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AN ANALYSIS OF FUNCTIONAL ANTAGONISM AND SYNERGISM

DENNIS MACKAY
Department of Pharmacology, The School of Medicine, The Worsley Medical and Dental Building, University of Leeds,
Leeds LS2 9JT

1 A method is described for deriving null equations for functional antagonism and synergism. These
null equations relate together the concentrations of agonist required to produce equivalent states of a
cell or tissue in the presence and in the absence of a functional interactant
2 In one particular case the null equation leads to conclusions which are very similar to those
reached by an earlier author who did not use the null method. However, the null equations give a
clearer insight into the quantitative aspects of functional interaction.
3 It is concluded that the use of functional antagonism to estimate affinity constants and relative
intrinsic efficacies of agonists has serious limitations. On the other hand, it may be possible to use the
null equations, or similar principles, to test the validity of postulated mechanisms and sites of action
of functional interactants.

Introduction

Functional antagonism and synergism can both be
regarded as forms of functional interaction. The
latter is said to occur when the response of a cell to a
drug acting on one type of receptor can be modified
by a second drug acting on a different receptor. The
first quantitative model of functional interaction was
proposed by Ariens, Van Rossum & Simonis (1956)
who assumed that any one agonist can produce a
maximal reponse only when it occupies all of its
receptors. Van den Brink (1973a,b) showed that
some experimental observations do not fit this model
but can be explained if allowance is made for the
possible existence of spare receptors, a receptor
reserve, or spare stimulus capacity. Each of these
terms implies that not all receptors need be occupied
by an agonist to produce a maximal effect
(Stephenson 1956).
When dose-response curves are used to study the

properties of agonists and antagonists acting on only
one type of receptor, the uncertainty that arises from
lack of knowledge about the relation between
response and number of receptors occupied by
agonist has led to the use of the 'null method' to
obtain information from such data (for a general
review of this topic see Mackay, 1977). The null
equations relate together those concentrations of
agonist(s) required to produce equal responses from
a cell or tissue. These equations should be inde-
pendent of the response level and involve no
assumption about the presence or absence of spare
stimulus capacity.
As already mentioned, the revised model of

functional interaction proposed by Van den Brink
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(1973a) was able to account for the variety of results
obtained experimentally but the qualitative and
semiquantitative conclusions were based on specific
numerical examples. In the present paper the null
method is applied to an essentially similar model of
functional interaction. The resulting null equations
allow general conclusions to be drawn concerning the
kind of information which can be derived from such
experiments.

Theory

Derivation ofnull equations forfunctional interaction

General assumptions The basic model is sum-
marised in Figure 1. The primary stimulus (SIa or SII,)
generated by each receptor system produces a chain
of stimuli which combine at some stage to produce a
stimulus SN which determines the state of the cell. In
order to deal quantitatively with this model the
following assumptions are made:

(a) Each stimulus, e.g. Sx,, in a chain of stimuli is
related to the preceding stimulus, S., by the equation

l/Sx+j = ax + b,/S, 1

where a, and b% are 'step' constants. If a, is zero then
Sx+1 is proportional to Sx otherwise S,+1 can approach
a maximum. For a chain of sequential stimuli obeying
equation 1, a similar equation should hold between
the initial and final stimuli of the chain so that
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1/SQ = a + b/S, 2

where a and b are chain constants which depend on
the values of a, and b1 for each step in the chain. The
symbols a and Q1 are used to indicate the beginning
and end of each chain and do not imply anything
about the number of steps in either chain.
(b) A definite relation exists between SN, SIQ and
Slun. Equivalent states of the cell or tissue are
obtained under two sets of experimental conditions,
denoted by the subscripts 1 and 2, when

3SN1 = SN2
The above statement defines the term 'equivalent
state'. However, in practice SN is not likely to be
measured directly. Instead it may be assumed that
equal values of SN produce equal values of some
measured property of the cell or tissue. The converse
assumption that equal values of the measured pro-
perty correspond to equal values of SN may also be
true but involves an implicit assumption that all other
factors which may modify the measured property,
such as X and Y in Figure 1, are also equal when
values of the measured property are equal. With
these assumptions, the length of a piece of tissue, for
example, might be taken as a measure of its state. The
'state' of the tissue should be distinguished clearly
from the 'response' which is usually taken to mean the
change in state.
(c) The experimental data are assumed to consist of
two (or more) concentration-state curves each
measured for the agonist Al in the presence of a
different concentration of the second agonist A,,. It
should therefore be possible to compare those
concentrations of Al which produce equivalent states
in the presence of different concentrations of A,,.
(d) The primary stimulus produced by agonist A,
acting on receptors type R, is

However the values of (Sjln)I and (SIIn)2 depend on
[A,,], and [A,,]2 respectively and are constant for the
two curves. Equation 5 may therefore be rearranged
to give

(SI1)2 - (SIO)l = (Siif)i - (SI10)2

= ASII1 6

where ASIIn is a constant for the particular pair of
curves being compared. From equations 2 and 6 it
follows that

1/ a, + bl/(Sla)2} - 1/(al + bi/(Sia)i} = ASIn 7

where a, and b1 are constants characteristic of the
chain of stimuli initiated by the agonist Al up to the
convergence step which determines SN. Equation 7
relates together the primary stimuli required to
produce equivalent states. Using the appropriate
forms of equation 4 to substitute for (SI.), and (SIJ)2
in equation 7 and rearranging gives the null equation
for type I functional interaction,

[A]21[A]1 = a + /[A]2 + y/[A], 8

where [A]1 and [A]2 are the concentrations of A,
which produce equivalent states of the cell or tissue in
the presence of the concentrations [A,,]1 and [A1I]2 of
the second agonist. The quantities a, 13, and y are
given by the equations

a = (1 + V)/(1 - V); , = U/(1- V)
and y = W/(1 - V) 9a,b,c

where

U = ASIIO(fAKARI/bI}(a, + bl/fARI)2 10a

SA = fAR/(1 + 1/KA[A])' 4

at equilibrium, where fA is the intrinsid efficacy of the
agonist, KA is its affinity constant for the receptors, R
is the total concentration (in arbitrary units) of
receptors of type R and [A] is the molar concen-
tration of the agonist. Equation 4 is the usual de-
finition of the pharmacological stimulus on the basis
of the occupation theory of drug action.

Type I interaction In this case SN is assumed to be
some function of (Sma + Sjjn) so that equal values of
the former correspond to equal values of the latter. If
two concentration-state curves are measured for the
agonist A, in the presence of concentrations [A,,]1
and [A11]2 of the second agonist respectively then the
requirement for equivalent states is

(Sln)1 + (SlIn)1 = (SIQ)2 + (Slnn)2

and

V = AS110(a1 + bI/fARI)

W = ASIln(bI/fAKARI a

lOb

lOc

In this case a, 13, and y would not be expected to be
independent since it can be shown that

(a - 1)2 = 413y or V' = U.W lla,b

Type II interaction In this type of functional
interaction A,, is assumed to change only the values
of the chain constants a, and b1, by an indirect
mechanism. There is no longer a convergence point
for chains of stimuli from the two interactants so the
chain S. to So is not clearly defined by Figure 1.
Instead the stimulus SN becomes the stimulus Sx+,
where ax and bx are the last step constants modified
by the action of A,,. The condition for equivalent
states is then
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AL + R Al RI -, SIt -*-. -* SIQ

All + R,l = All Rl -Sl' * * , SIIQ

x

ObservedSN property

/Y

Figure 1 Agonists A, and A,, act on different types of receptors RI and RH to produce sequential stimuli SI, toSm
and SI,, to SIIQ. SIn and Sll control the magnitude of SN which in turn determines the magnitude of the observed
property. X and Y are factors other than SN which could also modify the magnitude of the observed property.

(SX+)1 = (Sx+1)2 12

where the subscripts 1 and 2 indicate that the
quantities refer to different experimental conditions.
Combining equation 2 with equation 12 gives

l/-a,l + bll/(Si,)i) = l/{a12 + b 2I(S1a)2 13

where all and b,l are the values of the appropriate
chain constants in the presence of the concentration
[All]1 of functional interactant and aI2 and b12 are
their values in the presence of the concentration
[AI]2. Using equation 4 to substitute for (SI,), and
(S1,)2 in equation 13 and rearranging leads to the
general null equation for type II functional inter-
action. The equation has the same form as equation 8
but with y equal to zero and

a = bI2/bIj 14a

/3 = KA{fARI(aI2 - a11)/b11 + (bl2/bI1 - 1)) 14b

Type IIA interaction If all = a12 then equations 14a
and 14b reduce to

a = bI2/bI and,8 = KA (buIbIl - 1} 15a,b

It follows that in this special case

KA=13/(a-1) 16

Type IIB interaction If bl1 = b12 then equations 14a
and 14b reduce to

a = 1.0 and A = KA (fARI(aI2 - a11)/b1) 17a,b

Type III interaction Although, for reasons which
will become apparent in the discussion, the most
common type of interaction is probably type I it is
possible that the two chains of stimuli, SI, to Slo and
SI,, to Sjjn might interact in a non-additive way. For
example instead of SN being determined by (Sin +

SjlQ), as was postulated for type I interaction, it might
be determined by the ratio Sl0/S1ln. Applying the
same principles used in the earlier sections, the null
equation in this case can be shown to have the same
form as equation 8 but with -y equal to zero,

and

18aa = (SIIl)2/(SIIf)l

/3 = (a - 1)KA(a,fARI/bI + 1) 18b

Since for an experiment on a single piece of tissue a,,
b1, RI, fA and KA would all be expected to be constant
the values of a and /8 from such data would be
expected to be such that /3/(a - 1) would be constant.

Qualitative predictions ofthe model

The most general form of the null equation is
equation 8 which describes Type I interaction and
requires three adjustable constants a, ,B, and -y. In all
other cases y is zero. Type III interaction is almost
indistinguishable from type IIA, in terms of state-
concentration curves, unless the actual value of KA is
known. The predicted effects of the various types of
functional interaction on the position and shape of log
concentration-state curves will therefore be illu-
strated using only the three cases corresponding to
interactions of types I, IIA and IIB. In order to
calculate the theoretical curves a log concentration-
state curve was drawn arbitrarily and this was used in
each case as the control curve. Numerical values were
then assigned to a,, b1, KA and fARI. These values
were chosen so that there would be spare stimulus
capacity when the agonist acts on its receptors.
Appropriate values of AS110 or of a02 or b0 were
chosen to illustrate the effects of changing these
quantities. At each state level the value of [A], is
known from the control curve. The value of [A]2
required to produce the same state was calculated
from

[A]2 = {a[A1, +y./4{1-/[A]1)
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Figure 2 Predicted effects of various types of functional interaction on the shape and position of state-concentration
curves. In each case the thick curve represents the initial control curve and the initial values of a,, bl, KA and fARI
are 1.0, 1.0, 105 and 20 respectively. (a) Type I interaction. The values of ASII1 for the curves are -0.3 (A), -0.2
(0), -0.1 (H), 0.1 (0), 0.2 (0), 0.3 (A) and 0.5 (7). (b) Type IIA interaction. The values of b for the curves are
0.125 (A), 0.25 (0), 0.50 (U), 2.0 (0), 4.0 (0), 8.0 (A) and 16.0 (v). (c) Type IIB interaction. The values of a for
the curves are 0.25 (@),0.50 (0),1.5 (0),2.0(0) and 4.0 (A).

which is an alternative form of equation 8, the values
of a, 8 and y being estimated from the appropriate
equations. The results of these calculations are
summarised in Figures 2a, 2b and 2c for type I, type
IIA (or III) and type IIB respectively. It will be seen
from Figure 2a that type I interaction is predicted to
produce complex changes in the shapes and positions
of the curves. A distinct characteristic of this type of
interaction is the initial steepening of the curves
obtained in the presence of low concentrations of
functional antagonist. By contrast type IIA inter-
action, which involves only changes in bl, produces
mainly parallel displacement of the log concentra-
tion-state curve with a reduction of the maximal state
at high concentrations of functional antagonist
(Figure 2b). As already mentioned a very similar
pattern would be expected for type III interaction.
This pattern also clearly resembles that which would
be expected from repeated treatment of a tissue with

a selective irreversible antagonist. If only a, is
changed (type IIB interaction) there is no parallel
displacment of the curves but a progressive reduction
of the maximum (Figure 2c).
One other qualitative point remains, namely the

explanation of the ability of some functional inter-
actants to displace log concentration-state curves
only to a limited extent (Van den Brink, 1973a,
Figures 5 and 6). In terms of the null equations the
curves cease to move when higher concentrations of
A,, fail to produce any further change in Sjjn (Figure
2a), bI (or S1l0) (Figure 2b) or a, (Figure 2c). A,,
would then be producing its maximal effect as a
functional interactant, which might correspond to
saturation of the receptors RI, for example.

Obviously the various types of functional inter-
action (except types IIA and III) would be expected
to produce curve patterns which are clearly different.
Type I interaction leads to patterns of curves which
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Table 1 Theoretical criteria for the classification of types of functional interaction

Are theseparameters significantly
differentfrom zero?

(a-1) ,B y

Is there a general
reladonship between
a, 3 and y?

Can the affinity constant
KA be estimatedfrom
a, 8 and y?

Yes Yes

Yes

Yes

Yes

Yes

No Yes

Yes 2(3/(a-1) = (a-1)/2y for
any one piece of tissue

No No

No ,B/(a-1) is constant

No No

Yes Yes No f3/(a- 1) is constant,
for any one piece of
tissue

Only if the agonistA has a
very low intrinsic efficacy
No
Yes, KA = #/(a-1)
No

Only if the agonistA
has a very low intrinsic
efficacy

are very similar to those presented by Van den Brink
(1973a, b).

Quantitative predictions

In order to test or use equation 8 two concentration-
state curves for an agonist need to be determined
each in the presence of a different concentration of
the functional interactant. One of these concentra-
tions may be zero. The concentrations [A], and [A]2,
which produce the same state of the cell or tissue, are

read off at a series of state levels within the range

common to both curves. The values of a, , and y can
then be estimated for each pair of curves from the
multiple linear regression of [A]2/[A]1 on [A]2 and
1/[A]l. It should be possible to distinguish between
some of the types of interaction discussed earlier from
the magnitudes of a, (8 and y and their variation with
[AI], provided that one of these mechanisms is
dominant. The theoretical criteria for distinguishing
between the different types of interaction are sum-
marised in Table 1. According to the theoretical
equations a. ,B and y depend on constants. some

characteristic of the interactants and others of the
tissue. The three types of interaction which offer the
best prospects of obtaining useful information are

types I, IIA and III.

Affinity constants and related quantities

Type I interaction In this case the value of KA
cannot be estimated from a, ,B and y but another
quantity given the symbol KAF can be obtained from

KAF = V/W = (a - 1)/2y 19a

or KAF= U/V = 2,/(a- 1)

or KAF = (U/W)1/2 = (/v)"2

These estimates of KAF are not independent since
according to the model

V2 = UW or (a - 1)2 = 4/8y.

One estimate of KAF may be more reliable than
another since the errors in a, 8 and y may differ
greatly. (The use of multiple linear regression to
estimate these quantities and their standard errors is
open to criticism on statistical grounds but this
problem will not be discussed here). From equations
10a, b and c and equations 19a, b and c

KAF KA[aIfARI/bI + 1] 20

KAF will be called the functional affinity constant
since it is an apparent affinity constant which, in the
absence of information about the values of ap, bl, fA
and RI, provides an estimate of the maximal value of
KA. Another way of interpreting KAF is to note that
fARI is the maximal value of the primary stimulus SIa
which agonist A can produce and that b1/a1 is the
magnitude of SIa required to produce a value of SIn
equal to half SIfmax, (see Figure 3). The functional
affinity constant KAF reduces to KA only if
fARI<<b/aI. This requires agonist A to have an

intrinsic efficacy so low that it acts as a weak partial
agonist in the chain of stimuli from SI. to Sm. It is
interesting to note that this condition does not
depend on the magnitude of AS110 nor on any
limitation on the transfer of SN to produce the final
measured property. If the agonist A behaves as a
partial agonist in terms of the final measured pro-
perty, while another agonist acting on the same
receptors under the same experimental conditions
can produce a higher maximal value of the measured
property then the condition fARI<<bI/aI may be at
least approximately satisfied.
On the basis of this theoretical analysis the con-

Type of
interaction

II (general)
IIA
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C: 0.5-

0.25- b,/aI

Figure 3 A graphical illustration of the assumed
relation between SI, and Sjn. b1/a1 is the value of SIa
required to produce one half of the maximal value of
SIn.

centration-state curves obtained in the presence of a
functional interactant should be interrelated accord-
ing to equation 8. However at sufficiently high
concentrations of a functional antagonist the term
y/[A], may be numerically swamped by a and fB[A]2.
If y is not detectably different from zero, equation 8
can be rearranged to

1/[A]1 = a/[A]2 + 1 21

which has the same form as the null equation for
irreversible antagonism. However, inability to
measure y accurately does not affect the meanings of
a and 18. Equations 19b and 21 can therefore be
combined to give

intercept/(slope - 1) = //(a - 1)

=0.5 K F 22

where 'intercept' and 'slope' refer to the best straight
line fitted to a plot of 1/[A], against 1/[A]2. The
important point is that whereas for experiments
involving a selective irreversible antagonist the
quantity intercept/(slope - 1) gives an estimate of KA
this is not true for a type I functional antagonist. In
the latter case intercept/(slope - 1) approximates to
0.5 KAF but this in turn approximates to 0.5 KA only
for an agonist of very low intrinsic efficacy.

Type II interaction In this case y is zero and
equation 8 can be rearranged to give equation 21.
However in the general case a and /3 are given by
equations 14a and 14b and so KA cannot be estimated
from a and /3.

Type IIA interaction For this case too. equation 21 is
valid and from equation 16

intercept/(slope - 1) = /(a - 1) = KA 23

where 'intercept' and 'slope' have the same meanings
as for equation 22.

Type lIB interaction As in the case of the general
type II interaction the value of KA cannot be
estimated from a and,B.

Type III interaction Combining equations 18b and
20 gives

intercept/(slope - 1) =,8/(a - 1) = KAF 24

Such interactions therefore provide estimates of a
functional affinity constant which again reduces to
KA only if the agonist A has a suitably low intrinsic
efficacy.

Relative intrinsic efficacies and maximal curve
displacements

The relation between these quantities can be deduced
from the null equations derived earlier. Suppose that
two agonists C and D act on receptors type RI, and
interact with another agonist A, by a type I
mechanism. The interactants C and D acting on the
same piece of tissue produce only a limited shift of the
concentration-state curves produced by agonist Al.
The magnitudes of these maximal displacements
depend on the maximal stimuli which C and D can
produce namely SIjIMc and SlflMD. If for each
functional interactant the curve for Al which
approximates to maximal displacement is compared
with that obtained in the absence of interactant then
fitting equation 8 to the data will give maximal values,
aM,,/M and yM from which maximal values, UM, VM
and WM can be estimated using alternative forms of
equations 9a, b and c. Equations 10a, b and c then
give

SlIQIMC/SIInMD = UMC/UMD = VMC/VMD
= WMC/WMD 25

The maximal primary stimuli produced by drugs C
and D are respectively fcR11 and fDRII (see equation
4). Using equation 2 to relate Sljn and SI,,, it follows
that

SIIQMC/SIInMD = fc[fDRII 4- bll/aI1]/fDEfcRII
+ b11/all] 26a

which reduces to fc/fD only if both fcRil and fDRI, are
much less than b1l/all. If this condition is not satisfied
then the maximal curve displacements provide only
qualitative information about the ratio of the intrinsic
efficacies fC/fDD
The same method can be applied to type III

interaction for which
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aMc/aMD =̀1SHMC/SIIOMD, (see equation 18a).
It follows that aMc/aMD is also related to fC/fD but
gives a valid estimate of this ratio for type III
interaction only if fcR11 and fDRII are much less than
b,,/a1l.

Discussion

Type I functional interaction is essentially similar to
that suggested by Ariens et al. (1956a) and subse-
quently extended by Van den Brink (1973a, b). The
latter showed that the results of many experimental
studies on functional interaction could be explained
by this mechanism if the possibility of spare stimulus
capacity is taken into account. Other conclusions
were that functional synergism and antagonism can
be described in terms of this one model and that
functional antagonism may be used to distinguish
between full agonists which act on the same receptors
but have different amounts of spare stimulus
capacity. The null equation for type I interaction
leads to the same conclusions.
The null equation also shows that a type I

functional antagonist may be used to estimate a
functional affinity constant KAF for an agonist but if
the latter has a high intrinsic efficacy then KAF may be
considerably greater than KA. Of the various
mechanisms of functional interaction considered here.
only type IIA leads to null equations which allow KA
to be estimated from concentration-state curves. This
conclusion is of interest since, although the work of
Van den Brink seems to indicate that many cases of
functional interaction belong to type I, Buckner &
Saini (1975) have used the null equation for irre-
versible antagonism (analogous to equations 21 and
23) to estimate 'affinity constants' of agonists from
dose-response curves measured in the presence of
functional antagonists. They obtained good agree-
ment (within a factor of two) between the affinity
constant of soterenol estimated in this way and values
obtained by other methods. Since soterenol behaved
as a partial agonist this agreement would be expected
whether the functional antagonism was type I
(equations 19b and 20), type IIA (equation 23) or
type III (equations 24 and 20). The extension of this
method to estimate affinity constants of agonists with
higher intrinsic efficacies, as suggested by Buckner &
Saini (1975), may produce erroneously high estimates
of KA if the functional antagonism is not type IIA.
More recently the technique suggested by Buckner

& Saini (1975) has been used by Broadley &
Nicholson (1979) who reached the surprising con-
clusion that several drugs, normally thought of as
partial agonists at (3-adrenoceptors, had intrinsic
efficacies greater than that of isoprenaline in pro-
ducing positive chronotropic responses on guinea-pig

isolated atria. If the functional antagonism is not type
IIA then KA may be overestimated and this over-
estimation would be expected to be greater for those
agonists with higher intrinsic efficacies. In order to
calculate the ratio of the intrinsic efficacies of two
agonists A and B acting on the same receptors it is
necessary to know, at least implicitly, either their
potency ratio or the more general quantity ,,B =
fAKA/fBKB, (see Mackay 1966), and the ratio of their
affinity constants. If the latter, KA/KB, is over-
estimated then the intrinsic efficacy ratio, fA/fB, will
be underestimated. Such an effect may at least partly
explain the surprisingly low values obtained by
Broadley & Nicholson (1979) for the intrinsic efficacy
of isoprenaline relative to salbutamol and other /3-
agonists.
The main aim in deriving null equations for

functional interaction was to see what information
might be obtained from such data. The previous
discussion indicates some of the problems which can
arise in the absence of an adequate model. However,
the null equations derived here are based on several
assumptions and may have their own limitations. For
example, it has been assumed that the reciprocal of
each stimulus in a chain of stimuli is linearly related to
the reciprocal of the preceding stimulus (see equation
1). Although this assumption seems reasonable it is
arbitrary. It is also assumed that functional inter-
actants belong to one or other of the 'pure' types. In
fact null equations can also be derived for 'mixed'
interactions such as types (I + II) or type (II + III) but
such complications do not seem to be justified at the
present time. A third important assumption is that
each chain of stimuli is strictly linear, with no loops
which return to the chain between SI, and the
measured property. Lastly, the primary stimulus has
been defined according to the occupation theory of
drug action. This last assumption seems unlikely to
limit the applicability of the null equations for
functional interaction since in most situations oc-
cupation theory leads to null equations which are of
the same general form as those derived on the basis of
other models of drug-receptor interaction (Thron,
1973; Colquhoun, 1973; Mackay, 1977). Since the
derivation of the null equations for functional
interaction did not require any assumption about the
exact form of Sln or about the mechanism by which a,
or b, might be changed, these equations would be
expected to apply even if the functional interactant
Al, does not act via receptors in the usual sense. Ifany
of the assumptions mentioned above are seriously in
error then the true state of affairs is likely to be more
complicated than the model analysed here. Such
complications are therefore unlikely to invalidate the
criticisms made earlier concerning the use of func-
tional antagonism to estimate values of affinity
constants or relative intrinsic efficacies.
Provided that the null equations for functional
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interaction do provide an adequate description of
such systems then they might be used to: (1)
summarise experimental data in terms of a, (8 and y;
(2) estimate affinity constants of partial agonists,
though other methods are also available for this
purpose; (3) classify functional interactants; (4) test
postulated sites and mechanisms of functional inter-
action. The first three uses listed above need no
further comment but the fourth may not be
immediately obvious. For a functional interactant
acting by a type I or type III mechanism the
magnitude of KAF should depend on a, and b, which
in turn are characteristic of the series of steps from SIa
to SI. If another interactant acts at a different point
between SIa and the measured property then the
values of a, and bl, and therefore the value of KAF for
the same agonist acting on the same piece of tissue,
would be expected to be different. Such experiments
should provide information about the relative posi-
tions of the sites of action of these interactants.
Although the emphasis here has been on functional

interaction the preceding discussion raises questions
about the possible application of this model to other
problems such as comparison of the drug sensitivities
of different kinds of tissue and comparison of the
sensitivities of a chosen kind of tissue under different
conditions. These topics will not be discussed further
for the moment except to point out the similarity
between Figures 2b and 2c of the problems discussed
by Kalsner (1974).

It will only be possible to judge the practical use-
fulness of the null equations for functional interaction
when they have been tested on a variety of biological
systems. However. studies on the interaction between
isoprenaline and muscarinic agonists on guinea-pig
atria, described in the following paper, indicate that
the interaction is type I and that the data are in
reasonable agreement with the model. Preliminary
experiments on the use of the model to test the
validity of postulated sites of functional interaction
have also given encouraging results.
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