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ABSTRACT In this article, we present a statistical analysis of the electrostatic properties of 298 protein-protein complexes and
356 domain-domain structures extracted from the previously developed database of protein complexes (ProtCom, http://
www.ces.clemson.edu/compbio/protcom). For each structure in the dataset we calculated the total electrostatic energy of the
binding and its two components, Coulombic and reaction field energy. It was found that in a vast majority of the cases (.90%),
the total electrostatic component of the binding energy was unfavorable. At the same time, the Coulombic component of the
binding energy was found to favor the complex formation while the reaction field component of the binding energy opposed the
binding. It was also demonstrated that the components in a wild-type (WT) structure are optimized/anti-optimized with respect to
the corresponding distributions, arising from random shuffling of the charged side chains. The degree of this optimization was
assessed through the Z-score of WT energy in respect to the random distribution. It was found that the Z-scores of Coulombic
interactions peak at a considerably negative value for all 654 cases considered while the Z-score of the reaction field energy
varied among different types of complexes. All these findings indicate that the Coulombic interactions within WT protein-protein
complexes are optimized to favor the complex formation while the total electrostatic energy predominantly opposes the binding.
This observation was used to discriminate WT structures among sets of structural decoys and showed that the electrostatic
component of the binding energy is not a good discriminator of the WT; while, Coulombic or reaction field energies perform
better depending upon the decoy set used.

INTRODUCTION

Protein-protein interactions constitute the key mechanism

maintaining the function of the cell (1). Understanding the

physical principles governing these interactions (2–7) and

the ability to predict both interacting partners (8–12) and

three-dimensional structures of the corresponding complexes

(13–16) are therefore very important tasks. Electrostatic in-

teractions, being long-range interactions, are of particular

interest for protein-protein association. Because of this,

the protein-protein complexes with experimentally available

three-dimensional structures were intensively studied both

statistically and energetically to reveal the contribution of the

electrostatic energy to the binding (17–21). It was found

experimentally (22,23) and computationally (24) that most

of the ionizable residues at the protein-protein interfaces con-

tribute to the binding energy, i.e., their replacement with the

alanine residue critically affects protein binding affinity. It

was pointed out that electrostatic interactions play a more

important role in the protein binding than they do in folding

(see, e.g., (25) and references therein). In many cases, a

formation of a complex could result in favorable pairwise

interactions across the interface as it was demonstrated by

Tidor and co-workers in case of the barnase-barstar complex

(26,27) and for other complexes (28). One of the largest series

of works devoted to computation of electrostatic properties

for different groups of complexes is that by McCammon and

co-workers (29–34) including the role of the salt bridges

(30). The role of electrostatic interactions in the formation of

protein-protein interfaces was thoroughly studied by Honig

and co-workers (6,35,36). It was pointed out that electrostatic

interactions play a dominant role in the case of complexes

with small interfaces. The contribution of the electrostatic

energy to the binding affinity of Rap/Raf complex was also

the subject of a series of investigations (37,38). Despite the

fact that all of the above studies agreed that there are many

specific pairwise interactions across the interface, the conclu-

sions about the role of electrostatics on the binding affinity

remain controversial. It was found that, in some cases, the

electrostatics favor the binding, but in other cases, oppose it.

Since the electrostatic component of the binding energy is

the difference between two large terms, namely pairwise inter-

actions and the desolvation penalty, the outcome strongly

depends on the force-field parameters, including the choice of

the internal dielectric constant of proteins (39). These obser-

vations are similar to those made for the contribution of the

salt bridges to the stability of proteins (40,41). In addition, as

pointed out by Zhou and co-workers (42–44), the electrostatic

component of the binding energy is very sensitive to the

method of building the molecular surface.

The salt dependence of the binding energy is an important

characteristic of the protein-protein interactions. It was exten-

sively studied by Zhou and co-workers and it was shown that

the increase of the ionic strength makes the binding weaker

in the case of barnase-barstar (45) and weakens the on- and

off-rates in the case of five protein-protein complexes (46).

Recently, it has been pointed out that the increase of the salt
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concentration weakens the binding affinity of five hetero and

one homo protein complexes (39). The set of protein-protein

complexes used in Bertonati et al. (39) included five cases

of monomers carrying opposite charges as well as two com-

plexes made of monomers having the same polarity net charge.

In the last case, if the charges of the monomers were uni-

formly distributed, then these interactions could be treated as

interactions between entities with opposite charges and, from

a macroscopic point of view, the increase of the salt concen-

tration should screen the unfavorable interactions and thus

should make the binding stronger. However, both experi-

mental data and the numerical calculations show that the

increase of the ionic strength weakens the binding for all

complexes. This indirectly suggests that the charges are not

distributed randomly but rather form specific interactions

across the interface of protein-protein complexes.

The pKa values of ionizable groups are important indi-

cators of the environment that proteins and protein-protein

complexes provide for the ionizable groups. The formation

of a complex may change the pKa values of titratable resi-

dues in respect to the pKa values in the unbound monomers,

especially if these residues are located within the interface of

the complex. The resulting pKa shifts can be used as an

indicator of electrostatic energy contribution of a particular

residue to the stability of the complex. For instance, an acidic

residue, pKa of which shifts upon the complex formation

toward acidic pH values (negative pKa shift), stabilizes the

complex as compared to the complex with this residue re-

placed by a noncharged (e.g., Ala) group. Since complex

formation buries interfacial residues, this will result in a de-

solvation penalty which can be compensated only by favor-

able pairwise interactions across the interface, which will

require appropriate arrangement of the titratable groups at

the interface. If the titratable groups are distributed randomly

within the interface of protein-protein complexes, then the

statistical expectation will be that the formation of the com-

plex should increase the average pKa values of the acidic

groups due to the desolvation penalty. However, a recent

study shows that the pKa shifts of acidic groups induced

by the complex formation are predominantly negative (7).

This indicates that the complex provides a more favorable

environment for these groups as compared to the monomers.

This indirectly indicates that the ionizable groups are not

distributed randomly, but rather their location is optimized

within the protein-protein interfaces.

The pioneering work on the optimization of Coulombic in-

teractions within monomeric proteins was done by Spassov

and Karshikoff (47–49). They had shown that the Coulombic

interactions are optimized in respect to the random distribu-

tion of a point charges. Recently, we applied explicit side-

chain replacement in the randomization procedure to address

the electrostatic energy optimization in two isoforms of plas-

tocyanin (50). It was shown that pairwise interactions are

optimized while both the reaction field energy and the in-

teractions with mobile ions are anti-optimized (here we use

the terms ‘‘optimization’’ and ‘‘anti-optimization’’ with re-

spect to the tendency on the binding affinity, favoring or dis-

favoring the binding, respectively). However, the role of the

electrostatic component of the binding energy on the com-

plex formation, and how optimized these interactions are, has

never been statistically addressed. The newly created large

databases of three-dimensional structures of protein-protein

complexes (51–56) provide the necessary pool for large-scale

studies and modeling. Hence, the above-mentioned obser-

vations inspired us to study the possibility that the electro-

static energy and its components are optimized within

protein-protein complexes as well. We took advantage of our

previously developed large database of protein-protein com-

plexes (ProtCom) (52) to address these questions on a set of

298 protein-protein complexes and 356 domain-domain

structures, with emphasis on the optimization of the electro-

static component of the binding energy and its components.

The results obtained in this study could be used in

evaluation of the quality of the structures of protein-protein

complexes. Predicting three-dimensional structures of pro-

tein-protein complexes is one of the most important tasks in

the post-genomic era and many efforts are currently devoted

to advance the modeling techniques (7,14,57–61). However,

in many cases, the same pair of sequences with unknown

structures (query sequences) produces several models and

hence, tools are needed to evaluate and rank these models.

The same is valid for docking methods (62–64), which gen-

erate large numbers of alternative conformation of a com-

plex, given the three-dimensional structures of the monomers.

These alternative models need to be evaluated to select the

nativelike three-dimensional structure of the complex. It is

desirable for the scoring algorithm to be fast and not require

extensive energy minimization. Here, we address such a pos-

sibility by ranking decoy protein-protein complexes with

electrostatic binding energy and its components, and with an

in-house-derived kernel function based on a combination of

Z-scores of Coulombic and reaction field energy components

of the electrostatic energy.

METHODS

The set of protein structures used in the study

Protein-protein complexes subjected to the study were extracted from the

ProtCom (52) database (as of June 2006) (www.ces.clemson.edu/compbio/

protcom), which contains more than 3000 entries. To avoid the bias toward

overrepresented complexes, the entries were purged with CD-hit (65) at 40%

sequence identity level (note that this requirement automatically removes

all homo complexes). This resulted in 298 protein-protein complexes and

356 domain-domain structures. The protein-protein complexes were manu-

ally classified into five major classes: antibody-antigen complexes, enzyme-

inhibitors structures, G-proteins, transport proteins, and other ensembles. All

structures were subjected to the Jackal program (http://wiki.c2b2.columbia.

edu/honiglab_public/index.php/Software:Jackal, which was developed in

Honig’s lab to fix missing atoms and side chains; note that the domain-

domain structures in the PotCom database are not real complexes but are

artificially made from monomeric proteins with two distinctive domains; for

details, see (52)).
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The vast majority of the results reported in this study were done using

nonminimized structures since minimization of all 131,454 (native structures

and 200 mutants of each of the 654 complexes) structures is far beyond the

available computational resources. However, to test the sensitivity of

the results, short minimization runs were performed in the case of the

a-chymotrypsin-eglin C complex and the corresponding 200 mutants. The

details of the minimization protocol are as follows: each structure was

minimized with the Tinker package (66) using its ‘‘minimize.x’’ module by

means of the quasi-Newton optimization procedure. The implicit solvent

Still GB model (67) and the CHARMM27 (68) force field were used.

To make the problem computationally tractable, we applied a weak con-

vergence criteria (RMS gradient per atom ¼ 0.5).

Shuffling of the charged side chains

The randomization of the charged side chains was done in the following

manner: For each of the monomers within a particular complex, a list of

charged groups (Asp, Glu, Lys, Arg, and His) was created from the cor-

responding Protein Data Bank (PDB) file (69). A residue from this list was

randomly picked up and swapped with a residue randomly picked within the

entire structure of the same monomer. The second residue can be of any type

thus not restricted to charged groups only. This results in better random-

ization of the corresponding sequence. Hereafter a structure with shuffled

residues will be referred to as a sequence decoy. In addition, two protocols

were tested for creating a sequence decoy: A protocol that allows any

residues to participate in the randomization procedure and a protocol that

restricts the sites of possible randomization to surface residues only (surface

residues are defined as residues retaining in the structure .20% of their side-

chain solvent-accessible surface area). On a test set of protein-protein com-

plexes, the side chains of the titratable groups were swapped 500 times

in each of the monomers and corresponding electrostatic energies and their

components (see below) were calculated. Then the calculations were re-

peated with 200 randomizations per monomer and the resulting energy

distributions were compared to the distributions from the previous run. No

significant difference was found and the rest of the calculations were per-

formed with 200 randomizations per monomer. The side-chain replacement

was done with the SCAP (70) program developed in the Honig lab with the

default set of parameters.

Electrostatic calculations

The wild-type (WT) PDB files and the corresponding structures with

randomized side chains of ionizable groups (sequence decoys) were pro-

tonated with the Multi-Conformational Continuum Electrostatics (MCCE)

(71–73) program. It was recently demonstrated that MCCE-generated proton

positions are highly accurate (74). Then the structures of the complexes

and separated monomers were outputted to Delphi (75,76) to calculate the

Coulombic and reaction field energies components of total electrostatic

energy as described in the details in Rocchia et al. (75). Coulombic energy

was calculated in the absence of salt in homogeneous media with the

dielectric constant of the solute. The reaction field energy was calculated as

the interaction energy between permanent and induced surface charges in the

absence of salt (75). Parse charges and radii (77) were used. The dielectric

constant of the solute was 2 and water phase was modeled with a dielectric

constant of 80 in most of the calculations. However, to test the sensitivity of

the results, the electrostatic component of the binding energy was calculated

with internal dielectric constants of 4 and 20. The salt concentration was set

to zero. The grid size of the finite-difference algorithm was kept at 65 to

speed up the calculations. Such a grid size resulted in a resolution of 1 grid/Å

or better. As it was demonstrated in the past, Delphi calculations are accurate

enough at resolution higher than 1 grid/Å (76,78).

The electrostatic components of the binding energy were calculated using

the rigid body approach, keeping the structure of the monomers in the same

conformation as they have in the complex structure. Single point calcula-

tions were applied and the corresponding component of the binding energy

was calculated as

DGxðA : BÞ ¼ DGxðABÞ � DGxðAÞ � DGxðBÞ; (1)

where x stands for either the Coulombic (DGcoul), reaction field (DGrxn), or

the total electrostatic energies (DGel), respectively. Hereafter, the corre-

sponding quantities for the entire complex are marked with AB, those for the

monomers with either A or B and those for the binding energy with A:B.

Z-score

The electrostatic energies of the randomized structures were used to obtain

the distribution of the energy. The mean (ÆDGxæ) of the distribution and

the corresponding standard deviation (sx) were calculated with standard

formulas:

ÆDGxðYÞæ ¼
+
N

k¼1

DG
k

xðYÞ

N
; (2)

and

sxðYÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
N

k¼1

ðDG
k

xðYÞ � ÆDGxðYÞæÞ

N

vuuut
: (3)

In the above formulas, Y stands for either AB (entire complex), A or B

(monomer), or the A:B (corresponding component of the binding energy).

The number of samples was 200 in this study. The distributions of energies

for randomized structures (sequence decoys) have a Gaussian, bell-like

shape and therefore, it is convenient to compare energy optimization for

the wild-type structure (WT) for different complexes using the Z-score

calculated as

ZxðYÞ ¼
DG

WT

x ðYÞ � ÆDGxðYÞæ
sxðYÞ

: (4)

RESULTS

Distributions of the electrostatic binding energy
and its components

The binding energies DGx(A:B) were calculated using Eq.

1 for each of the 654 entries in our dataset for the total

electrostatic energy (x¼ el), the Coulombic interactions (x¼
coul), and for the reaction field energy (x ¼ rxn) using three

different values of dielectric constants for the protein interior

(ep). The distributions of these quantities are shown in Fig. 1

(for better presentation, outliers, representing ,5% of the

cases, were omitted from the graph). No significant differ-

ence was observed for the calculated energies of protein-

protein complexes and domain-domain structures. In this

section, we show them together. As it is seen, in a majority of

the cases, DGel(A:B) is positive (Fig. 1 A), indicating that the

total electrostatic interactions oppose the binding. The

obtained distributions vary significantly with the internal di-

electric constant, ep, but in all cases the energies are pre-

dominantly positive. The mean of the distributions are 190

kcal/mol, 130 kcal/mol, and 110 kcal/mol for ep¼ 2, 4, and
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20, respectively. The distribution of DGel(A:B) calculated

with ep ¼ 20 is much narrower than those calculated with

ep ¼ 2 and 4, simply because the large dielectric constant

reduces the magnitude of calculated energies. However, in

all cases the distributions have a long tail stretching toward

large positive energies (the right side of the graph).

The distribution of DGcoul(A:B) is shown in Fig. 1 B and it

can be seen that the mean of all distributions is shifted to

negative values. This indicates that Coulombic energy favors

the binding for a majority of the structures studied in this

work. At the same time, DGrxn(A:B) shows an opposite trend.

In a vast majority of the cases, it was calculated to be pos-

itive, thus opposing the binding. The tendency is even stron-

ger as compared to the trend of the Coulombic component.

The variation of the internal dielectric constant affects the

magnitude of these energies, and at a high dielectric constant

ep ¼ 20, both distributions are narrower. In several cases,

DGrxn(A:B) was calculated to be a negative number (the left
side of Fig. 1 B). Since DGrxn(A:B) is the electrostatic com-

ponent of the change of the solvation energy upon the bind-

ing (usually called desolvation energy), one may wonder how

it could be a negative number. The analysis showed that these

outliers exhibit strong repulsive Coulombic interactions due

to monomers bearing a large net charge of the same polarity.

Electrostatic calculations of a complex consisting of two

monomers carrying large net charge of the same polarity

could result to a reaction field energy more negative than the

sum of the reaction field energies calculated for the separated

monomers, and thus DGrxn(A:B) , 0. In part, that results

from the assignment of default ionization states of all

titratable groups and thus, in some cases, may overestimate

the net charge of the monomers. However, computationally,

it is almost impossible to perform thorough atomic scale

electrostatic calculations (with accurate assignment of ion-

ization states) within such a large-scale study (654 entries).

The above results were obtained using a particular set of

radii and partial charges (Parse parameters (77)). To test the

sensitivity of the results obtained in respect to these param-

eters, we performed calculations using parameters from a

different force field (CHARMM (79)) on a subset of our

dataset. This resulted in different magnitudes of the binding

energies and their components (results not shown, but the

trends were the same as described above: the electrostatic

energy opposes the binding. However, the negativity of the

Coulombic component of the binding energy in the vast

majority of the cases suggests that the electrostatic interac-

tions assist the monomers in their initial approach to each

other (so-called steering effect). At distances of the mag-

nitude of one water layer, the desolvation penalty rapidly

increases and the role of the electrostatics depends upon the

precise balance between favorable Coulombic interactions

and unfavorable desolvation energy. It should be mentioned

that, at such short distances, van der Waals energy, specific

interactions, and the change of entropy may be the driving

forces of the binding. Finally, the observation that electrostatics

FIGURE 1 Distribution of the total electrostatic binding energy and its com-

ponents over 658 protein-protein complexes and domain-domain structures

calculated for three different dielectric constants of proteins: (A) total electro-

static binding energy; (B) Coulombic component of the binding energy; and

(C) reaction field component of the binding energy.
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oppose the binding should be taken with certain precautions

since the absolute value of the calculated electrostatic

component of the binding energy, as pointed out by Zhou

and co-workers (42), depends on how the dielectric bound-

ary between solute and the water phase is determined. Using

the van der Waals surface of the atoms as the surface of a

molecule dramatically changes the results (42). All these

findings indicate that the calculations of the absolute value of

the electrostatic components of the binding energy are

sensitive to parameters, the force field, and the method used.

It should also be noted that structures in our dataset were not

minimized before the energy calculations and any minimi-

zation will further affect the results.

Our results indicate that in most of the cases the electro-

statics opposes binding. However, the electrostatic energy

is only part of the total binding energy, which includes non-

electrostatic and entropy contributions. The total binding

energy must be negative for binding to occur, but individual

energy contributions do not have to. As it was pointed out in

the Introduction, the discussion about the electrostatic con-

tribution to the binding is a sensitive issue and in this article

we would like to tackle the problem from a different angle.

Namely, we want to see if the electrostatic energy and its

components are optimized, given the amino-acid sequences

composition and three-dimensional structures of the com-

plexes. In this way, the issue of the absolute value of the energy

will be avoided since we will be interested in the energy

difference between WT and the set of sequence-randomized

complexes. Thus the question that will be addressed is how

different are the components of the electrostatic energy of the

WT complexes compared to the energies calculated on a set of

sequence decoys.

In further analysis below, the value of the dielectric con-

stant will be kept as 2 and the boundary between solute and

the water will be determined with water probe with a radius

of 1.4 Å. From prospective of the optimization studies, the

choice of these parameters is not crucial, since we will be

interested in the difference between energies of WT com-

plexes and of complexes with randomized charge groups;

thus, the absolute value of the energy is not important.

Z-scores of energies

The concept of this study will be illustrated by analyzing a

particular complex (a-chymotrypsin complex with eglin

C, PDB code 1ACB) in detail. Following the algorithm

described in Methods, we generated a set of 500 sequence

decoys (the rest of the results are done with 200 random-

izations) by shuffling the side chains of the charged amino

acids but keeping the backbone unchanged. For each of de-

coys, we calculated binding energy components DGel(A:B),

DGcoul(A:B), and DGrxn(A:B), and then these energies were

used to build the corresponding distributions. Fig. 2 shows

resulting distributions of these three electrostatic components

FIGURE 2 Distribution of the electrostatic binding energy and its compo-

nent within a set of 500 decoys. The energy of the WT complex is shown with

an arrow. The energies were calculated for Protein Data Bank entry 1acb,

bovine a-chymotrypsin-eglin C complex.
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of the binding energy (the data points are grouped into 11

equally valued intervals and are fitted with a smooth curve).

It is clearly seen from the figure that all distributions are

of the symmetric Gaussian type (some small deviations from

the Gaussian curve observed in the figure are caused by

the limited sampling). On the same figures, we show the

corresponding energy component calculated using the WT

complex (marked with vertical arrows in Fig. 2). If the elec-

trostatic energy of the WT complex happens to be far away

from the mean of the distribution, then this will illustrate

that the WT energy is not the result of random distribution

of charges, but rather it requires specific organization of the

charged groups within the complex. In this particular ex-

ample, the total electrostatic binding energy DGel(A:B) is

125.4 kcal/mol, and that is not much different from the

mean of the distribution (132.4 kcal/mol, Fig. 2 A). In con-

trast, the Columbic and reaction field components are away

from the corresponding means (Fig. 2, B and C). The

DGcoul(A:B) is �31.8 kcal/mol for the WT structure while

the mean of the distribution is ;119.5 kcal/mol (Fig. 2 B).

This clearly indicates that WT Coulombic interactions in this

complex are not random but rather they are highly optimized

to favor the stability of the complex. This effect will be

referred to throughout the article as optimization of the

interaction energy. The reaction field component of the WT

structure is also far away from the mean of the distribution

(DGrxn(A:B)) ¼ 157.2 kcal/mol for the WT structure (and

mean is ;138.2 kcal/mol, Fig. 2 C), but is located to the

right from the mean, i.e., the WT reaction field energy is

more positive than expected by chance. Since such tendency

opposes the binding further, we will refer to that as anti-

optimization.

To test the sensitivity of the results with respect to the

exact side-chain positions and possible structural imperfec-

tions, short minimization runs were performed on the native

a-chymotrypsin-eglin C complex and each of its mutants

(in this case only 200 randomizations instead of 500 were

generated to reduce the computational demands). The struc-

tures of the monomers were kept as they were in the com-

plex. The minimization of the native complex resulted in Ca

RMSD 0.35 Å with respect to the nonminimized structure.

The corresponding energy components reported above

slightly changed their magnitudes to DGel(A:B) ¼ 123.4

kcal/mol, DGcoul(A:B) ¼ �39.4 kcal/mol, and DGrxn(A:B) ¼
162.8 kcal/mol. The total electrostatic binding energy be-

comes slightly less unfavorable, the Coulombic energy be-

comes more favorable, and reaction field energy becomes

less favorable due to the minimization of the structures. How-

ever, the changes are small. The resulting energy distribu-

tions are smoother and the minimization removes the long

tails (very favorable and unfavorable energies). Thus, despite

the small changes in the magnitude of the energy compo-

nents and in the mean/standard deviation of the correspond-

ing distributions, the resulting Z-scores are practically the

same as for the nonminimized structures.

Z-score distributions

To access the statistical significance of the effects described

above we carried out similar calculations on a large set of

proteins (for all 654 entries in our dataset). This requires

random shuffling of the side chains of all of these complexes

and obtaining the corresponding Z-scores for DGel(A:B),

DGcoul(A:B), and DGrxn(A:B). During these calculations, we

also computed the Z-scores of the Coulombic and reaction

field energies of the WT complexes (DGcoul(AB),

(DGrxn(AB)) and separated monomers ‘‘A’’ (DGcoul(A) and

DGrxn(A)) and ‘‘B’’ (DGcoul(B), DGrxn(B)). It was found that

the Z-scores of the total electrostatic binding energy do not

have clear tendency and because of that they will not be dis-

cussed further. However, the optimization/anti-optimization

effects were found to be statistically considerable for both

Coulombic interactions and reaction field energy. Below we

present details and discuss the results separately for each of

these components.

Z-scores distribution of the Coulombic energy

The Z-score distributions of the Coulombic components of

the electrostatic energy for all 654 entries in this study are

shown in Fig. 3. The Z-scores of the monomers and the

complexes are quite similar with and for vast majority of the

cases (.90% of proteins in the studied dataset) Z-score of

the WT Coulombic energy is a negative number. The mean

for all three cases is ;–2.6, which indicates strong opti-

mization of the Coulombic interactions in monomers and in

the complexes. The Coulombic component of the binding

energy is also optimized as seen in Fig. 3 D, but the opti-

mization is not as strong as in other three cases (the mean of

the Z-score is now ;�1). However, there is still significant

degree of optimization since .90% of the complexes and

domains studied in this work have a negative Z-score.

Reaction field energy

The Z-scores of the reaction field energy components are

shown in Fig. 4. Strong anti-optimization can be seen for

reaction field energy of the monomers and the complexes

(Fig. 4, A–C). In all three cases the mean is ;12.0 and

very few complexes have a negative Z-score. However, the

Z-score of binding energy, (DGrxn(A:B)) is almost symmet-

rical around the zero (Fig. 4 D). There is a slight preference

toward small negative Z-scores (the bars on the left side

of the zero are much taller than on the right side), which

indicates that the anti-optimization of the reaction field en-

ergy observed for complexes and monomers is suppressed

and even slightly reversed for the binding component of the

reaction field energy.

Electrostatic optimization within four classes of
protein-protein complexes

Fig. 5 shows Z-scores of Coulombic (DGcoul(A:B)) and

reaction field (DGrxn(A:B)) components of the binding

Electrostatic Interactions 3345
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energy separately for the four types of protein-protein com-

plexes in our dataset. The annotation was done manually

using the description provided in the header of the corre-

sponding PDB files and thus is not exclusive. Many entries

were not annotated and are not shown in Fig. 5. The number

of annotated antibody-antigen and G-protein complexes is

very small. We will show the results, but their Z-scores can-

not be analyzed from a statistical standpoint. The Z-scores of

FIGURE 4 Distribution of the Z-score of the reaction

field component of the electrostatic energy of (A) monomers

A (DGrxn(A)); (B) monomers B (DGrxn(A)); (C) complexes

(DGrxn(A)); and (D) binding (DGrxn(A)).

FIGURE 3 Distribution of the Z-score of the Coulombic

component of the electrostatic energy of (A) monomers A

(DGcoul(A)); (B) monomers B (DGcoul(B)); (C) complexes

(DGcoul(AB)); and (D) binding (DGcoul(A:B)).

3346 Brock et al.

Biophysical Journal 93(10) 3340–3352



the Coulombic component of the binding energy shows the

same trend among all types of protein-protein complexes.

It is shifted to negative Z-scores with a maximum of ;–1.

The tail of the distribution for some of the complexes runs to

very negative values of ,–11. This indicates very prominent

optimization of the Coulombic component of the binding

energy. The distribution of the Z-scores of the reaction field

component of the binding energy is not homogeneous among

the different types of complexes. DGrxn(A:B) is optimized for

the enzyme-inhibitor complexes (negative Z-score), while it

is anti-optimized for the transport proteins (slightly positive

Z-score). Comparison of Figs. 4 D and 5 B brings forward

the conclusion that in terms of DGrxn(A:B) most of the

complexes in our dataset perform as enzyme-inhibitor

complexes, since there is slight tendency of optimization in

Fig. 4 D.

Using Z-score of the electrostatic energy to
rank decoys

Finding the WT structure among structural decoys is usually

considered to be an exercise that evaluates the quality of

either force fields or scoring functions. In the case of decoy

complexes delivered with rigid body approach, the structures

of the monomers are the same among the decoys and WT and

the only difference is the binding interface. Thus, from an

electrostatic point of view, the main difference between WT

and decoy complexes is the electrostatic interactions across

the interface. Since the decoys are usually generated to have

a similar interfacial area, the variability of the charge-charge

interactions among structural decoys should have similar

trends as the above studied sequence variability (sequence

decoys). Here we study the performance of the components

of the electrostatic energy and the corresponding Z-scores to

rank structural decoys. Since our statistical study found that

Coulombic interactions within WT complexes are predom-

inantly negative, it is plausible to rank decoys in respect

to their Coulombic energy, assuming that the complexes

with lowest Coulombic energy are nativelike (in this case,

the Coulombic energy of the complex or the Coulombic

component of the binding energy will give the same result

because the monomeric structures are the same for all de-

coys). Similarly, it was demonstrated that reaction field en-

ergy is predominantly positive for all complexes in this

study. Then, it is plausible to rank the decoys with respect to

the most positive reaction field energy of the complex (since

the reaction field component of the binding energy was

found not to have a clear trend (Fig. 4 D), we will not discuss

it here). The performance of these two ranking criteria will

be compared with the performance of the corresponding

Z-scores. For that purpose we will calculate the Z-score of

Coulombic and reaction field energy of WT and decoy com-

plexes. Decoys with most negative Z-score of the Coulombic

energy will be considered nativelike, while decoys with most

positive Z-score of the reaction field energy will be ranked

the best. In addition, since the effects are opposite for Cou-

lombic and reaction field energies, we will test the perfor-

mance of two kernel functions

DGcombined ¼ DGcoul � DGrxn; (5)

Z� scoreðcombinedÞ¼ ½Z� scoreðcoulÞ�� ½Z� scoreðrxnÞ�;
(6)

where DGcombined is the energy difference of the Coulombic

and reaction field energy of the complex, a quantity that does

not have physical meaning, and Z-score(combined) is the dif-

ference of the Z-scores of the Coulombic and reaction field

energy of the same complex. The minus sign comes from the

observation that these two energy terms (Coulombic and

reaction field energy) show opposite trends. In Discussion,

we talk about that issue because of the strong statistical cor-

relation between Coulombic and reaction field energies.

FIGURE 5 Distribution of the Z-score of the electrostatic component of the

binding energy for four types of protein complexes: Anti, antibody-antigen;

enzyme, enzyme-inhibitor; G, G-protein complexes; and transp, transport

proteins.
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The test was performed using all available decoy sets

from the Vakser lab (http://vakser.bioinformatics.ku.edu/files/

decoys/database.html). These include trypsin-BPTI, subtilisin-

chymotrypsin inhibitor, chymotrypsin-ovomucoid 3rd do-

main, and barnase-barstar. Each set includes the native

structure and 100 decoys. Both the WT and decoys are not

minimized, which is suitable for our approach.

Commonly used criterion for ranking rigid-body-generated

decoys is to rank them according to the nonbonded interaction

energy. Since the internal structure of the monomers is the

same for all of the decoys, the internal mechanical energy is a

constant and does not affect the ranking. The nonbonded

energies include electrostatic (Coulombic and reaction field)

energy, van der Waals (vdW) energy, and so-called surface

tension energy proportional to the interface of the complexes.

In our case, the complexes are not minimized and thus the

vdW cannot be reliably calculated and is not taken into

account below. The performances of the total electrostatic

binding energy (DGel(A:B)) and of the total binding energy

excluding vdW (DGtot) are shown in the Supplementary

Material for all four complexes. In most of cases, the WT

complex is calculated to have energy less favorable than most

of the decoys, indicating that this ranking criterion does not

work for these four complexes. For comparison, applying the

Z-score (combined) as a criterion drastically improves the

ranking of the WT complexes (see Supplementary Material).

The performance of all above-defined ranking criteria is

summarized in Table 1, where we show the ranks of four WT

complexes among hundreds of decoys. It can be seen that

the ranking of the WT complexes with the total electro-

static binding energy (DGel(A:B)) is not good. The most pro-

nounced is the effect for the barnase-barstar complex, where

the ranking of the WT with DGel(A:B) is 86 while WT ranks

first or second with the Z-score of reaction field energy and

combined Z-score, respectively. Among the direct energy cri-

teria, the reaction field energy of the complex (DGrxn(AB))

performs the best and even outperforms the combined Z-score

in two cases. Despite that, these four sets of decoys are not

enough to draw definite conclusions. It seems that there is

no significant difference for the performance of the direct

energy and the Z-score methods. In two cases, the direct

energy method generates the best ranking while, in the other

two, the Z-score does. It is not surprising that they perform

similarly, since in this case of rigid-body-generated decoys,

the structural and sequence variation should give very similar

effects.

The calculations were repeated using different dielectric

constants and it was found that the ranking does not change

significantly for all of the scoring methods. The results with

ep ¼ 4 and 20 are very similar to those shown in the Table

1 (results not shown).

To further address the possibility of using electrostatic

energy components to rank decoys, we performed a test us-

ing the Boston University benchmark set (80) (Benchmark

2.0; http://zlab.bu.edu/zdock/benchmark.shtml) and select-

ing only binary complexes (see Table 1S in the Supplemen-

tary Material). This resulted in a set of 41 protein complexes,

and for each complex we generated 1000 decoys using

ZDOCK 2.3 (81) and the bound structures of the monomers.

Then the WT complexes were ranked with respect to the de-

coys using the aforementioned electrostatic energy compo-

nents (see Table 1S in the Supplementary Material section).

In contrast to the benchmarks done on Vakser’s unbound

decoys, the strongest signal was obtained with the Coulom-

bic component of the binding energy. On average, the WT

complex was ranked at the top 16–17% of the decoys with

the Coulombic energy, while using the reaction field energy

ranked the WT within top 38–49%, which is unsatisfactory.

The electrostatic component of the binding energy as well as

the difference between Coulombic and reaction field ener-

gies did not perform well, resulting in ranks from 20 to

26% and 25 to 33%, respectively. This confirms our previous

finding that the electrostatic component of the binding en-

ergy is not a good criterion for finding the WT complex.

However, in contrast to the results on the Vakser’s decoys,

the reaction field energy does not perform well while the

Coulombic energy results are the best. This difference could

be due to the fact that Vakser’s decoys set is based on un-

bound structures, while ZDOCK constructed decoys were gen-

erated using bound structures. Alternatively, this may simply

reflect the difference of the GRAMM (63) and ZDOCK al-

gorithms. However, consistently in both cases, we found that

the electrostatic component of the binding energy is not a good

discriminator of the WT complexes.

The results of this paragraph suggest that total electrostatic

binding energy is not a good criterion for discriminating

TABLE 1 Rank of wild-type (WT) structure among 100 structural decoys with respect to four different ranking schemes for four

protein-protein complexes

Rank

WT protein complex DGel(AB) DGcoul(AB) DGrxn(AB)

DGcoul(AB) -

DGrxn(AB)

Z-score of

DGcoul(AB)

Z-score of

DGrxn(AB)

Z-score

(combined)

Trypsin-BPTI 93 16 1 11 17 27 15

Subtilisin-chymotrypsin inhibitor 64 34 20 21 7 47 16

Chymotrypsin-ovomucoid 3rd domain 88 45 14 16 59 42 50

Barnase-barstar 86 10 5 9 9 1 2

The best ranking for each of the complexes is shown as bold number.
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decoys of protein-protein complexes. Ranking based on the

Coulombic interactions performs much better, but not as

good as the ranking based on the most positive reaction field

energy of the complexes. The kernel function that is the

difference between Coulombic and reaction field energies

shows a medium performance. Among the Z-score ranking

methods, the kernel function of the combined Z-score per-

forms the best. It reaches the performance of the reaction field

energy function. These results indicate that reaction field

energy is an important factor in ranking decoys and should

not be omitted from the ranking algorithms. In addition, the

Z-scores provide an alternative method for ranking decoys of

protein-protein complexes that, in some cases, outperforms

the energy ranking.

DISCUSSION

This large-scale study of the role of the electrostatics on the

protein-protein interactions indicates that the electrostatic en-

ergy do not necessarily favor the binding. For the vast ma-

jority (.90%) of the complexes in our dataset, the calculated

total electrostatic binding energy is positive. The results were

found to be independent of the internal dielectric constant

value. The choice of which is the subject of many debates in

the literature (see review (82)). While the results presented

here were obtained with the Parse force field, we also tested

the outcome of our calculations with the parameters from the

CHARMM force field and found no qualitative difference,

although the magnitudes of the binding energies were quite

different. It should be noted, however, that we did not test the

sensitivity of our results with respect to other parameters of

the computational protocol such as the dielectric boundary

presentation, which could make the results different (42,43).

In addition, the structures were not minimized and one can

argue that eventual minimization may further optimize the

electrostatic interactions and may make the electrostatic con-

tribution into the binding more favorable. Nevertheless, the

calculations on a large (654 entries) set of nonrefined x-ray

structures resulted in electrostatic energy opposing the bind-

ing, and hence, it is plausible to suggest that perhaps electro-

statics in WT complexes plays a role mostly in steering the

monomers into the complex structure rather than having sig-

nificant contribution to the affinity.

It is very well known that the amino-acid sequence deter-

mines the fold of the proteins. Nevertheless, proteins can, to a

certain degree, tolerate amino-acid substitutions and still

retain the same fold. Especially, the solvent-exposed charged

groups may not be very important in determining three-

dimensional structures of monomers and their complexes, but

they could, at the same time, be just as important for the

solubility of molecules and their complexes. Then their exact

locations at the protein surface would be not so important

and should not affect the energy of protein and their com-

plexes. However, this study shows that the arrangement of

the charged groups is not random in proteins and protein

complexes. In particular, it was shown that the Z-score of the

Coulombic component of electrostatic interactions in the

wild-type structures exhibits strong optimization for both

the energies of the entire structures (monomers and/or com-

plexes) and for the energies related to the complex interface

(binding energy). The reaction field component was found

to be anti-optimized for energies of entire structures only.

The anti-optimization tendency is suppressed for the binding

energy, and for some proteins the reaction field component of

the binding energy is also optimized. However, it should be

emphasized that optimization/anti-optimization are measured

in respect to the mean of the energy of sequence randomized

decoys (sequence decoys), and thus do not reflect the absolute

contribution of the electrostatic to the binding. Thus, the given

energy component may oppose the binding, but still be opti-

mized with respect to the mean of the energy of a randomized

sequence.

The finding that the Coulombic component of binding

energy is optimized confirms our previous studies of elec-

trostatic properties of protein-protein complexes (7,39). We

have shown, using a set of six protein-protein complexes,

that increase of the salt concentration makes the binding

weaker (39)—an effect that is experimentally measured.

Since, from the point of view of nonspecific interaction, the

electrostatics is the only energy component sensitive to the

ion concentration, the above finding indicates that elec-

trostatic Coulombic interactions favor the binding for the

complexes studied in Bertonati et al. (39). Screening of these

favorable Coulombic interactions as the ionic strength in-

creases makes the binding weaker (note that, in our approach,

the reaction field energy is salt-independent; for the energy

decomposition of the electrostatic energy, see (75)). The

observation that the formation of complexes lowers the pKa

values of acidic groups (7) also indicates electrostatic optimi-

zation. Since the pKa shifts are caused by the new (presum-

ably favorable) interactions across the interface and the loss

of solvation energy (desolvation) upon complex formation, a

negative pKa shift for acidic groups indicates that the gain of

favorable Coulombic interactions overcompensates the de-

solvation penalty. Such an effect requires specific organiza-

tion of the charged groups at the interface of the complexes

and reflects the optimization of the charge-charge interac-

tions.

The optimization of the Coulombic interactions and anti-

optimization of the reaction field energy for entire structures

(monomers and their complexes) deserves a special discus-

sion. The reaction field energy depends on the Coulombic

interactions, and in principle, the stronger the electrostatic

field, the larger the magnitude of the reaction field energy.

Statistical studies have shown that the correlation between

Coulombic and reaction field energies results in a coefficient

of ;0.8 and many studies aimed at high performance speed

had used that correlation to avoid the time-consuming

calculations of the reaction field energy (83–85). Our large-

scale statistical study indirectly confirms that observation. A
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plot of the Z-score for the Coulombic energy versus Z-scores

for the reaction field energy shows a very strong correlation

(correlation coefficient of 0.92, data not shown) for the

energies of either the monomers or the complexes. However,

the components of the binding energy behave differently.

There is no strong correlation between the Z-scores for

the Coulombic and reaction field components of the binding

energies, and in this case the correlation coefficient is only

0.24 (data not shown).

In the test of detecting structural decoys we have used

several ranking functions ranging from the components of the

electrostatic energy to the corresponding Z-scores of these

energies in respect to sequence randomization. It was shown

that the total electrostatic binding energy does not perform

well, while the individual components (especially the reaction

field component) do. The ranking with the corresponding

Z-scores performs better in two of the cases indicating the

potential of this approach. Additional benchmarking was

done on a set of 41 protein complexes extracted from Boston

University benchmark and for each complex we generated

1000 decoys using ZDOCK 2.3 (81) and the bound structures

of the monomers. The results confirmed that the electrostatic

component of the binding energy is not as good a criterion

for discriminating decoys, while the Coulombic component

performs the best.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this

article, visit www.biophysj.org.
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