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ABSTRACT Chemical reactions in cells are subject to intense stochastic fluctuations. An important question is how the
fundamental physiological behavior of the cell is kept stable against those noisy perturbations. In this study, a stochastic model
of the cell cycle of budding yeast was constructed to analyze the effects of noise on the cell-cycle oscillation. The model predicts
intense noise in levels of mRNAs and proteins, and the simulated protein levels explain the observed statistical tendency of
noise in populations of synchronous and asynchronous cells. Despite intense noise in levels of proteins and mRNAs, the cell
cycle is stable enough to bring the largely perturbed cells back to the physiological cyclic oscillation. The model shows that
consecutively appearing fixed points are the origin of this stability of the cell cycle.

INTRODUCTION

Noisy fluctuations are inevitable features of chemical reac-

tions in cells, which should lead to cell-to-cell variation in a

genetically identical population of cells (1–3). One of the

important issues in modern cell biology is how the molecular

reaction network bearing such noisy fluctuations produces

orchestrated behavior for functioning. In this article, we take

the cell cycle of budding yeast, Saccharomyces cerevisiae, as

an example and analyze how its dynamics tolerates noise to

maintain a coherent cyclic oscillation.

The cell-cycle mechanism is well conserved among

eukaryotes (4), where the cyclic ups and downs of activity

of complexes of cyclins and cyclin-dependent kinases (CDKs)

are at the heart of its dynamics (5). The reaction network

regulating the cyclin/CDK activity, however, includes many

positive and negative feedback loops, too complex to be

verbalized, so that mathematical modeling of the reaction

network is necessary (6). Tyson and colleagues have con-

structed models of the cell cycles of budding yeast (7,8),

fission yeast (9,10), and frog eggs (11) by describing net-

works of reaction kinetics with differential equations. Their

model of budding yeast describes the cell cycle as transitions

between two stable states (7,8), as has been hypothesized by

Nasmyth (12). Li et al., on the other hand, described the cell

cycle of budding yeast with a network of Boolean functions

(13). In this model, the cell-cycle dynamics is represented by

trajectories of the Boolean states, which shift toward a fixed

point corresponding to the biologically stable G1 phase.

Although these deterministic models have clarified important

aspects (14), effects of stochasticity still largely remain to be

resolved.

Noise tolerance of a checkpoint mechanism in the cell

cycle has been discussed theoretically (15) and the robust-

ness of stochastic models of the cell cycles of budding yeast

(16) and fission yeast (17) has been studied. In these models,

however, noise was introduced as a given disturbance of the

deterministic kinetic rules, and the mechanism by which the

noise is generated was not discussed. In the study presented

here, noise is described as a dynamical feature that is inev-

itable in the model, and the strength of the noise that should

occur in the cell cycle is estimated to clarify the mechanism

that ensures stability against thus generated noise.

Fluctuations in protein numbers in budding yeast have

been measured by decomposing fluctuations into intrinsic

and extrinsic noises (1,18,19). Intrinsic noise has been

defined as fluctuations arising from smallness of molecule

numbers in reactions. Extrinsic noise accounts for the rest of

the noise, originating from fluctuating physiological condi-

tions (20). In this article, we consider both intrinsic and

extrinsic noises, regarding intrinsic noise as fluctuations aris-

ing from the stochastic dynamics of reactions in the regula-

tion network of biomolecules, and extrinsic noise as fluctuations

arising from mechanisms working outside the network. In

prokaryotes, the combination of intrinsic and extrinsic noises

in simulation has given a quantitative explanation of the ex-

perimentally observed protein levels (21). We use a similar

approach, although the processes involved here are much

more complex.

Our goal in this article is to clarify the mechanism of noise

tolerance of the cyclic oscillation by using thus developed

stochastic model of cell cycle.

STOCHASTIC MODEL OF THE CELL CYCLE

To address the questions of noise in the cell cycle, the

budding yeast cell cycle is modeled (Fig. 1). In this model,

each node represents a gene and its products, i.e., mRNA and

protein. Transcription and translation are modeled at each

node by the stochastic kinetic processes. Each link is the

transcriptional regulation or the posttranscriptional regula-

tion, such as phosphorylation, dephosphorylation, ubiquiti-

nation, or complex formation. The network includes 13

proteins discussed in Li et al. (13). Although the whole
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biomolecular network relevant to the cell cycle is gigantic,

including more than 800 relevant genes (22), here only the

essential part of it is abstracted. Marginal interactions

between the network components in the model and those in

other reactions in the cell are treated as constraints imposed

on the model. See Supplementary Material for the catalog of

molecular species and reactions in the model. There are still

many important details in transcriptional and translational

processes that are not explicitly considered in the model, such

as chromatin remodeling or nucleosome replacement. The

simplified coarse-grained modeling to neglect these aspects,

however, was successful in quantitatively describing the

dynamics of small regulatory networks in yeast cells (18,19),

and we may expect that similar coarse-graining provides

insights on the complex network presented here as well.

Intrinsic noise is treated by describing the network state

with three types of variables; states of genes, numbers of

mRNA molecules, and numbers of protein molecules. We

write j(m) ¼ 1 or ‘‘the mth gene is on’’ when the tran-

scription factors are bound to the promoter of the mth gene,

and j(m) ¼ 0 or ‘‘the mth gene is off’’, otherwise. Tran-

scription rates of 11 genes of Fig. 1, m ¼ PDS1, CLN1,2,

CLN3, CLB1,2, CLB5,6, SIC1, CDC20, SWI5, and NDD1,

are controlled by transcription factors in the network, so that

each of them is transcribed with a high rate when j(m) ¼

1 and with a low rate when j(m) ¼ 0. The other four genes

are assumed to be transcribed constitutively, with a mild

transcription rate: j(m) is fixed to be j(m)¼ 1 for m¼ CDH1,

CDC14, MBF, and SBF. See Table 1 of the Supplementary

Material for the values of the transcription rate constant. The

state of the mth gene, a(m), is defined as a(m) ¼ j(m) before

the mth gene is duplicated, and a(m) ¼ (j(m),j9(m)) ¼ (1,1),

(1,0), (0,1), or (0,0) after the mth gene is duplicated.

A master equation is derived for the probability distribu-

tion of states of genes, numbers of mRNA molecules, and

numbers of protein molecules residing in each of the

chemical states. Equations for the moments of these states

and numbers are derived and are treated approximately by

truncating them at the second order of cumulants and by

neglecting the cross-correlation between different molecular

species. See Supplementary Material for the concrete form of

the equations. The network dynamics is then numerically

followed by solving a set of differential equations for means

and variances: the mean number of mRNA molecules

transcribed from the mth gene of state a at time t, Nint
maðm; tÞ;

variance of the number of mRNA molecules, sint
maðm; tÞ

2; the

mean number of mth protein molecules at chemical state X,

Nint
X ðm; tÞ; variance of the number of protein molecules,

sint
X ðm; tÞ

2; and probability that the mth gene is at state a,

Dint
a ðm; tÞ. Here, the suffix ‘‘int’’ indicates that averages are

taken over the fluctuations caused by intrinsic noise. X
denotes the chemical state of the protein: phosphorylated,

dephosphorylated, or ubiquitinated. See Appendix for a

precise definition of chemical states. Differential equations

for means and variance are numerically solved to estimate

the effects of intrinsic noise. Factors such as Fint
maðm; tÞ ¼

sint
maðm; tÞ

2=Nint
maðm; tÞ and Fint

X ðm; tÞ ¼ sint
X ðm; tÞ

2=Nint
X ðm; tÞ

measure the strength of intrinsic noise.

A benchmark test of the truncated cumulant approxima-

tion introduced above is carried out by taking the small

reaction network shown in Fig. 2 as an example. The

truncated cumulant approximation is applied to this system

and the results are compared in Fig. 3 with the exact

numerical simulation of the corresponding master equation.

The truncated cumulant approximation agrees well with the

numerical simulation for Nint
maðm; tÞ; sint

maðm; tÞ
2; Nint

X ðm; tÞ;
and Dint

a ðm; tÞ; but the approximation tends to underestimate

sint
X ðm; tÞ

2: Despite such systematic deviation, we can see in

Fig. 3 that the approximation used here gives reasonable

estimation for both Fint
maðm; tÞ and Fint

X ðm; tÞ:
As sources of extrinsic noise, we consider several types of

events: regulations at checkpoints, release of Cdc14 at the

late anaphase, DNA replication, and cell division. During the

cell cycle, these events occur in a stochastic manner, which

perturbs and diversifies the trajectories of fNint
maðm; tÞ;

sint
maðm; tÞ

2;Nint
X ðm; tÞ;sint

X ðm; tÞ
2; and Dint

a ðm; tÞg. Strength

of extrinsic noise is estimated from the diversity of the

trajectories of fNint
maðm; tÞg and fNint

X ðm; tÞg as sext
maðm; tÞ

2 ¼
ÆNint

maðm; tÞ
2æ� ÆNint

maðm; tÞæ
2

and sext
X ðm; tÞ

2 ¼ ÆNint
X ðm; tÞ

2æ�
ÆNint

X ðm; tÞæ
2; where Æ. . .æ indicates an average over an

FIGURE 1 Model of the reaction network that sustains the cell cycle of

budding yeast. Each node represents a gene and its product, mRNA and

protein. Arrows with a triangular head denote positive regulation, whereas

arrows with a round head show negative regulation. Colors of arrows specify

the types of regulation: transcriptional regulation (blue), phosphorylation

(pink), dephosphorylation (dark pink), ubiquitination (yellow), phosphoryl-

ation as a mark of ubiquitination (red), protein-complex formation (green),

and suppression of diffusion (black). Cdc28, which is CDK in budding

yeast, is abundant through the cell cycle and hence is not explicitly con-

sidered in the model. Cln1 and Cln2 are assumed to work in combination and

hence are treated as a unit (Cln1,2) in the model. Clb1,2 and Clb5,6 are also

treated as units. The reactions indicated by dotted arrows are assumed to

work only in specific stages: phosphorylation of SBF and MBF by Cln3

(stage 1), ubiquitination of Clb5,6, Ndd1, and Pds1 triggered by Cdc20

(stages 3–5), and suppression of diffusion of Cdc14 by Pds1 (stage 4).
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ensemble of trajectories. Then, the total cell-to-cell variances

are stotal
ma ðm; tÞ

2 ¼ Æsint
maðm; tÞ

2æ 1 sext
maðm; tÞ

2
and stotal

X ðm; tÞ
2

¼ Æsint
X ðm; tÞ

2æ 1 sext
X ðm; tÞ

2:
In the cell cycle, the checkpoint serves as a bridge between

reactions in the network and physiological changes in the

cell. For example, the spindle-assembly checkpoint blocks

the onset of anaphase by suppressing the activity of Cdc20 in

the network until properly attached chromosomes have lined

up on the metaphase plate in the center of the spindle (23).

Here, we consider checkpoints to monitor the following

events or conditions: sufficient cell growth to start DNA

replication (C1), completion of DNA replication (C2), and

spindle assembly (C3). In addition to these checkpoints, the

mitotic exit is tightly controlled by the release of Cdc14 from

the nucleolus, and protein numbers are drastically changed

by cell division. We refer to the release of Cdc14 as C4 and

cell division as C5. We refer to the duration between Ci and

Ci11 (i ¼ 1–4) as stage i and the duration between C5 and C1

as stage 5. See Fig. 4 for the definition of stages. Although

there can be other cellular-level events or conditions whose

details have not yet been clarified, we treat C1–C5 as

representative samples to see how these events perturb the

network dynamics. In this model, effects of the cellular-level

events are expressed by modulations of reactions: Some

reactions are allowed only before or after passing certain Ci,

or, in other words, the network in Fig. 1 has some specific

links that are validated only for certain stages. Duration of

stage i in the rth round of the cell cycle, Tr(i), is determined

as a random number fluctuating in the range 0:8 # TrðiÞ=
T0ðiÞ#1:2; where T0(i) is the standard value of duration

inferred from experiments; T0(1) ¼ 40 min, T0(2) ¼ 15 min,

T0(3) ¼ 20 min, T0(4) ¼ 10 min, and T0(5) ¼ 40 min (24–

26). In this way, the structure of the differential equations is

modulated when the system passes through fCig at the

FIGURE 3 Comparison of the trun-

cated cumulant approximation and the

numerical Monte Carlo (MC) simulation.

The MC simulation was performed by

employing the Gillespie algorithm (31) to

numerically solve the master equation

that describes the reaction processes of

Fig. 2. (Left column) An example of the

trajectory of the numerical MC simula-

tion. From top to bottom, the number of

ubiquitinligase,numberofactivator,num-

ber of mRNA, number of Protein(1u),

and number of Protein(0u) are shown as a

function of time. (Middle column) The

mean number of corresponding mole-

cules obtained by averaging 104 MC

trajectories (solid lines) are compared

with the mean number of molecules

obtained by using the truncated cumulant

approximation (dashed lines). (Right

column) The Fano factor, i.e., the ratio

of variance to mean of the number of

molecules obtained by sampling 104 MC

trajectories (solid lines) is compared with

that obtained by using the truncated

cumulant approximation (dashed lines).
From top to bottom, the Fano factors

of ubiquitin ligase, activator, mRNA,

Protein(1u), and Protein(0u) are shown as

a function of time.

FIGURE 2 Reaction system to test the truncated cumulant approximation.

The synthesis rate of activator and that of ubiquitin ligase are modulated by

sin(2pt/T) to mimic the cell-cycle oscillation with a typical period of T ¼
125 min. When activator is bound to the promoter of the gene, the gene is

turned on to synthesize mRNA, which then yields Protein(1u). When

Protein(1u) is ubiquitinated through the action of ubiquitin ligase,

Protein(1u) is turned into Protein(0u). This unstable, short-lived protein is

underlined. Although mRNA and all proteins are assumed to be degraded at

certain specific rates in the model, those degradation processes are omitted

from this figure. Coefficients of reaction rates are the same as in Table 1 in

the Supplementary Material, except for the temporally modulated synthesis

rates of activator and ubiquitin ligase.
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fluctuating timing. The fluctuation in timing works as ex-

trinsic noise posed to the network.

DNA replication and cell division are other sources of

extrinsic noise. In stage 1, DNA is replicated and each of 13

genes in the network is doubled. The time when each gene is

duplicated is randomly selected at each round of the cell

cycle between the time 10 min past C1 and the end of stage 1.

After DNA is replicated, budding yeast cells undergo far less

chromosomal condensation than animal cells and the nuclear

envelope remains intact throughout the cell cycle, so that the

transcription rate is kept high even in mitosis (27). After

passing C5, the duplicated DNA and other molecules are

distributed to daughter and mother cells. Although there is a

temporal gap of several minutes between the nuclear

separation and cytokinesis in real cells (25,26), for simplicity

we do not distinguish their timing. In the simulation, the

duplicated 13 genes are equally distributed to daughter and

mother but the volume ratio between separated nuclei should

bear fluctuations to some extent (25,26). We assume that the

ratio is randomly fluctuating in the range from 1:1 to 0.9:1.1.

Proteins that are localized in the nucleus are handed to the

daughter according to this ratio. Cytokinesis should be

fluctuating with greater amplitude than the nuclear separa-

tion, so we assume that mRNAs and proteins that may locate

in cytoplasm are distributed to daughter and mother with a

ratio fluctuating between 1:1 and 0.6:1.4.

In this way, both intrinsic and extrinsic noises are

dynamically generated in the model. In the following, the

statistical features of thus generated noises are compared

with experiment to investigate how the cell cycle maintains a

stable oscillation under the influence of these noises.

The network model of Fig. 1 includes .300 rate constants

of reactions. Although we may be able to fit the individual

experimental data by calibrating these parameters, such

detailed comparison with experiments is not the purpose

of this article. Our goal here is to quantify the statistical

tendency of intrinsic and extrinsic noises to analyze the basic

mechanism, which ensures the persistency of cyclic dynam-

ics. To focus on such a mechanism, we adopt a simplified

parameterization by categorizing reactions into 15 different

types and assigning a single parameter to each type. These

reactions and parameters are explained in Table 1 of the

Supplementary Material.

RESULTS

Cell-cycle attractor

The five cellular events (C1–C5) were chosen as the ini-

tial starting points in the simulation. For each initial time

point, 1000 initial values were randomly generated in the

ranges 0 # Dint
a ðm; 0Þ# 1; 0 # Nint

maðm; 0Þ# 20Ng; 0 # sint
ma

ðm; 0Þ2 # 20Nint
maðm; 0Þ; 0 # Nint

X ðm; 0Þ# 100; and 0 # sint
X

ðm; 0Þ2 # 10Nint
X ðm; 0Þ; where Ng is the number of copies

of genes in a cell; Ng ¼ 1 for C1 and C5, and Ng ¼ 2 for C2,

C3, and C4. From all of the 5000 initial conditions tested, the

simulated trajectories converged to a narrow region in the sol-

ution space and showed an oscillatory motion. In this narrow

region, the numbers of mRNA molecules, SaDint
a ðm; tÞ

Nint
maðm; tÞ; were roughly in the range 0–30, and most of the

numbers of protein molecules at chemical state X;Nint
X ðm; tÞ;

were in the range 0–75, leading to the accumulated oscillation

of SXNint
X ðm; tÞ in the range 0–130. We refer to this attractive

region in the solution space as the cell-cycle attractor. Ex-

amples of five trajectories, starting at C1, are shown in Fig.

5 a by projecting them onto the space of three mean numbers

of proteins. With this representation, the cell-cycle attractor ap-

pears as a doughnut-shaped region in the three-dimensional space.

The convergent behavior of trajectories suggests that a

stable closed orbit of the cyclic oscillation is hidden behind

the cell-cycle attractor, which becomes clear when the

external noise is turned off with the following constraints: 1),

Durations of stages are fixed to standard values. 2), The 13

genes are duplicated at fixed timing in a fixed order. 3), In

FIGURE 4 Definition of stages. Stages delimited by five cellular events,

C1–C5, are compared with the cell-cycle phases using the usual terminology.

In budding yeast, the boundary between S and G2 or that between G2 and M

is vague.

FIGURE 5 Convergence of trajectories to the cell-cycle

attractor. Trajectories are projected onto the three-dimen-

sional space of Nint
X ðCln3; tÞ with X ¼ ð0pÞð1uÞ;

Nint
X ðClb1; 2; tÞ with X ¼ (1u), and Nint

X ðCln1; 2; tÞ with

X ¼ (0p)(1u). See Appendix for the definition of X. (a)

Five trajectories starting at C1 with random initial

conditions (solid circles) are attracted to the cell-cycle

attractor. (b) Under the constraint that extrinsic noise is

absent, trajectories converge to the cell-cycle attractor to

form a limit cycle.

3454 Okabe and Sasai

Biophysical Journal 93(10) 3451–3459



cell separation, both nucleus and cytoplasm are divided at a

fixed ratio of 1:1 between mother and daughter cells. Under

these constraints, trajectories converge to a closed orbit with

sext
maðm; tÞ

2 ¼ sext
X ðm; tÞ

2 ¼ 0; as shown in Fig. 5 b. We call

this orbit the standard limit cycle. This standard limit cycle

underlies the cell-cycle attractor toward which trajectories

are attracted under the influence of extrinsic noise.

Robustness of the standard limit cycle was tested by

changing parameters, one by one, from their standard values.

The limit cycle remains stable when those parameters are

between MIN and MAX shown in Table 1 in the Supple-

mentary Material. For many parameters of posttranslational

reactions, the ratio MAX/MIN exceeds 103. This robustness

should partly justify our rough estimation of 15 grouped

parameters instead of the precise determination of many indi-

vidual parameters. For parameters relevant to the transcrip-

tion and translation processes, this ratio is ;2–3, indicating

the importance of rather strict transcriptional regulations to

maintain the cell cycle.

Stochastic trajectories attracted to the cell-cycle attractor

are consistent with the observed cell-cycle oscillation. In Fig.

6, the mean numbers of three proteins, Clb2, Clb5, and Sic1,

calculated under the influence of extrinsic noise, are shown.

Here, the transcription rate of Clb5 in the model is adjusted

to be smaller than transcription rates of other proteins by a

factor of 0.5 to obtain the apparent agreement between the

simulated peak height of the Clb5 number and the observed

data (14). Other features, such as the small amount of Sic1

and the times that each protein number shows a peak, do not

depend on this calibration. See Supplementary Material,

Tables 2 and 3, to compare the simulated and observed data

for other mRNAs and proteins.

Intrinsic and extrinsic noises

Strength of intrinsic and extrinsic noises can be quantified

from the simulation results, which should then provide a

basis from which to understand the stability of the cell-cycle

attractor against these noises.

Strength of intrinsic noise was measured by Fint
ma(m, t)

and Fint
X ðm; tÞ calculated along the simulated trajectories.

Fint
maðm; tÞ oscillates with an amplitude of 0 , Fint

maðm; tÞ,10;
for m¼ CLN3, SIC1, CLN12, CLB56, PDS1, and CLB12, and

with an amplitude of 4 , Fint
maðm; tÞ,10 for m ¼ SWI5 and

CDC20. Fint
X ðm; tÞ for proteins involved in autocatalytic re-

actions, m ¼ Cln3 and Cdc20, oscillates with 0 , Fint
X ðm; tÞ

,10: For the other 11 proteins, Fint
X ðm; tÞ rapidly converges

to unity and remains almost constant throughout the cell

cycle. Although Fint
X (m, t) tends to be underestimated in this

approximation, we should stress that for these 11 proteins,

Fint
X ðm; tÞ is kept smaller than for Cln3 and Cdc20. Such

modest Fint
X ðm; tÞ for many proteins implies that the design of

the network that does not contain many autocatalytic loops

or small-length positive feed-back loops effectively reduces

intrinsic noise to prevent Fint
X ðm; tÞ from being too large. In

this way, the intrinsic noise in protein levels is suppressed,

which stabilizes the cell-cycle attractor. Intrinsic noise in

RNA levels is larger than that in protein levels, giving

distributions wider than Poissonian. Such difference between

Fint
maðm; tÞ and Fint

X ðm; tÞ is consistent with the frequently ob-

served difference between transcriptome and proteome (28).

Strength of extrinsic noise, Fext
X ðm; tÞ ¼ sext

X ðm; tÞ
2=

NXðm; tÞ; can be estimated by sampling trajectories fluctu-

ating around the standard limit cycle. Here, NXðm; tÞ ¼
ÆNint

X ðm; tÞæ; and Æ. . .æ indicates an average over an ensemble

of trajectories. Temporal change of Fext
X ðm; tÞ is shown in

Fig. 7 a for an ensemble of trajectories starting from C1 at t¼
0. Although the individual Fext

X ðm; tÞs depend on m and X in

characteristic ways, extrinsic noise accumulates as time pro-

ceeds, which randomly shifts the phase of each trajectory to

increase Fext
X ðm; tÞ: In the large t limit, trajectories are com-

pletely dephased to make Fext
X ðm; tÞ constant as shown in Fig.

7 b. This effect is more evident when the average is taken

over m and X as shown in Fig. 7, c and d. Thus, extrinsic

noise is small when cells are synchronous, with similar

phases, and largest when cells are completely dephased. This

difference between the ensemble of synchronous cells and

that of asynchronous cells is shown in Fig. 8, a and c, by

plotting histograms of Fext
X ðmÞ for those ensembles. Also shown

are histograms of sext
X ðmÞ

2=sint
X ðmÞ

2
averaged over ensem-

bles of synchronous (Fig. 8 b) and asynchronous (Fig. 8 d)

cells. Fig. 8 indicates that intrinsic noise is important when

synchronous cells are sampled and extrinsic noise dominates

when asynchronous cells are sampled.

Such dominance of intrinsic or extrinsic noise can be veri-

fied by comparing the calculated results with the experimen-

tal data. In a study by Newman et al. (1) a proteome-wide

measurement of fluctuations of protein levels was reported

by sorting cells according to size. The sorting was performed

by gating cell flow to select cells smaller than the gate size.

Since the cell size is smallest just after cell division and in-

creases through the cell cycle, gated cells should correspond

to cells just after C5 in the simulation. Averages over ungated

cells should be the averages over asynchronous cells. In Fig.

9, the simulated results of CVðm;XÞ2 ¼ stotal
X ðmÞ

2=NXðmÞ2
are plotted as functions of NX(m) for both gated and ungated

FIGURE 6 Temporal change of the mean numbers of Clb5,6, Clb1,2, and

Sic1. Solid line, SXNint
X ðClb5; 6; tÞ1 SXNint

X ðClb5; 6=Sic1; tÞ; dotted line,

SXNint
X ðClb1; 2; tÞ1 SXNint

X ðClb1; 2=Sic1; tÞ; and dashed line, SXNint
X

ðSic1; tÞ1 SXNint
X ðClb5; 6=Sic1; tÞ1 SXNint

X ðClb1; 2=Sic1; tÞ: i ¼ 1–5 on

the horizontal axis indicates cellular events Ci.
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cases, where stotal
X ðmÞ

2 ¼ Æsint
X ðmÞ

2æ1sext
X ðmÞ

2: The extrinsic

noise is reduced by gating and the feature of constant

Fint
X ðm; tÞ is manifested in the plot to make CV(m, X)2 roughly

proportional to 1/NX(m). The same feature of CV2� 1/N was

observed in the gated data of Newman et al. (1). We should

note, however, that sext
X ðmÞ

2
does not completely vanish

even when the cell phase is specified, as in gated cells, which

is consistent with the observations in Newman et al. (1) and

Raser and O’Shea (19). In Fig. 9, CV(m, X)2 for ungated cells

is dominated by the extrinsic noise and takes values around

103.5, with weaker dependence on NX(m), as was observed

by Newman et al. (1). Thus, the model described here quan-

titatively reproduces observed features of intrinsic and ex-

trinsic noises.

Consecutive appearance of fixed points

Though both intrinsic and extrinsic noises are large, the cell

cycle remains stable owing to the large basin of attraction of

the cell-cycle attractor. The mechanism of attraction of

trajectories to the cell-cycle attractor can be analyzed by

calculating the long-time asymptotic behavior of trajectories.

This behavior is examined by prolonging each stage one by

one: We assume a situation where the checkpoint is very

stringent or the release of Cdc14 or the cell division is

prohibited, preventing the system from passing over Ci11.

Then, the cell cycle is arrested at stage i. For i ¼ 2–5,

trajectories thus arrested at stage i converged to a fixed point

characteristic to each stage. This fixed point corresponds to a

set of constants, fNint
maðm; iÞ;Nint

X ðm; iÞ;sint
maðm; iÞ

2;sint
X

ðm; iÞ2; and Dintðm; iÞg, and we call this set FPi. In Fig. 10,

sample trajectories converged to FP3 and FP5 are shown.

Trajectories converge to FPi as limt/N sext
maðm; tÞ

2 ¼
limt/N sext

X ðm; tÞ
2 ¼ 0: sext

X ðm; tÞ
2

quickly approaches 0

when m is a protein rapidly degraded through ubiquitination,

whereas sext
X ðm; tÞ

2
for other proteins decreases rather

slowly, taking longer than T0(i).
The large basin of attraction of FPi is the origin of the large

basin of attraction of the cell-cycle attractor. Trajectories

starting from distributed initial states tend to converge

FIGURE 7 Dephasing and increase of extrinsic noise.

Fext
X ðm; tÞ is averaged over 1200 trajectories starting at the

same cell-cycle phase. Extrinsic noise accumulates over

time due to the dephasing of trajectories (a and c). In the

large t limit, trajectories are completely dephased to make

Fext
X ðm; tÞ almost constant (b and d). (c and d) Fext

X ðm; tÞ are

averaged over m and X. i ¼ 1–5 on the horizontal axis

indicates the average time of passing Ci.

FIGURE 8 Comparison of noise between synchronous

cells and asynchronous cells. (a and b) Distribution of

Fext
X ðm; tÞ and sext

X ðmÞ
2=sint

X ðmÞ
2; respectively, of synchro-

nous cells calculated by sampling 5000 trajectories at the

same cell-cycle phases. Distributions over 125 time points

are shown. (c and d) Distributions of asynchronous cells

calculated by sampling 5000 trajectories at random phases.

Distributions over 100 sets of 5000 trajectories are shown.

(b and d) Tails of sext
X ðmÞ

2=sint
X ðmÞ

2
.104 are not shown.

Distributions at sext
X ðmÞ

2=sint
X ðmÞ

2
.104 arise from pro-

teins that have very small numbers for most of the cell-

cycle duration.
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toward FPi. In the usual physiological condition, however,

the next cellular event of Ci11 takes place before trajectories

reach FPi and brings the system into stage i 1 1 to direct

trajectories to FPi11. In this way, the cell-cycle oscillation is

maintained by the consecutive disappearance and appear-

ance of fFPig. It should be noted that FPi is separate from

the standard limit cycle, as shown in Fig. 10. This deviation

of fixed points allows smooth oscillations in protein and

mRNA levels without being trapped at each FPi. Despite

such deviation of fixed points from the standard oscillatory

trajectories, a shift of the fixed point from FPi to FPi11 is the

driving force to move the system from stage i to stage i 1 1.

This mechanism of cell-cycle dynamics is illustrated in Fig.

10 c. As shown in Figs. 5 and 10, width of the basin of at-

traction of the thus generated cell-cycle attractor is dNX(m) .

102, whereas, as shown in Fig. 9, the width stotal
X ðmÞ of the

region in which trajectories stochastically wander during the

cell cycle is stotal
X ðmÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsext

X ðmÞÞ
2
1ðsint

X ðmÞÞ
2

q
� 100–

102. Such a large basin of attraction, with dNXðmÞ.stotal
X ðmÞ;

ensures stable oscillation in the cell cycle.

SUMMARY AND DISCUSSIONS

In this article, a stochastic model of the cell cycle of budding

yeast was constructed, and statistical features of noise in the

cell-cycle oscillation were analyzed. The model predicted

that the amplitude of protein-level fluctuation is as large asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsextÞ21ðsintÞ2

q
=N � 101 � 100 when an ensemble of

synchronous cells are sampled. Despite such intense sto-

chasticity, the simulated cell cycle shows stable oscillation

and attracts trajectories from widely scattered initial condi-

tions. This stability of cell cycle is assured by consecutively

appearing fixed points, each of which has a large basin of

attraction. Using a deterministic model of the cell cycle,

Tyson and colleagues (7,8) showed that the oscillation is

maintained by cyclic transitions between two fixed points. In

their model, transition is strongly affected by a continuous

growth of the cell volume that regulates rates in the reaction

network. In the model presented here, the reaction network is

controlled by many other molecular mechanisms, including

checkpoints, DNA replication, and cytokinesis, which then

FIGURE 9 Dominance of intrinsic or extrinsic noise. CV(m, X)2 of the

number of proteins of ungated cells (circles) and that of gated cells (crosses)

are plotted as functions of NX(m). Intrinsic noise is dominant in gated cells to

make CV(m, X)2 roughly proportional to 1/NX(m). Solid line has a slope of

�1. The number of sampled trajectories is 100 for gated cells and 3000 for

ungated cells.

FIGURE 10 Convergence of trajectories to a fixed

point. (a) Eleven trajectories starting from C3 with

random initial conditions (red circles) converge to FP3

when stage 3 is prolonged. (b) Eleven trajectories

starting from C5 with random initial conditions (red

circles) converge to FP5 when stage 5 is prolonged.

Blue lines are trajectories projected onto the three-

dimensional space of Nint
X ðSBF; tÞ with X ¼ (0p)(1p),

Nint
X ðCdc14; tÞ with X ¼ (outside), and Nint

X ðCln1; 2; tÞ
with X ¼ (1p)(1u). See Appendix for the definition of

X. The green line represents the standard limit cycle.

(c) An illustrative explanation of how the consecu-

tively appearing fixed points drive the cell-cycle

oscillation. The standard limit cycle is shown in the

same three-dimensional space as in a and b. Each stage

in the limit cycle is specified by different colors: stage

1 (dark blue), stage 2 (green), stage 3 (red), stage 4

(light blue), and stage 5 (orange). When stage i is

prolonged for i ¼ 2–5, the trajectory approaches the

fixed point, FPi, as shown by dashed lines. When stage

1 is prolonged, trajectories tend to converge along the

dark blue dashed line, but the corresponding fixed point

was not numerically found in the model. Extrinsic

noise induces fluctuations of trajectories in the cell-

cycle attractor, which is designated by the hatched

region.
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yield a larger number of consecutively appearing fixed

points. In this sense, the model described here is an extension

of the model of Tyson et al. toward treating the richer

biochemical mechanisms to regulate the core reaction

network.

The fixed-point states in the model deviate from the usual

physiological states of oscillation, but appear when the

lifting of checkpoints is postponed. The model shows that

the hallmark of fixed-point appearance is a diminution of the

extrinsic noise. Comparison of statistical features of noises at

a fixed point in the model with those in the cells arrested in

the corresponding stage in experiments should be important

to confirm the mechanism proposed in this article.

An interesting question is how the perturbed cells are

attracted to the cell-cycle attractor. It is left for further study

to compare the simulated pathways of attraction of cells with

experiments. It would be interesting also to examine whether

the consecutive appearance of fixed points is the effective

design principle in other reaction networks in cells as well

(29,30). Quantitative comparison of features of noisy

dynamics should provide a key to examine whether such a

design principle works in those reaction networks.

APPENDIX: CHEMICAL STATES OF PROTEINS

The activity and stability of individual proteins are dependent on their

chemical states. For example, some proteins need to be phosphorylated to

show the catalytic activity, and proteins are rapidly degraded if ubiqui-

tinated. When a protein can be phosphorylated by a kinase, we write the

chemical state of the protein as X ¼ (ap), where a ¼ 1 or 0, and p indicates

that the chemical modification takes place on the phosphorylation site. If the

phosphorylated form of the protein is active and the dephosphorylated form

is inactive, we write the former as X ¼ (1p) and the latter as X ¼ (0p), and if

the phosphorylated form is inactive and the dephosphorylated form is active,

the former is X¼ (0p) and the latter X¼ (1p). When a protein is targeted not

only by a kinase but also by a ubiquitin ligase, then the phosphorylation site

is denoted by p and the ubiquitination site by u. The chemical state is rep-

resented by X ¼ (ap)(a9u). We write a9 ¼ 1 when the protein is not ubi-

quitinated, and a9 ¼ 0 when it is ubiquitinated. Fig. 11 describes examples

of reaction schemes. Chemical states of Cdc14 are distinguished by its

location, namely whether Cdc14 is confined in the nucleolus (X ¼ inside) or

diffuses over the cytoplasm (X ¼ outside). See Table 1 for a catalog of the

chemical states considered in this model.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this

article, visit www.biophysj.org.

FIGURE 11 Examples of reaction schemes. (Left) Phosphorylation. (Right)

Translation, phosphorylation, and ubiquitination. Protein A in chemical state

X is denoted by AX. Catalytic actions are denoted by dotted arrows. Active

proteins are denoted in red. The unstable, short-lived protein is underlined.

Although mRNA and all forms of protein are assumed to be degraded at

certain specific rates in the model, those degradation processes are omitted

from this figure.

TABLE 1 Activity and stability of proteins in the model

Protein State Activity Stability Location

Cln3 (1p)(1u) (1) 1 Nuclear

(0p)(1u) (1) 1 Nuclear

(0p)(0u) (1) � Nuclear

SBF (1p)(1p) 1 1 Nuclear

(0p)(1p) � 1 Nuclear

(0p)(0p) � 1 Cytoplasm

MBF (1p)(1p) 1 1 Nuclear

(0p)(1p) � 1 Nuclear

(0p)(0p) � 1 Cytoplasm

Cln1,2 (1p)(1u) 1 1 Nuclear

(0p)(1u) 1 1 Cytoplasm

(0p)(0u) 1 � Cytoplasm

Sic1 (1p)(1u) 1 1 Whole

(0p)(1u) 1 1 Whole

(0p)(0u) 1 � Whole

Clb5,6 (1u) 1 1 Nuclear

(0u) 1 � Nuclear

Sic1/Clb5,6 (1p)(1u)(1u) � Nuclear

(0p)(1u)(1u) � Nuclear

(0p)(0u)(1u) � Nuclear

(1p)(1u)(0u) � Nuclear

(0p)(1u)(0u) � Nuclear

(0p)(0u)(0u) � Nuclear

Ndd1 (1p)(1u) 1 1 Nuclear

(0p)(1u) � 1 Nuclear

(1p)(0u) 1 � Nuclear

(0p)(0u) � � Nuclear

Clb1,2 (1u) 1 1 Nuclear

(0u) 1 � Nuclear

Sic1/Clb1,2 (1p)(1u)(1u) � Nuclear

(0p)(1u)(1u) � Nuclear

(0p)(0u)(1u) � Nuclear

(1p)(1u)(0u) � Nuclear

(0p)(1u)(0u) � Nuclear

(0p)(0u)(0u) � Nuclear

Cdc20 (1p)(1u) (1) 1 Nuclear

(0p)(1u) (1) 1 Nuclear

(1p)(0u) (1) � Nuclear

(0p)(0u) � � Nuclear

Pds1 (1u) 1 1 Nuclear

(0u) 1 � Nuclear

Cdc14 Outside 1 Outside of nucleolus

Inside � Inside of nucleolus

Cdh1 (1p)(1p)(1p) 1 1 Nuclear

(1p)(1p)(0p) � 1 Cytoplasm

(1p)(0p)(1p) � 1 Cytoplasm

(1p)(0p)(0p) � 1 Cytoplasm

(0p)(1p)(1p) � 1 Cytoplasm

(0p)(1p)(0p) � 1 Cytoplasm

(0p)(0p)(1p) � 1 Cytoplasm

(0p)(0p)(0p) � 1 Cytoplasm

Swi5 (1p) 1 � Nuclear

(0p) � 1 Cytoplasm

Activity: 1 active, � inactive, (1) active only in specific stages.

Stability: 1 stable, � highly unstable.

Apart from Cdc14, ‘‘Location’’ is used in the model only to determine the

distribution ratio in the cell separation.
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