394		+0.003
1	·	125	٠	27	•	$0 \cdot 216$	•	-0.50	•	179	•	-0.104
$Snw = 1400 \ Snw \phi = -27 \cdot 415 \ \phi = -0 \cdot 020$												

TABLE I.—Pooled	10	Control	L)ata f	for	Mouse	Leul	kaemia	F	'-3 88
-----------------	----	---------	---	--------	-----	-------	------	--------	---	---------------

tion of the separate results of the assays during this period showed no evidence of trend, and no more than the expected variability about the mean : hence it is legitimate to pool the results of all these assays.

The first three columns are filled in from the experimental data. For such large groups of assay animals it is just worth while to calculate q, the proportion responding, to three decimal places: two places would more often be appropriate.

The Y column must now be filled in. A poor choice of Y's from which to start will not influence the final answer, but will necessitate extra iterative cycles. In Appendix B, Table I, values of Y are given for various values of Q, the proportion of animals theoretically expected to respond. One value in the Y column can usually be filled in from consideration of the observed proportion of responses in conjunction with this table. In the example, the Y value for a "dose" of 2 cells was filled in first, since Q = 0.47 corresponds to Y = -0.20. The dilution ratio here is uniformly 2, and log 2 = 0.30, so that the remaining Y's can be filled in at once, to two decimal places. If the dilution ratios had not been constant, it might have been helpful at this stage to tabulate the logarithms of the "doses" on the extreme left of the table.

For each entry in the nw column, n has already been tabulated and w is found in Appendix B, Table II, against the appropriate value of Y. Thus the first entry is given by $nw = 95 \times 2.95 = 281$: three significant figures are ample. The ϕ values are formed from

$$\phi = \phi_0 + qA$$

taking ϕ_0 and A from Appendix B, Table II, for the appropriate value of Y. Thus the first ϕ is $-1.959 + 0.926 \times 2.131 = +0.015$.

Snw is formed as the sum of the values in the nw column; and $Snw\phi$ as the algebraic sum of the products of the corresponding numbers in the nw and ϕ columns.

Obviously ϕ is small, indicating a fortunate choice of initial Y's, and there is no need for another cycle. If ϕ had been numerically larger than 0.04, it would have been reasonable to compute another cycle. Equally obviously on inspection, the data are internally consistent, but if an inconsistency χ^2 is computed its value is found as 2.30, which with three degrees of freedom shows no inconsistency.

The logarithm of the ratio

reproductively intact morphologically typical

cells in this population of mouse leukaemia cells (log E) can now be estimated by :

$$\log E = Y + \phi - \log$$
 "dose"

using any row in the table. The rows should agree, apart from rounding errors. and in this case using the second row we have :

 $\log E = +0.100 - 0.020 - 0.602 = -0.522 = 1.478$

The standard error of log E is $\sqrt{(1/Snw)}$, hence 95 per cent confidence limits can be placed at :

$$\log E - 1.96 \sqrt{\frac{1}{Snw}}; \log E + 1.96 \sqrt{\frac{1}{Snw}}$$

or in this case at $\overline{1.424}$, $\overline{1.532}$. The conclusion is that the proportion of reproductively intact cells in this population is estimated as $10^{\overline{1.478}} = 30$ per cent, with 95 per cent confidence that the true value lies between 34 per cent and $26\frac{1}{2}$ per cent.

ASSAY DESIGN

The variance of estimate of log E resulting from an assay such as we are considering is given by the reciprocal of Snw, the sum of the weights. Clearly the best assay design will be that which gives the largest Snw for the fewest assay animals. From this point of view, each animal may be thought of as contributing an amount (w) to the precision of the assay, and this amount depends on Y; that is on the actual number of reproductively intact cells given to the animal. Inspection of Appendix B, Table II, shows that w is at its maximum when Y = +0.2: that is, when the mean number of intact cells per "dose" is about 1.6, and the response rate about 80 per cent.

The pooled control data analysed above will serve to illustrate this argument. We note that it is, in general, a well-designed assay, for no animals have been tested at "doses" with very low weighting coefficients. However, the group of 125 mice given a "dose" of one morphologically typical tumour cell per mouse contribute 179 to Snw; and only 54 mice tested at a "dose" of 4 cells would have contributed the same amount. Even here, then, a slight change in the design of the assay would have obtained the same precision with a saving of 71 mice.

If completely reliable advance information were available on the result to be expected from an assay, the assay would naturally be designed with only one group of assay animals. Every available animal would then be given a "dose" that was expected to contain on average 1.6 reproductively intact cells, and if all went well each assay animal would contribute the maximum to Snw. This, of course, is not a practical design for an assay, since with such a design inaccuracies in the advance information can have a disastrous effect on the precision of the assay, and even on the possibility of forming an estimate of log E at all. For example, if the initial estimate were pessimistic by a factor of two, the "dose" given would contain on average $3\cdot 2$ reproductively intact cells, and with a group of 20 animals there would be a 43 per cent risk that all animals would develop tumours.

Thus two factors affect the design of a practical assay; the desirability of economy of assay animals, and the need for insurance against inaccurate advance information. If the advance information is unreliable, a wide range of "doses" must be used to provide insurance; if the advance information is reliable, such insurance is merely wasteful.

In radiobiological work the proportion of cells treated in the same way which retain their reproductive integrity is expected to remain constant from one experiment to the next. If this condition is not fulfilled, then either the experiment has miscarried, or else any information that can be gleaned from it is not radiobiological. If it may be assumed that repeated assays will measure the same reproductively intact proportion, then the assays can be planned to give at each stage the appropriate amount of insurance.

Consider the case where the advance information has only the status of a wild guess. An assay design specifying groups of four animals, and "doses" of morphologically typical cells spaced by factors of eight, is appropriate. With four such groups of assay animals, the "doses" should be planned so that if the initial guess is correct the central two groups will receive $\frac{1}{4}$ and 2 intact cells per animal. Now if the initial guess is so wrong that the lowest "dose" contains

more than 0.64 intact cells, then there will be a greater risk than 5 per cent that all the animals in the lowest group will succumb.

If all the animals in the lowest group do succumb, the assav will be uninformative, for even if some of the animals given higher doses escape, this will merely serve to cast suspicion on the execution of the assay, and it is more likely that every animal in the assay will succumb so that no estimate will be possible. Similarly if the initial guess is so wrong that the highest group receives less than 0.75 cells per animal, there will be a greater risk than 5 per cent that none of the animals in the highest group will succumb, again rendering the assay uninforma-If we wish to be at least 95 per cent certain that the assay will be informative. tive, the initial guess must be within a range which extends approximately from 1/21st of the true value to 21 times it, and in this sense the insurance provided by this assay design extends from 21 times the initial guess to 1/21st of it. In the same way an assay design with five groups, each of four assay animals, and the "doses" again spaced by factors of eight, will give insurance from 1/59th of the initial guess to 59 times it : but here the central group should be given a "dose" which will contain 0.7 cells if the initial guess is correct.

Such preliminary assays pay a heavy price for insurance, since the average contribution to Snw of each assay animal will be less than 30 per cent of the maximum possible. Hence no very accurate estimate may be expected, and to increase the number of animals in each group above four would be imprudent. It will be more economical to use any extra animals in a subsequent, more efficient assay, which can have less insurance. The result of such a preliminary assay as these two will have 95 per cent confidence limits extending from one-third to thrice the estimate approximately.

From the results of such a preliminary assay, a second assay of cells treated in the same way can be planned. A design using three groups of animals, with "doses" separated by factors of four, and estimated (from the result of the preliminary assay) to contain $\frac{1}{4}$, 1 and 4 reproductively intact cells per "dose" would be appropriate. This design would have an entirely adequate amount of insurance, and the average contribution to *Snw* of the assay animals would be approximately 50 per cent of the maximum possible. Groups of less than five animals are undesirable, groups of more than ten are usually impracticable. If groups of six animals are used in this second assay, and if the result is compatible with that obtained in the preliminary assay, it will be possible to pool the two assays, and derive an estimate of the proportion of reproductively intact cells with confidence limits at about 53 per cent and 188 per cent of the estimate.

If further precision is desirable beyond this stage, it would be reasonable to reduce the amount of insurance still further. A design with three groups of assay animals given "doses" estimated on the basis of all available evidence to contain $\frac{1}{2}$, 1 and 2 reproductively intact cells would be expected to yield an average contribution to *Snw* from the assay animals of between 60 per cent and 75 per cent of the maximum possible. Designs with even less insurance may be regarded as too imprudent for most situations.

The combination of estimates

When two or more assays have been made of the proportion of reproductively intact cells among cells treated in the same way, the problem arises of combining the information from both assays. The two estimates could be formed, and a weighted mean obtained using the Snw's as weights, but a better procedure is to pool the actual data, as if they were obtained in a single assay. If now the inconsistency χ^2 is significantly large, this may mean that the component assays are incompatible, in which case the pooling would not be legitimate. The point can be investigated by analysing the component assays separately : if they are internally consistent (but incompatible) reasons should be sought for this. If, however, one or more of the component assays are themselves internally inconsistent, they may be rejected and an attempt made to pool the remainder.

SUMMARY AND CONCLUSIONS

The statistical analysis of assays *in vivo* of the proportion of reproductively intact cells contained in tumour cell suspensions is discussed, and a method of analysis presented. This method of analysis, slightly modified from the method of Finney (1952), allows the internal consistency of the assay to be checked, and the standard error of the final estimate to be computed.

Applications to the design of such assays are made, distinguishing cases where advance information is unreliable, and the assay must allow for a wide range of possible outcomes, from cases where reliable advance information permits an assay design which will give higher precision from the minimum number of assay animals.

Thanks are due to Dr. Basil Shepstone for programming the tables of Appendix B for the Oxford University Digital Computer, to Dr. D. J. Finney, F.R.S., for helpful discussion, to Dr. J. R. Andrews for permission to use experimental results obtained jointly, and to Dr. Frank Ellis, Director of the Radio-therapy Department for enthusiastic encouragement.

R. J. B. is a Helen Hay Whitney Fellow in Radiobiology at Oxford University. These studies were aided by a grant from the British Empire Cancer Campaign.

REFERENCES

BERRY, R. J. AND ANDREWS, J. R.-(1961) Radiology, 77, 824.

- CRUICKSHANK, R.—(1960) 'Handbook of Bacteriology', 10th edition. Edinburgh (E. & S. Livingstone), p. 358.
- FINNEY, D. J.—(1952) 'Statistical Method in Biological Assay'. London (Charles Griffin).
- HEWITT, H. B.—(1958) Brit. J. Cancer, 12, 378.

PIZZI, M.-(1950) Hum. Biol., 22, 151.

REED, L. J. AND MUENCH, H.-(1938) Amer. J. Hyg., 27, 493.

SILINI, G. AND HORNSEY, S.-(1961) Int. J. Radiat. Biol., 4, 127.

APPENDIX A

Reed and Muench (1938) proposed a rapid method for the statistical analysis of quantal data that has been extensively and uncritically applied to assays of the reproductive integrity of tumour cells. In this context, the only virtue of the Reed-Muench method is its disarming computational simplicity : its defects include an inappropriate theoretical background (see Finney (1952), for discussion), a total absence of validity tests and of estimates of precision, a tendency to bias, and (most serious of all) the compulsion to use an inefficient assay design.

The Reed-Muench method is a quick and simple one for the estimation of a 50 per cent effective dose, for use when a wide range of regularly spaced doses (extending from 0 per cent to 100 per cent effective) have been tested, each on the same number of assay animals. The numbers of animals responding to the different doses are summed from low dose to high; and the numbers failing to respond are summed from high to low. The 50 per cent effective dose is estimated from these sums, either as the dose for which the two sums are equal, or by interpolation. The argument is that an animal which responds to a low dose would certainly have responded had the dose been higher; one which fails to respond to a high dose would not have responded had the dose been smaller.

An example of the method is given in Appendix A, Table I, and it will be seen that the process of forming the sums involves the tacit assumptions that had a group of animals been given a higher "dose" than was actually tested, all would have succumbed, and that had a group been given a lower "dose", all would have survived. An estimate of the TD_{50} is formed by graphical interpolation, using the ratios

$$\frac{S(+)}{S(+)+S(-)}:$$

in this case it is 7500 cells.

Reed and Muench recommended interpolation in the logarithms of the doses, but in radiobiological work the custom has arisen of interpolating directly in the "doses". This is somewhat less satisfactory than Reed and Muench's own procedure.

No way of assessing the precision of such a Reed-Muench estimate is known, except for the case of an underlying logistic distribution, where Pizzi (1950) has proposed a useful approximation. This approximation is not unreasonable, for the curve of Q against log-dose differs little from the logistic form. No validity test (test of internal consistency) is available in the Reed-Muench method.

It may readily be seen that the Reed-Muench estimate is only unbiased if the chance of a response varies symmetrically about 50 per cent when plotted against dose. This can be demonstrated by applying the method to figures conforming to an asymmetric distribution. The sigmoid of a Poisson distribution is not symmetrical about Q = 0.5 (i.e. about $x = \log_e 2$), whether Q is plotted against x or against the logarithm of x. Consequently the Reed-Muench method must introduce a bias into the estimate ; but when the number of animals per group is small, and the range of "doses" wide, this inherent bias is negligible.

When, however, the range of "doses" is narrow (as in the example given) a serious bias can arise from the use of the Reed-Muench method. This bias is small when the centre of the range of "doses" used is near to the true 50 per cent point; but if the centre of the assay is moved away from the true 50 per cent point, the bias increases rapidly. In the example given, the bias entering in this way amounts to about 20 per cent.

If the Reed-Muench method of analysis is to be used, the design of the assay must be such as to avoid this serious source of bias. That is, the experimenter must plan his assay for a wide range of "doses", so as to ensure as far as possible that the highest "dose" will produce 100 per cent responses, the lowest "dose" 0 per cent. This is, of course, quite contrary to the principles of economical assay design discussed above, for where advance information is available a more efficient assay design is possible. This compulsory waste of assay animals is the major defect of the Reed-Muench method.

Appendix A, Table I.—Anoxic mouse leukaemia cells P-388, after 3000 rads (250 kv)

" Dose "	${f Mice}\ { m responding}\ (+)$		Mice surviving ()	S(+)	S(-)	$\frac{S(+)}{S(+)+S(-)}$
12,800	3	•	3	8	3	$\frac{8}{11}$
6,400	3		3	5	6	$\frac{5}{11}$
3,200	2		4	2	10	$\frac{2}{12}$
1,600	0		6	0	16	0

APPENDIX B

Appendix B, Table I

Q_{-}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
$0 \cdot 0$	$-\infty$	-2.00	-1.70	$-1 \cdot 52$	$-1 \cdot 39$	$-1 \cdot 29$	$-1 \cdot 21$	$-1 \cdot 14$	-1.08	-1.03
0.1	0.98	-0.93	-0.89	-0.86	-0.82	-0.79	-0.76	-0.73	-0.70	-0.68
$0 \cdot 2$	-0.62	-0.63	-0.61	-0.58	-0.56	-0.54	-0.52	-0.50	-0.48	-0.47
$0 \cdot 3$	-0.45	-0.43	-0.41	-0.40	-0.38	-0.37	-0.35	-0.34	-0.32	-0.31
0.4	-0.29	-0.28	-0.26	-0.25	-0.24	-0.22	-0.21	-0.20	-0.18	-0.17
0.5	-0.16	-0.12	-0.13	-0.15	-0.11	-0.10	-0.09	0.07	-0.06	-0.05
0.6	0.04	-0.03	-0.01	0.00	+0.01	+0.05	+0.03	+0.05	+0.06	+0.07
$0 \cdot 7$	+0.08	+0.09	+0.11	+0.12	+0.13	+0.14	+0.15	+0.17	+ 0.18	+0.19
0.8	$-1-0 \cdot 21^{-1}$	+0.22	$+0\cdot 23$	+0.25	+0.26	± 0.28	+0.29	+0.31	+0.33	+0.34
$0 \cdot 9$	-0.36	+ 0.38	± 0.40	+0.43	± 0.45	-0.48	± 0.51	± 0.55	+0.60	-0.66

This table gives values of Y, the logarithm of the average number of reproductively intact cells per "dose". Y is given for different values of Q, the theoretically expected proportion of animals that should respond to the corresponding "dose". The function tabulated is :

$$Y = \log_{10} \{ -\log_e (1 - Q) \}$$

Note to Appendix B, Table II

This table gives, for different values of Y, the corresponding values of ϕ_0 , A, ϕ_1 and w. For the mathematical and logical details of the theory, the reader is referred to Finney (1952), who develops a method in which Y is defined in terms of natural logarithms, and the *non-occurrence* of a tumour is taken formally as a "response".

The method presented here, to which this table is appropriate, differs from Finney's method in its use of a Y defined in terms of common logarithms, and in the use of the occurrence of a tumour as a response. These changes make the computations more convenient, but complicate the algebraic formulation of

the functions tabulated. These are:

$$\phi_0 = \frac{1 - \exp\{10^V\}}{\log_e 10 \times 10^V}$$
$$A = \frac{\exp\{10^V\}}{\log_e 10 \times 10^V}$$
$$\phi_1 = \frac{1}{\log_e 10 \times 10^V}$$
$$w = \frac{(\log_e 10)^2 \times 10^{21}}{\exp\{10^V\} - 1}$$

The Oxford University Ferranti Mercury computer was used to compute the table, which it did in four minutes.

	AP	penair D, 1 ubie	11	
Y	ϕ_0	A	ϕ_1	w
1.18	$-107,422 \cdot 78686$	$107,422 \cdot 81567$	0.02869	0.00032
1.16	$-56,917 \cdot 86120$	56,917 . 89147	0.03005	0.00058
1.14	$-31.096 \cdot 80798$	31.096 · 83947	0.03146	0.00102
$1 \cdot 12$	$-17.494 \cdot 39636$	$17.494 \cdot 42932$	0.03294	0.00174
1.10	$-10,121 \cdot 05267$	10,121.08709	0.03450	0.00286
1.08	-6,013 · 80093	6,013 · 83706	0.03612	0.00460
$1 \cdot 06$	-3,665 · 61503	$3,665 \cdot 65284$	0.03783	0.00721
$1 \cdot 04$	$-2,289 \cdot 39292$	$2,289 \cdot 43253$	0.03961	0.01103
$1 \cdot 02$	$-1,463 \cdot 50002$	$1,463 \cdot 54150$	0.04147	0.01647
$1 \cdot 00$	$-956 \cdot 55226$	$956 \cdot 59569$	0.04343	0.02407
0·98	$-638 \cdot 60567$	$638 \cdot 65115$	0.04548	0.03443
0.96	$-435 \cdot 05966$	$435 \cdot 10728$	0.04762	0.04827
0.94	$-302 \cdot 17519$	$302 \cdot 22506$	0.04986	0.06637
0.92	$-213 \cdot 78726$	$213 \cdot 83947$	0.05221	0.08958
0.90	$-153 \cdot 94062$	$153 \cdot 99530$	0.05467	0.11881
0.88	$-112 \cdot 72593$	112·78318	0.05725	0.15495
0.86	$-83 \cdot 88009$	$83 \cdot 94004$	0.05995	0.19886
0.84	$-63 \cdot 37786$	$63 \cdot 44064$	0.06277	0.25135
0.82	$-48 \cdot 59056$	48 · 6563 0	0.06573	0.31309
0.80	$-37 \cdot 77515$	$37 \cdot 84398$	0.06883	0.38460
0.78	$-29 \cdot 75886$	$29 \cdot 83094$	0.07207	0.46623
0.76	$-23 \cdot 74157$	$23 \cdot 81704$	0.07547	0.55809
0.74	$-19 \cdot 17004$	$19 \cdot 24907$	0.07903	0.66007
0.72	-15.65685	$15 \cdot 73960$	0.08275	0.77181
0.70	$-12 \cdot 92740$	$13 \cdot 01405$	0.08665	0.89270
0.68	-10.78473	$10 \cdot 87547$	0.09074	$1 \cdot 02189$
0·66	-9.08602	$9 \cdot 18106$	0.09501	$1 \cdot 15835$
0.64	-7.72666	$7 \cdot 82615$	0·09949	$1 \cdot 30084$
0.62	-6.62907	$6 \cdot 73325$	0.10418	$1 \cdot 44798$
0 · 6 0	-5.73533	$5 \cdot 84442$	0 · 10909	$1 \cdot 59830$
0.58	-5.00171	$5 \cdot 11594$	0.11423	1.75024
0.56	$-4 \cdot 39491$	$4 \cdot 51453$	0.11961	$1 \cdot 90224$
0.54	$-3 \cdot 88936$	$4 \cdot 01461$	$0 \cdot 12525$	$2 \cdot 05276$
0.52	$-3 \cdot 46525$	$3 \cdot 59640$	0 · 131 15	$2 \cdot 20030$
0.50	$-3 \cdot 10713$	$3 \cdot 24447$	0.13734	$2 \cdot 34345$

Annendix B. Table II

Appendix B, Table II (continued)

Y	ል	А	φ.	w
	<i>F</i> 0		71	
0.48	$-2 \cdot 80287$	$2 \cdot 94668$	0.14381	$2 \cdot 48092$
0.46	$-2 \cdot 54283$	$2 \cdot 69341$	0.15059	$2 \cdot 61155$
0.44	-9.31034	9.47703	0.15768	9.79499
0 49	- 2 01004	2 20105	0 10700	2 10 10 10
0.42	-2.12020	2.29137	0.10011	2.84840
0.40	-1.95859	$2 \cdot 13149$	0.17290	$2 \cdot 95306$
0.28	1.01991	1.00995	0.18104	2.04778
0.00	-1-81231	1.99333	0.10104	0 10010
0.30	-1.68410	1.87368	C · 18958	3.13218
0.34	-1.57126	$1 \cdot 76977$	0.19851	$3 \cdot 20603$
0.32	-1.47153	1.67940	0.20787	$3 \cdot 26923$
0.20	1.28206	1.60079	0.91766	2.20101
0.90	-1-36500	1.00012	0.21100	9.97101
0.28	$-1 \cdot 30428$	$1 \cdot 53220$	0.22792	3 · 36392
0.26	$-1 \cdot 23389$	$1 \cdot 47255$	0.23866	$3 \cdot 39578$
0.94	1,17070	1,49070	0.24001	9.41779
0.24	-1.17079	1.42070	0.24991	3.41/13
0.22	$-1 \cdot 11404$	$1 \cdot 37573$	0.26169	$3 \cdot 43015$
0.20	-1.06287	$1 \cdot 33689$	$0 \cdot 27402$	3·43350
0.10	1 01050	1 90951	0.00004	9 40007
0.18	-1.01058	1.30351	0.28094	3.42827
0.16	-0.97460	$1 \cdot 27506$	0 · 30046	$3 \cdot 41498$
0.14	-0.93644	$1 \cdot 25106$	0.31462	$3 \cdot 39419$
0.19	0.00166	1.99111	0.29045	2.26645
0.12	-0.90100	1.23111	0.32940	3.30040
0.10	-0.86989	$1 \cdot 21487$	0 34497	3 · 33234
0.08	0.84082	1.20205	0.36193	3.90949
0.00	-0 01414	1 20200	0 00120	0 20242
0.00	-0.81414	1.19240	0.37825	3.24/24
0.04	-0.78963	$1 \cdot 18571$	0 · 39608	$3 \cdot 19737$
0.02	-0.76706	1 · 18181	0.41475	$3 \cdot 14331$
0.00	-0.74694	1.18059	0.49490	3.08558
0.00	-0.14024	1,19033	0 10120	0 00000
-0.05	-0.72701	$1 \cdot 18177$	0.45476	$3 \cdot 02467$
-0.04	-0.70921	$1 \cdot 18540$	0.47619	$2 \cdot 96103$
0.06	0.60271	1,10195	0.40964	2,80510
-0.00	-0.69271	1,19199	0.49004	2.09010
-0.08	-0.67740	1 · 19954	0.52214	2.82728
-0.10	-0.66318	$1 \cdot 20992$	0.54674	$2 \cdot 75795$
0.19	0.64004	1.00045	0.57951	9.60749
-0.12	-0.04994	1.22240	0.37231	2.00140
-0.14	-0.63260	$1 \cdot 23709$	()·59949	2.61617
-0.16	-0.62610	$1 \cdot 25384$	0.62775	$2 \cdot 54434$
-0.18	-0.61535	$1 \cdot 27268$	0.65733	$2 \cdot 47225$
0 00	0 60591	1 00969	0 00100	0 40010
-0.20	-0.00331	1.29302	0.09991	2.40010
-0.22	-0.59591	$1 \cdot 31666$	0.72075	$2 \cdot 32829$
-0.24	-0.58710	1.34182	0.75472	2.25684
0.06	0 57005	1 96014	0 70472	0.10500
-0.20	-0.37885	1.30914	0.79029	2.1998
-0.28	-0.52111	$1 \cdot 39864$	0.82753	$2 \cdot 11592$
-0.30	-0.56383	$1 \cdot 43037$	0.86653	$2 \cdot 04675$
	· ·			
0.99	0.55700	1.44497	0.00797	1.07001
-0.32	-0.99100	J . 4043/	0.90131	1.9/901
-0.34	-0.55057	$1 \cdot 50070$	0.95013	1.91162
-0.36	-0.54452	$1 \cdot 53943$	0.99491	$1 \cdot 84587$
-0.38	-0.53882	1.58062	1.04180	1.78143
0 40	0.59945	1 60495	1 00000	1 71090
0.40	-0.93349	1.02439	1.09090	1.11938
-0.42	-0.52839	$1 \cdot 67070$	$1 \cdot 14231$	$1 \cdot 65677$
-0.44	-0.52361	1.71976	$1 \cdot 19615$	$1 \cdot 59664$
-0.46	-0.51010	1.77169	1.95959	1.59909
0.40	-0.51510	1 00000	1.20202	1 10000
-0.48	-0.91484	1.82639	1.31155	1.48096
-0.50	-0.51081	$1 \cdot 88417$	$1 \cdot 37336$	$1 \cdot 42546$
-0.52	-0.50700	1.94509	1.43808	1.37153
0.54	0.50100	9.0000	1.50500	1.91017
-0.04		2.00920	1.90990	1.91914
-0.20	-0.49999	2.07682	1.57683	1 • 26839
-0.58	-0.49677	$2 \cdot 14791$	$1 \cdot 65114$	$1 \cdot 21917$
-0.60	-0.49371	$2 \cdot 22267$	$1 \cdot 72896$	$1 \cdot 17151$
- · · ·				

Appendix B, Table II (continued)

Y	ϕ_0	A	ϕ_1	\boldsymbol{w}
0.69	0.40081	9.20195	1.81044	1.19538
-0.02	-0.43081	2.30123	1.81044	1 00050
-0.64	-0.48807	$2 \cdot 38383$	1 · 89576	1.080/8
-0.66	-0.48546	$2 \cdot 47057$	$1 \cdot 98511$	$1 \cdot 03767$
0.68	-0.48200	2.56166	2.07866	0.00603
-0.03	-0 40295	2 30100	2 07800	0 055000
-0.70	-0.48065	2.65728	2.17663	0.95584
-0.72	-0.47843	2.75764	2.27921	0.91706
0 74	0 47690	0 00004	0. 99669	0.97067
-0.14	-0.47632	2.80294	2.38003	0.91901
-0.76	-0.47431	$2 \cdot 97342$	$2 \cdot 49910$	0.84362
-0.78	-0.47241	3.08929	$2 \cdot 61688$	0.80890
-0.80	-0.47060	3,21082	9.74021	0.77546
-0.00	-0 11000	0 21002	2 14021	0 11010
-0.82	-0.46888	$3 \cdot 33824$	$2 \cdot 86936$	0.74328
-0.84	-0.46725	$3 \cdot 47183$	3.00458	0.71231
0.00	0.46570	9,61100	9.14610	0.60051
-0.90	-0.40370	3.01188	5.14019	0.08291
-0.88	-0.46422	3.75868	$3 \cdot 29446$	0.65387
-0.90	-0.46282	$3 \cdot 91254$	$3 \cdot 44972$	0.62634
0.00	0 46149	4.07979	9 61990	0.50000
-0.92	-0.40148	4.0/3/8	3.01230	0.99988
-0.94	-0.46021	$4 \cdot 24276$	$3 \cdot 78255$	0.57446
-0.96	-0.45900	4.41981	3.96081	0.55005
0.08	0.45795	1.60599	4.14740	0.59889
-0.98	-0.45785	4.00333	4.14/40	0.02002
-1.00	-0.42672	$4 \cdot 79970$	4.34295	0.50412
-1.02	0.45571	5.00333	4.54762	0.48254
-1 02		5 01000	4 52104	0 46100
-1.04	-0.494/1	5.21000	4.70194	0.40182
-1.06	-0.45377	$5 \cdot 44014$	$4 \cdot 98637$	0.44196
-1.08	-0.45287	$5 \cdot 67424$	$5 \cdot 22137$	0.42291
1.10	0.45201	5.01045	5.48744	0.40464
	-0.49201	9.91940	0.40144	0.40404
$-1 \cdot 12$	-0.45119	$6 \cdot 17631$	$5 \cdot 72512$	0.38713
-1.14	-0.45041	6 • 44535	5.99493	0.37034
1.10	0.44067	6.70714	6.97747	0.95490
-1.10	-0.44907	0.12114	0.21141	0.22420
1.18	-0.44896	$7 \cdot 02228$	6 • 57331	0.33885
-1.20	-0.44829	$7 \cdot 33139$	$6 \cdot 88310$	0.32408
1 00	0 44505	- 01A	F 007F0	0.90004
-1.32	-0.44705	7.05514	1.20750	0.30994
-1.24	-0.44703	$7 \cdot 99421$	$7 \cdot 54717$	0.29640
-1.26	-0.44645	8.34931	7.90286	0.28343
1.99	0.44580	8.79191	9.97591	0.97101
-+1.79	-0.44389	8.72121	8.27031	0.27101
-1.30	-0.44536	$9 \cdot 11068$	8.66532	0.25912
-1-32	-0.44486	$9 \cdot 51856$	9.07370	0.24774
-1.34	-0.44427	0.04570	0.50199	0.9989#
-1.94	-0.44437	9.94010	3.00133	0-20000
-1.36	-0.44391	10.39303	$9 \cdot 94911$	0.22642
-1.38	-0.44347	$10 \cdot 86148$	$10 \cdot 41800$	$0 \cdot 21645$
-1.40	-0.44306	11.35204	10.90899	0.20690
1 10	0 44000	11 00201	10 00000	0 20000
1 40		11 00	11 40011	0 10
$-1 \cdot 42$	-0.44266	$11 \cdot 86577$	$11 \cdot 42311$	0.19776
-1.44	-0.44227	$12 \cdot 40374$	$11 \cdot 96147$	0.18903
1.46	-0.44191	12.96710	19.59510	0.18067
-1 +0		12 30710	12 02010	0 10007
-1.48	-0.44150	13.99/09	13.11549	0.17267
-1.50	-0.44123	$14 \cdot 17484$	$13 \cdot 73360$	0.16502
-1.59	-0.44092	14.89176	14.38085	0.15771
1 54	0 44000	15 40001	15.05050	0 10771
-1.94	-0.44002	19.49921	19.05858	0.190/1
-1.56	-0.44033	$16 \cdot 20861$	$15 \cdot 76828$	0.14402
-1.58	-0.44006	$16 \cdot 95148$	$16 \cdot 51142$	0.13763
-1.60	-0.43070	17.79027	17.28058	0.12151
1 00	0 10010	11 12001	11 20000	0 10101
1 00	0 10055	10 64000	10 10441	0 10500
-1.62	-0.43952	$18 \cdot 54396$	18.10441	0.12566
-1.64	-0.43931	$19 \cdot 39696$	$18 \cdot 95765$	0.12007
-1.66	-0.43908	20.29017	19.85109	0.11472
1.60	0.49000	01.00551	00. 70000	0.10000
-1.08	-0.43880	21.22001	20.18005	0.10962
-1.70	-0.43866	$22 \cdot 20495$	$21 \cdot 76629$	0.10473

Appendix B, Table II (continued)

Y	ϕ_0	\boldsymbol{A}	ϕ_1	w
-1.72	-0.43846	$23 \cdot 23057$	$22 \cdot 79211$	0.10007
-1.74	-0.43827	$24 \cdot 30454$	$23 \cdot 86627$	0.09560
-1.76	-0.43809	$25 \cdot 42914$	$24 \cdot 99105$	0.09134
-1.78	-0.43795	$26 \cdot 60676$	26.16884	0.08726
-1.80	-0.43772	$27 \cdot 83989$	$27 \cdot 40214$	0.08337
-1.82	-0.43760	$29 \cdot 13116$	$28 \cdot 69356$	0.07964
-1.84	-0.43742	$30 \cdot 48330$	$30 \cdot 04585$	0.07608
-1.86	-0.43731	$31 \cdot 89917$	$31 \cdot 46187$	0.07268
-1.88	-0.43712	$33 \cdot 38179$	$32 \cdot 94462$	0.06943
-1.90	-0.43704	$34 \cdot 93429$	$34 \cdot 49725$	0.06633
-1.92	-0.43692	36.55997	$36 \cdot 12306$	0.06336
-1.94	-0.43680	38.26228	37 · 82548	0.06053
-1.96	-0.43668	40.04483	39.60814	0.05782
-1.98	-0.43658	41.91140	41.47482	0.05523
-2.00	-0.43047	43.80594	43.42947	0.05275
9.09	0.49697	45.01961	45.47699	0.05090
-2.02	-0.49699	40.05574	40.41020	0.04019
-2.04		50.00074	47.01940	0.04509
2.00	-0.43019	59.64091	49.00070	0.04998
-2.08	-0.43602	55.11049	54.67446	0.04105
-2.10	-0.49002	00.11040	34.01440	0.04195
-2.12	-0.43595	57.68713	$57 \cdot 25119$	0.04007
$-2 \cdot 14$	-0.43587	60.38522	59.04935	0.03827
$-2 \cdot 16$	-0.43580	63 . 21048	62.77468	0.03655
-2.18	-0.43573	66 • 16889	65.73315	0.03491
-2.20	-0.43567	69.26673	68.83106	0.03335
-2.22	-0.43561	$72 \cdot 51057$	$72 \cdot 07497$	0.03185
$-2 \cdot 24$	-0.43555	75·907 3 0	75.47176	0.03042
$-2 \cdot 26$	-0.43549	$79 \cdot 46412$	79·02863	0.02906
$-2 \cdot 28$	-0.43544	$83 \cdot 18857$	$82 \cdot 75313$	0.02775
$-2 \cdot 30$	-0.43538	$87 \cdot 08855$	$86 \cdot 65317$	0.02651
			,	
$-2 \cdot 32$	-0.43534	$91 \cdot 17234$	90·7 3 701	$0 \cdot 02532$
$-2 \cdot 34$	-0.43529	$95 \cdot 44859$	$95 \cdot 01331$	0.02418
$-2 \cdot 36$	$-0 \cdot 43524$	$99 \cdot 92639$	$99 \cdot 49114$	0.02309
$-2 \cdot 38$	-0.43520	$104 \cdot 61522$	$104 \cdot 18002$	0.02206
$-2 \cdot 40$	-0.43216	$109 \cdot 52503$	$109 \cdot 08987$	0.02107
2.42	0 10710	114 00004	114 00110	
-2.42	-0.43512	114.66624	114.23112	0.02012
-2.44	-0.43508	120.04975	119.01400	0.01922
-2.40	-0.43505		120.20192	0.01835
-2.48	-0.43501	131.38988	131.13480	0.01753
-2.30		131.11099	137.33000	0.01014
-2.52	-0.43495	144.94340	143-80845	0.01500
$-2 \cdot 52$ $-2 \cdot 54$	-0.43492	151.02085	150.58593	0.01595
-2.56	-0.43489	151 02000 $158 \cdot 11772$	157.68282	0.01458
-2.58	-0.43487	$165 \cdot 54905$	165.11418	0.01393
-2.60	-0.43484	$173 \cdot 33062$	$172 \cdot 89578$	0.01330
			1	
-2.62	-0.43482	$181 \cdot 47892$	$181 \cdot 04410$	0.01270
-2.64	$-0 \cdot 43479$	$190 \cdot 01124$	$189 \cdot 57645$	0.01213
-2.66	-0.43472	$198 \cdot 94567$	$198 \cdot 51090$	0.01159
-2.68	-0.43475	$208 \cdot 30118$	$207 \cdot 86643$	0.01102
-2.70	-0.43473	$218 \cdot 09761$	$217 \cdot 66288$	0.01057
0.70	0 (0 (7)	000 07770	007 00101	0.01000
-2.72	-0.43471	228.35572	227.92101	0.01009
-2.74	-0.43409	239.09728	238.00259	0.00964
-2.70	-0.4340/	200.34009	249.91041 961.60099	0.00921
-2.10	-0.49464	202.12297	201.00002	0.00879
	- U TUTUT	ムノエ エリリジエ	21T U2100	0.00040