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ABSTRACT Activity coefficients of urea solutions are calculated to explore the mechanism of its solution properties, which
form the basis for its well-known use as a strong protein denaturant. We perform free energy simulations of urea solutions in
different urea concentrations using two urea models (OPLS and KBFF models) to calculate and decompose the activity co-
efficients. For the case of urea, we clarify the concept of the ideal solution in different concentration scales and standard states
and its effect on our subsequent analysis. The analytical form of activity coefficients depends on the concentration units and
standard states. For both models studied, urea displays a weak concentration dependence for excess chemical potential. How-
ever, for the OPLS force-field model, this results from contributions that are independent of concentration to the van der Waals
and electrostatic components whereas for the KBFF model those components are nontrivial but oppose each other. The strong
ideality of urea solutions in some concentration scales (incidentally implying a lack of water perturbation) is discussed in terms
of recent data and ideas on the mechanism of urea denaturation of proteins.

INTRODUCTION

Molecules in cells function in a highly crowded, concentrated,

nonideal solution environment. Therefore, the usual treatments

that make use of concepts from the ideal, infinite dilution

solution limit are quantitatively inadequate for many biolog-

ical problems. Urea is an interesting case. It has a strong

concentration-dependent effect on the folding/denaturing

transition for proteins in solution. This might appear to be

due to nonideality in solution. In fact, in some concentration

scales it shows substantial deviations from ideality. Yet, in the

molar scale, it appears almost ideal. Much literature has been

devoted to how urea must change water’s structure to make its

solution such a powerful denaturant (1). Theoretical work

from this lab and experiments from others question the water

structure change hypothesis (2,3).

The effect of osmolytes and a multicomponent environ-

ment in general is to change the chemical potentials of the

components, most notably that of the macromolecular solutes.

Such changes result in differences in stability for conforma-

tions and oligomerization versus simple aqueous solutions. The

effects can be quite significant for biological systems where

common use is made of urea, proline, sucrose, glycerol, etc.

(4,5). To consider these effects we must consider the system’s

free energy (or activity) in general.

The Gibbs free energy change, dG, is

dG ¼ �SdT 1 VdP 1 +
i

midni; (1)

where S is the entropy, T is absolute temperature, P is pres-

sure, ni is the number of the ith species and mi its chemical

potential. The systems in which we are interested, for the

most part, in this work are isothermal-isobaric systems. In a

multicomponent mixture, the thermodynamic condition of

the system is expected to be strongly affected by the chem-

ical potentials. However, interpretation and even measure-

ment of chemical potential or activity is confounded by

standard state and even the concentration scale used.

It is convenient to start from the understanding of ideal

solution properties to understand real systems. Ideal solu-

tions are a convenient if occasionally misleading approxima-

tion to real solutions, much as an ideal gas is an approximation

to real gases. There are two well-known ideal solutions. One

is the symmetric ideal solution and the other is a dilute ideal

solution (6). Isotopic and some isomeric mixtures are typical

examples which are often very close to a symmetric ideal

solution. However, most pure electrolytes and osmolytes are

in the solid state for the range of temperature and pressure in

which we are interested. It is notoriously difficult to deter-

mine the relative activity of the solid state with respect to the

pure liquid experimentally. In such cases, the infinitely dilute

state can often be used as the standard state, and one then

considers the deviation from the dilute ideal solution.

No real solution is an ideal solution exactly. Adding solutes

to liquid water generally causes, to a greater or lesser extent,

colligative effects such as vapor pressure lowering, boiling

point elevation, freezing point depression, and osmotic pres-

sure changes. These properties depend only on the number of

solute molecules in the case of a dilute ideal solution. They

are relatively independent of chemical properties of solutes

for dilute solutions. They generally depend on species and

concentrations of solutes in real solutions.

The existing solution theories which use the infinitely

dilute state as the standard state most often explain solution

behavior only in a very dilute solution. There is no complete,

analytic theory which can explain experimental data at con-

centrations of .1.0 mol/L. In development of such theory,
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Rösgen et al. were recently very successful in fitting partition

function ratios as parameters to experimental data in an ac-

tivity series with analysis based on a derivation arising from

a semi-grand canonical ensemble (7,8). Here, using urea solu-

tions as a case of interest, we would like to address whether

the fitted parameters are true representations of the ratios of

low order partition functions or just effective coefficients,

i.e., direct representations or renormalized. We discuss the

dependence on the urea model parameters as well in Results

and Discussion.

It is generally cumbersome to obtain experimental solva-

tion free energy (excess chemical potential) in most electrolytes

and osmolytes. One reason is that relative activity coefficients

depend nontrivially on the concentration scale used. Another

reason is because the vapor pressure at room temperature is

often too small to measure accurately. Smith et al. (9) estimated

the solvation free energy of urea computationally. However,

their estimation is based on some assumptions. Because there

is no experimental data on the vapor pressure of urea at room

temperature (urea is essentially nonvolatile), they estimated

from an extrapolated value of the vapor pressure at high tem-

peratures. It is difficult to validate these estimations because

existing experimental data on urea vapor pressure is incon-

sistent, and with questionable accuracy (10,11). The validity

of the extrapolation method to low temperatures is similarly

unclear. Urea solutions show a striking apparent dependence

on how we view them in terms of standard state and concen-

tration scale. They are close to a dilute ideal solution in the

molarity scale, but not for other scales such as the mole frac-

tion or molality, nor for a symmetric ideal solution (9) as we

show below. We also show that it is possible to understand

the near ideality of urea solutions that occurs with certain scales

and reference systems by molecular simulation with appro-

priate theoretical analysis.

There is no direct experimental solvation free energy (ex-

cess chemical potential) data for urea solutions. Thus, it is

difficult a priori to judge the applicability of the various force

fields for urea from the solvation free energy value calculated

using simulations. Experimental aqueous solvation free

energy data exists only for a few solutes such as some small

alkanes, alcohols, and amides, because such solutes are vol-

atile at room temperature. Instead, for urea we have only the

experimental activity coefficient data (12–14). Experimental

activity coefficients are obtained from osmotic coefficient

data on urea with knowledge of the osmotic pressure of water

via the Gibbs-Duhem relation.

In principle, for any force field, the activity coefficient of

urea can be obtained through calculation of the chemical po-

tential at different concentrations, although that requires high

precision to compare with experiment. In this article, we ex-

amine how and why the activity coefficient changes in different

concentrations of urea solutions. We use free energy calcu-

lations with sampling from molecular dynamics simulations

with two different all-atom force fields to generate hypoth-

eses about the mechanism to explain the activity at the mo-

lecular level. We hope to clarify the origin of the behavior of

urea in aqueous solution as a prelude to considering its pro-

found effect on proteins.

Calculating the chemical potential with sufficient preci-

sion to obtain activity coefficient changes is still a challeng-

ing computational problem. It is necessary to calculate the

chemical potential quite precisely to estimate the change in

an activity coefficient by simulations. Here we combine and

contrast the thermodynamic integration method, perturbation

method, and Bennett’s acceptance ratio method for our ac-

tivity coefficient calculations. We compare simulation results

with experimental data over a wide range of urea concen-

trations.

In the next section, we review the theoretical framework of

ideal and nonideal solutions as well as the often confused

concentration dependence. The calculational methods to obtain

sufficiently precise chemical potentials are also explained.

Readers familiar with the connections of Raoult’s and Henry’s

laws to the modern theories of solution may skip Ideal Solu-

tions. In Methods, the models and details of the simulation

are presented. In Results and Discussion, in the context of

both the models, the data are given. Conclusions is devoted

to our remarks about what our results imply about the mech-

anism of action of urea on proteins.

THEORY

For our subsequent analysis, we must separate and quantify

the effects of standard state from concentration-scale depen-

dence of the chemical potential or activity coefficients. We

start with a discussion of ideality which has more than one

definition in the literature. This will be important to relate

molecular level correlations to the various measures of non-

ideality.

Ideal solutions

We first review the theoretical definitions of an ideal solution

to set our work in context. The reader familiar with this

area and interested in the case of urea solutions may skip to

Methods. The concept of an ideal solution was first devel-

oped by Raoult historically (15). Raoult found that the

vapor pressure of a component over a liquid solution at equi-

librium is proportional to the mole fraction of the component

in solution,

m
l

A ¼ m
l0

AðT;PÞ1 RT ln
pA

p
0

A

; (2)

pA ¼ xAp
0

A; (3)

where ml
A is chemical potential of the substance A in the

mixture solution, ml0
A is chemical potential of A in pure A, pA

is the partial vapor pressure of A in the mixed solution, and

p0
A is the vapor pressure of pure A.

Here, the ideal solution is defined as the solution which

satisfies the following relation for mole fractions 0 # xA # 1:
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m
l

A ¼ m
l0

AðT; PÞ1 RT ln xA: (4)

In this definition, it is not necessary to assume that vapor

is an ideal gas. This type of ideal solution has been called a

symmetric ideal solution (6). In Eq. 4 the second term, right

side, is always #0.0, and it implies that the chemical poten-

tial in a mixture is always smaller than that in the pure liquid.

Note that symmetric ideal solutions are defined at constant

temperature and pressure.

The Gibb’s free energy difference per molecule or chem-

ical potential, Dm, when an ideal solution is made from nA of

substance A and nB of substance B becomes

Dm ¼ nAmA 1 nBmB � nAm
0

A � nBm
0

B

¼ RTðnA log xA 1 nB log xBÞ; (5)

with change in enthalpy, DH, and entropy, DS,

DH ¼ 0; (6)

DS ¼ �RðnA log xA 1 nB log xBÞ: (7)

Thus, there is no enthalpy change (no heat of mixing) (Eq. 6).

Equation 7 is the entropy of mixing in an ideal gas. Therefore

the difference in chemical potential between the system of nA

moles of pure A and the mixture system of solution of nA

moles of A and nB moles of B is

m
0

A � mA ¼ �RT
@ðnAlog xA 1 nBlog xBÞ

@nA

� �
¼ �RTlog xA:

(8)

This makes clear that the second term on the right-hand side

of Eq. 4 is the contribution from the entropy of mixing.

What are necessary and sufficient conditions for such ideal

solutions? By differentiating Eq. 4 by xA we have

@mA

@xA

� �
T;P

¼ kT

xA

: (9)

On the other hand, we know from Kirkwood-Buff theory

(16),

@mA

@xA

� �
T;P

¼ kT
1

xA

� xBrDAB

1 1 rxAxBDAB

� �
; (10)

where r is the number density, r ¼ rA 1 rB ¼ ÆNAæ /V 1

ÆNBæ /V, and

DAB ¼ GAA 1 GBB � 2GAB

Gab ¼
Z N

0

½gabðrÞ � 1�4pr2dr: (11)

Gab is called the Kirkwood-Buff integral which requires the

radial pair distribution, gab(r), as a function of distance, r,

between molecular species a and b.

Therefore, the necessary and sufficient condition is that

there are no excesses or deficits of one molecule around

another versus a simple random distribution on average or

that

DAB ¼ 0: (12)

In many solutions, the vapor pressure of solvent of very

dilute solute solutions obeys

pB ¼ xBp0

B; (13)

where, from now on, we consider A as solute and B as sol-

vent. This is the empirical law for infinitely dilute solutions

at constant T. Thus, in particular, pure solvent is an ideal

solution. When the solvent obeys Raoult’s law in dilute solu-

tions, the solute follows

pA ¼ kAxA: (14)

Here, pA is vapor pressure of solute and kA is a constant

which depends on the species of the solute. This relation is

derived straightforwardly by integrating the Gibbs-Duhem

relation. This is called Henry’s law (17). In this case, the

chemical potential of solute becomes

mA ¼ m
l0

AðT;PÞ1 RT log
kAxA

p
0

A

(15)

at xA ; 0 (we assume that the gas phase is an ideal gas or

very dilute). Henry’s law can be derived differently as follows.

When the mole fraction of solute approaches 0, its vapor pres-

sure also approaches 0, and so

@pA

@xA

¼ pA

xA

¼ const (16)

is another statement of Henry’s law. Therefore, the existence

of this proportionality relation does not depend on the species

of the solutes or the number of components of the solution.

The proportionality constant kA contains the actual depen-

dence on the substance. Similarly, we obtain the following

relations by using different units such as molality, m, or

molarity, r, instead of mole fraction, respectively,

pA ¼ k
m

A mA; (17)

pA ¼ k
r

ArA: (18)

The vapor pressure of the solute in an infinitely dilute

solution is proportional to mole fraction, molality, or number

density. Here, we showed the proportional relations to vapor

pressure, but one can derive similar relations for activity.

The validity of the concentration dependence of Henry’s

law depends on the species of the substances involved, but is

often a good approximation at low concentration where we

do not expect significant associations or influences among

the solute molecules. If Henry’s law is satisfied at high con-

centration, the chemical potential is the same as that of the

infinitely dilute solution, that is, a dilute ideal solution.

If the chemical difference between solute and solvent is

very small and the solution is a symmetric ideal solution,

Henry’s law is then satisfied as long as we use mole fraction

or molarity scales. In other words, if it is a symmetric ideal

solution with similar molecular volumes, it is also a dilute

ideal solution in mole fraction scale and molarity scale. The
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dilute ideal solution in the molality scale is exceptional and it

is not a symmetric ideal solution even if it is a dilute ideal

solution as explained later.

The regular solution defined by Hildebrand is the solution

which satisfies the following (18):

DH̄ 6¼ 0

D�S ¼ �Rðn1log x1 1 n2log x2Þ: (19)

This differs subtly from Raoult’s definitions in Eqs. 6 and

7 by the allowed change in DH. This is consistent with the

assumption that there are no specific interactions such as

associations between molecules so that the distribution and

orientation of molecules are completely random. Therefore,

a urea solution is not expected to be regular because it has

specific strong interactions and local orientational preferences

via hydrogen bonds. In regular solutions, thermal fluctuations

are assumed to be strong enough to overcome the specific or

orienting interactions between different molecules and cause

random mixing. If the difference between two molecules is

large and random mixing does not occur, solubility is gener-

ally small in this case and it becomes a very dilute solution. As

a result, there will be little direct interactions between solute

molecules.

Concentration scale dependence of nonideality

We now discuss general solutions which deviate from ideal

solutions and the dependence of measured changes in activ-

ity on concentration scales. We may write

mA ¼ m
0

AðT; PÞ1 RT ln xA 1 RT lngAðT; P; xAÞ
¼ m

0

AðT; PÞ1 RT ln aAðT; PÞ: (20)

Here, aA is relative activity and gA is the activity coefficient.

The value m0
A is the chemical potential of pure A, so gA ¼ 1

when xA ¼ 1. Various nonideal effects are all included in

gA in this expression. Note that aA is deemed ‘‘relative’’

because we used a standard state. If we consider mA without

choosing a standard state,

mA ¼ RT ln fAðT;PÞ; (21)

where fA is the absolute activity.

As above, a natural choice of the standard state is a pure

solute solution. However, most pure salts and many

osmolytes are solid and not liquid in the range of temperature

and pressure in which we are usually interested (;1 atm,

;298 K). In this case, m0
A, which is the chemical potential of

the pure liquid, is not measurable experimentally. Another

natural choice of the standard state is the infinitely dilute

solution. Therefore, in many cases we take infinite dilution as

the standard state for osmolytes.

The fact that relative activity is thus defined in various,

disparate ways causes confusion in the literature. Only when

the relative activity with respect to the pure liquid can be

evaluated experimentally is it the custom to take pure liquid

as the standard state. We often take the infinite dilute solu-

tion as the standard state because it can be referred to easily

experimentally.

The activity coefficient at mole fraction x when the stan-

dard state is infinitely dilute may be introduced in the fol-

lowing way:

g
x

A ¼
gA

g
N

A

: (22)

Here, gN
A is the activity coefficient of the infinite dilute solu-

tion. Using gN
A , Eq. 20 becomes

mA ¼ m
0

A 1 RT ln ðxAg
x

Ag
N

A Þ ¼ m
�
A; x 1 RT ln ðxAg

x

AÞ (23)

using the infinite dilution standard state. Thus, we define the

sum of the chemical potential of pure A and the contribution

from the infinitely dilute standard state as

m
�
A; x ¼ m

0

A 1 RT ln g
N

A ; (24)

which can be referenced experimentally.

We next consider the consequences of concentration scale

change from mole fraction to molality [mol/kg]. Molality can

be expressed

mA ¼
1000nA

nBMB

; (25)

where MB is the mass [g/mol] of the solvent B, and nA and

nB are the mole numbers of the substances A and B in the

system. The relation between mole fraction and molality is

simply

xA ¼
nA

nA 1 nB

¼ mAnBMB

1000ðnA 1 nBÞ
¼ mAMBxB

1000
: (26)

Substituting Eq. 26 in the first equation of Eq. 23, we have

mA ¼ m
0

A 1 RT ln
mAMBxB

1000
g

x

Ag
N

A

� �

¼ m
�
A;m 1 RT ln g

m

A

mA

m0

� �
; (27)

where m0 ¼ 1 [mol/kg] was introduced to make the content

of the ln dimensionless and

g
m

A ¼ g
x

AxB: (28)

With this we define

m
�
A;m ¼ m

0

A 1 RT ln g
N

A 1 RT ln
MBm0

1000
¼ m

�
A;x 1 RT ln

MBm0

1000
:

(29)

Equations 28 and 29 are the activity coefficient and chemical

potential in the infinite dilution standard state with the molal-

ity scale, respectively.

Similarly for molar concentration units referenced to

infinite dilution,

mA ¼ m
�
A;r 1 RT ln g

r

A

rA

r
0

B

� �
; (30)
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where r0
B [mol/L] is the number density of the pure solvent B

and again makes the argument of the ln dimensionless and

makes the activity coefficient in the infinitely dilute solution

1.0 (see Eq. 31 below). The activity coefficient and standard

state chemical potential in the molarity scale are

g
r

A ¼
g

x

AxBr
0

B

rB

(31)

m
�
A; r ¼ m

0

A 1 RT ln g
N

A (32)

¼ m
�
A; x: (33)

The well-known relation between the molality and the

molarity activity coefficients for a given temperature and

density can be obtained similarly:

g
r

A ¼
g

m

Ar
0

B

rB

: (34)

Alternatively, one could just use the analytic transforma-

tion between the concentration scales, which does not require

knowledge of the density at the relevant temperature

previously derived, to good accuracy (7).

The chemical potential of solute A in ideal dilute solutions

(xA ; 0, xB ; 1) are thus expressed in any of the following

ways,

mA ¼ m
�
A;x 1 RT log xA ¼ m

�
A;m 1 RT log

mA

m0

� �

¼ m
�
A;r 1 RT log

rA

r
0

B

� �
; (35)

and the chemical potentials in terms of activities, and activity

coefficients for general nonideal, dilute solutions are

mA ¼ m
�
A;x 1 RT log ax

A ¼ m
�
A;x 1 RT logðgx

AxAÞ

¼ m
�
A;m 1 RT log a

m

A ¼ m
�
A;m 1 RT log g

m

A

mA

m0

� �

¼ m
�
A;r 1 RT log a

r

A ¼ m
�
A;r 1 RT log g

r

A

rA

r
0

B

� �
: (36)

The molality and mole fraction of solutions do not depend on

temperature, but molarity does depend on temperature

because the volume and thus, density, changes with respect

to temperature. Given this and the volume-versus-mass issue,

the apparent nonideality of a given solution is qualitatively

very different if we choose different concentration scales

except in the limit of infinitely dilute solutions where g

becomes 1.0 in every scale.

Reference state forms of chemical potential

In this section, we formally explore the consequences of in-

terpreting the chemical potential changes for different refer-

ence systems in various concentration units. The object here

is to phrase the relevant relations in terms of quantities readily

computable from simulation or liquid state theory. Besides the

numbers of molecules of each species, we will require the

average volume, ÆVæ and the excess chemical potential.

We perform our simulations found in Results and

Discussion in the isobaric-isothermal or NPT ensemble for

the calculations of the excess chemical potential. Equation

59 could be used to calculate chemical potential but refers to

a different ensemble. In general, one could simply Legendre-

transform the results. However, because the correlation be-

tween volume and energy in Eq. 59 is small in urea solutions

(the correlation coefficient magnitudes in our simulations

were ;0.15), we can reliably, approximately transform Eq.

59 to

mA ¼ �
3

2
kT log

2mApkT

h
2

� �
1 kT log

NA

ÆVæ
� kT logÆe�c=kTæ

¼ m
id

A 1 m
excess

A : (37)

Here, the ensemble average is taken over ÆæNA;NB;P;T; and

m
id

A ¼ �
3

2
kT log

2mApkT

h
2

� �
1 kT log

NA

ÆVæ
;

m
excess

A ¼ �kT log Æe�c=kTæ: (38)

Urea solutions at room temperature and pressure are dense

liquids and urea is too large for a successful implementation

of the particle insertion method for mexcess
A . We evaluated

three other methods below, thermodynamic integration,

perturbation theory, and the Bennett-Pande acceptance ratio

method, for an estimation of mexcess
A of Eq. 37. This term is

often interchangeably referred to as either the excess

chemical potential or the solvation free energy. The detailed

conditions of our simulations are described later in Methods.

Given the breakdown of mA in Eq. 37, we now write the

chemical potential form in terms of quantities readily

available from simulation in the mole fraction, molality

scale, and molarity scale below:

mAðP; TÞ ¼ �
3

2
kBT log

2mApkBT

h
2 1 kBT log xA 1 kBT log

NA 1 NB

ÆVæ
� kBT logÆe�bcæ

¼ �3

2
kBT log

2mApkBT

h
2 1 kBT log

mA

m0

1 kBT log
NBMBm0

1000ÆVæ
� kBT logÆe�bcæ

¼ �3

2
kBT log

2mApkBT

h
2 1 kBT log

N
�
B

ÆVæ�
1 kBT log

rA

r
0

B

� kBT logÆe�bcæ; (39)

3396 Kokubo et al.

Biophysical Journal 93(10) 3392–3407



where the terms with * are the values at the infinitely dilute

state.

Let us first consider infinite dilution as the standard state.

Consider the deviation from the dilute ideal solution. In the

mole-fraction scale standard state, the chemical potential and

activity coefficient become

m
�
A;x ¼ �

3

2
kBT log

2mApkBT

h
2 1 kBT log

N
�
B

ÆVæ�
� kBT log Æe�bcæ�

(40)

kBT logg
x

A ¼ kBT log
NA 1 NB

ÆVæ
� log

N
�
B

ÆVæ�
� �

� kBTðlogÆe�bcæ� logÆe�bcæ�Þ
¼ Dm

x;D

A 1 Dm
excess

A : (41)

In the molality scale, we thus have

m
�
A;m ¼ �

3

2
kBT log

2mApkBT

h
2 1 kBT log

MBm0

1000

1 kB Tlog
N
�
B

ÆVæ�
� kBT log Æe�bcæ�;

(42)

kBT logg
m

A ¼ kBT log
NB

ÆVæ
� log

N�B
ÆVæ�

� �
� kBTðlogÆe�bcæ

� logÆe�bcæ�Þ
¼ Dm

m;D

A 1 Dm
excess

A : (43)

We see that the relationship between activity coefficients

in the mole fraction and molality case is the same as shown in

Eq. 28. Namely, Eqs. 41 and 43 are consistent with Eq. 28 as

they should be.

In the case of the molarity scale, however, we have

m
�
A;r ¼�

3

2
kBTlog

2mApkBT

h
2 1 kBT log

N�B
ÆVæ�
� kBT logÆe�bcæ�;

(44)

kBT logg
r

A ¼ �kBTðlogÆe�bcæ� logÆe�bcæ�Þ ¼ Dm
excess

A :

(45)

These equations (Eqs. 41, 43, and 45), in terms of readily

computable quantities, show how the meaning of nonideal

solutions change when the concentration scale changes. The

activity coefficient in the molarity scale measures only the

excess free energy difference (solvation free energy dif-

ference). As is well known but often underappreciated, the

apparent deviation from ideality for dilute solutions strongly

depends on the scale.

We next consider the nonideal deviation for a symmetric

ideal solution reference. Pure solute is the standard state in

this case. However, symmetric ideal solutions are usually

defined with the mole fraction scale (Eq. 4), not with molality

or molarity. Therefore, the standard state and activity coef-

ficient may be written as

m
��
A;x ¼�

3

2
kBT log

2mApkBT

h2 1kBT log
N
��
A

ÆVæ��
� kBT logÆe�bcæ��;

(46)

kBT logg
x;s

A ¼ kBT log
NA 1 NB

ÆVæ
� log

N
��
A

ÆVæ��
� �

� kBTðlogÆe�bcæ� logÆe�bcæ��Þ
¼ Dm

x;s

A 1 Dm
excess;s

A ; (47)

where the terms with ** are the values for a pure solute state.

There are two ways to make the activity coefficient 1.0:

Case 1: Dm
x;s
A ¼ Dm

excess;s
A ¼ 0:

Case 2: Dm
x;s
A ¼ �Dm

excess;s
A 6¼ 0:

In a mixture of very similar molecules, case 1 is approxi-

mately achieved. This is the familiar example of a symmetric

ideal solution. Case 1 also makes Dm
x;D
A , Dmexcess

A in Eq. 41

and Dmexcess
A in Eq. 45 0.0. Therefore, if it is a symmetric

ideal solution and the number of total molecules in the

system per volume is constant (Dm
x;s
A ¼ 0), it is also a dilute

ideal solution in mole fraction scale and molarity scale.

However, Dm
m;D
A in Eq. 43 is not 0.0 because the number of

solvent molecules changes, so symmetric ideal solutions are

not dilute ideal solutions in the molality scale.

We may also take the pure solute as the standard state in

molality scale and molarity scale. This choice, however, does

not measure the deviation from symmetric ideal solutions

because symmetric ideal solutions are usually defined by the

mole fraction scale. In the molality scale, the standard state

and activity coefficient may be defined as

m
��
A;m ¼ �

3

2
kBTlog

2mApkBT

h
2 1 kBTlog

MBm0

1000

1 kBTlog
N
��
B

ÆVæ��
� kBTlogÆe�bcæ��; (48)

kBTlogg
m;s

A ¼ kBT log
NB

ÆVæ
� log

N��B

ÆVæ��
� �

� kBTðlogÆe�bcæ

� logÆe�bcæ��Þ
¼ Dm

m;s

A 1 Dm
excess;s

A : (49)

Without any solvent molecules, we have a numerical

problem. In Eqs. 48 and 49 the standard state in pure solute

effectively causes

log
N
��
B

ÆVæ��
¼ �N: (50)

Therefore, it is not reasonable or convenient to take the pure

solute state as the standard state in the molality scale.

For the molarity scale, the standard state and activity

coefficient would be

m
��
A;r ¼�

3

2
kBT log

2mApkBT

h
2 1kBT log

N
��
A

ÆVæ��
�kBT logÆe�bcæ��;

(51)

Near Ideality of Urea Solutions 3397

Biophysical Journal 93(10) 3392–3407



kBT logg
r;s

A ¼ �kBTðlogÆe�bcæ� logÆe�bcæ��Þ ¼ Dm
excess;s

A :

(52)

Clearly, standard state and concentration scale choices change

the meaning of the activity coefficient in a qualitative and

quantifiable way.

Excess chemical potential calculation
by simulation

We next require an accurate way to calculate the change in

excess free energies or chemical potentials in solution for

adding a solute. To explore mechanism and to control for

force field, two variants are used below, well-known OPLS

(19) and the newer KBFF by Smith and co-workers (20).

We demonstrate the efficiency and precision characteris-

tics for three methods of calculation. We present a brief

review of the methods here first for coherence. Consider-

ably more detailed technical reviews exist in the recent

literature (21).

Thermodynamic integration method

The well-known thermodynamic integration method calcu-

lates the free energy difference between the state i and the

state j by

DFij ¼
Z 1

0

�
@UðlÞ
@l

�
l

dl: (53)

Here, we assumed the potential energy function U(l) is

written as a function of a coupling parameter, l, and l ¼ 0

and l ¼ 1 correspond to the state i and the state j,
respectively. We can define many different functional depen-

dencies on l corresponding to different integration paths.

The simple linear ramp is

UðlÞ ¼ lUj 1 ð1� lÞUi: (54)

We consider the beginning and final system to correspond to

N particle system and N 1 1 particle system, respectively.

There is a well-known pole at the origin for the Lennard-

Jones interaction with respect to l. To avoid numerical

instability, a nonlinear function is sometimes used to

alleviate large absolute values at a small l. The following

soft-core potential function was developed to avoid singu-

larity in van der Waals (vdW) interactions, to calculate the

free energy difference precisely (22,23):

UðlÞ

¼ l 4eij

1

½aijð1�lÞ2 1ðrij=sijÞ6�2
� 1

aijð1�lÞ2 1ðrij=sijÞ6

" #( )
:

(55)

We adopted this soft-core potential in our calculations.

Perturbation method

In so-called thermodynamic perturbation methods we derive

without any approximations:

DFij ¼ �kT lnÆexpð�bDUijÞæi: (56)

This equation means that we can obtain the free energy

differences between the state i and the state j by calculating

the ensemble average of exponential of the potential energy

difference at the state i ensemble. This method is only useful

when the state j may be conveniently sampled from state i.
To avoid difficulty one typically divides the region into

many subregions:

Fðm11ÞDl;mDl ¼ �kT logÆexpð�bfcððm 1 1ÞDlÞ
� cðmDlÞgÞæl¼mDl; (57)

Fðm�1ÞDl;mDl ¼ �kT logÆexpð�bfcððm� 1ÞDlÞ
� cðmDlÞgÞæl¼mDl: (58)

This method of small windows or steps is exacerbated if the

energy barrier in or between subregions is large. A different

approach to a solution is to use nonphysical sampling such as

embedding the problem in a higher dimensional space or

using generalized ensemble methods. We found we could

use Eq. 57 or 58 because our urea solution was not so

complicated.

Widom test particle insertion method

For completeness we mention the Widom insertion method

which has uses both conceptual and practical (21,24). The

basic equation of Widom method (24) can be derived like

Eq. 56 in the NPT ensemble,

mA

kT
¼ �3

2
log

2mApkT

h
2

� �
� log

ÆVe
�c=kTæNA ;NB;p;T

NA

; (59)

where we show the equation in the case of a monoatomic. In

the NVT ensemble we have

mA

kT
¼ �3

2
log

2mApkT

h
2

� �
1 log

NA

V
� logÆe�c=kTæNA ;NB;V;T

:

(60)

In this method we insert a particle randomly in the system

and calculate the potential energy with which the inserted

particle interacts. This method works very well in low den-

sity systems, but fails in dense liquids and solids especially

when the inserted molecule is large. Therefore the precision

of calculation is often not sufficient, especially in calculating

activity coefficients, with this method.

In the case of polyatomic molecules, the chemical

potential becomes the following one instead of Eq. 59,

mA

kT
¼ �3

2
log

2qAmApkT

h
2

� �
� log

ÆVe
�c=kTæNA ;NB ;p;T

NA

; (61)
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where q represents the rotational, vibrational, electronic, and

nuclear partition function terms. We assume that these terms

can be separated from the configuration integral without

concern about whether they are expressed classically or

quantum-mechanically. This assumption breaks down when

strong intramolecular interaction changes the counting of

degree of freedom. In this article we set q ¼ 1 (Eq. 59).

Bennett-Pande ratio method

The Bennett method (25) for optimizing sampling was

originally implemented to accelerate convergence of Monte

Carlo methods. More recently Pande and co-workers (26)

used this principle to achieve optimal sampling in a variant

of the familiar thermodynamic perturbation theory method.

The input data to calculate the free energy is the same

essentially. The difference with perturbation methods is the

numerical precision. Bennett’s method minimizes statistical

error. The two basic equations are

n0

�
1

11expðbðU1�U0Þ � CÞ

�
0

¼ n1

�
1

11expðbðU0�U1Þ1CÞ

�
1

; (62)

where

C ¼ log
Q0n1

Q1n0

: (63)

Here, n0 and n1 are the sample numbers in the ensembles at

the state 0 and the state 1, respectively. In practice, we plot

both sides of Eq. 62 as a function of C, and solve for the C
which satisfies this equation. We then have

log
Q0

Q1

¼ C� log
n1

n0

: (64)

If we collect the same number of samples (n0 ¼ n1), we can

calculate the free energy difference:

DF ¼ �1

b
logQ1 � �1

b
logQ0

� �� �
¼ 1

b
log

Q0

Q1

¼ 1

b
C:

(65)

This method uses the same input data as perturbation method

(U1–U0), but recent studies show that it is often the best way

to obtain free energy differences (26–28).

METHODS

We wish to understand the mechanism by which a model might reproduce

experiment. As a control and illustration, we evaluated two different urea

models, namely OPLS (19) and KBFF (20) and examine the dependence of

the activity coefficients on the force-field parameters. We show the param-

eters of these two models in Table 1. The geometry of the urea models is the

same. We adopted TIP3P model for water and the minor consequences have

been noted previously (2).

KBFF urea model was developed to reproduce the experimental activity

data. In Weerasinghe and Smith (29), they determined a charge distribution

for urea atoms by using Kirkwood-Buff integrals obtained from simulations.

Kirkwood-Buff relations yield the derivative forms of activity coefficients. It

is necessary to integrate them subsequently by, for instance, assuming the ex-

perimentally suggested functional form. However, Kirkwood-Buff G factors

converge very slowly and it is difficult to obtain precise values from simulation.

The OPLS parameters have been used extensively in the literature to

model and simulate a variety of systems. The OPLS model was fit to several

liquid state properties including heats of solvation among others (19).

By using two different models we hope to get an idea of the force-field

dependence in the implied mechanism. In this article, for these potentials, we

calculate the chemical potential directly from the simulations by the methods

described in Theory and thereby obtain the relative activity coefficients to

compare directly with experiment. Thus, we test multiple methods over a

range of concentrations in hopes of obtaining sufficient precision to evaluate

the accuracy of the models for this purpose. In future work we will consider

three component solutions which include a polypeptide.

We prepared urea aqueous solutions at seven different concentrations for

the OPLS and KBFF models from dilute solution to the pure urea. We first

estimated the molecular volume for one urea roughly to obtain the expected

concentrations. It was approximately two and half times the volume of one

water. For the pure solute solution state, since urea is a solid at room tem-

perature, a pure urea sample was equilibrated at a higher temperature and

super-cooled to 298 K.

To prepare our solutions we took an equilibrated water box and the urea

box, and randomly removed the required urea and water molecules from each

of these boxes in turn to achieve the required numbers for the desired solution

concentrations. Rather than the standard replacement, we put these two boxes

in contact with the normal periodic boundary conditions at the large volume

equivalent to the two pure liquids. Next the volumes were shrunk to the target

value to mix the urea and water. Thus, we prepared the systems by deciding

the number of urea and water molecules and shrinking to a given volume. We

performed a minimization for 500 steps and mixed for 100 ps of NVT sim-

ulation for each concentration. Temperature was controlled by Nosé method

to 298 K (30). In this process it was found that the mixing occurred not only

spontaneously but in fact quite rapidly, on the order of the time to shrink the

box. We next performed 300 ps NPT equilibrations at 298 K and 1 atm using

the Nosé-Anderson method for the temperature and pressure control (30,31).

The final system sizes are close to 34 Å 3 34 Å 3 34 Å in each case.

We thus obtained the initial configurations of urea solutions at seven

different concentrations for two different urea models. The number of total

TABLE 1 Force-field parameters for the OPLS model (19)

and KBFF model (20)

Mass Charge e(kJ/mol) s(nm)

OPLS

O 15.999 �0.390 0.87864 0.296

C 12.011 0.142 0.43932 0.375

N1 14.007 �0.542 0.71128 0.325

H11 1.008 0.333 0.00000 0.000

H12 1.008 0.333 0.00000 0.000

N2 14.007 �0.542 0.71128 0.325

H21 1.008 0.333 0.00000 0.000

H22 1.008 0.333 0.00000 0.000

KBFF

O 15.999 �0.675 0.56000 0.310

C 12.011 0.921 0.41700 0.377

N1 14.007 �0.693 0.50000 0.311

H11 1.008 0.285 0.08800 0.158

H12 1.008 0.285 0.08800 0.158

N2 14.007 �0.693 0.50000 0.311

H21 1.008 0.285 0.08800 0.158

H22 1.008 0.285 0.08800 0.158
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systems considered is 14 (7 concentrations 3 2 urea model). All the sys-

tems in our simulations are listed in Table 2. We show typical snapshots

of configurations of KBFF urea solutions in Fig. 1, which qualitatively

confirms the good mixing.

Because all systems have very similar box size, we used the same cutoff

length 15 Å for vdW interactions, which was .4s. We used a link-cell Ewald

method for electrostatic interactions (32). In the studies undertaken here it

may be quite important to estimate the electrostatic interactions accurately to

correctly distinguish among the potential energy models. Free energy cal-

culation is known to be very sensitive to the method used for electrostatic

energy calculation (33).

We calculated the chemical potentials by Eq. 37 inserting one urea

molecule. The term for mid
A of Eq. 38 was calculated using the temperature and

average volumes. mexcess
A of Eq. 38 was calculated by three different methods.

Those are the thermodynamic integration method, perturbation method, and

Bennett acceptance ratio method. In calculating mexcess
A , we divided the po-

tential energy of the inserted urea molecule into the vdW and electrostatic

terms for subsequent analysis.

In the case of vdW interactions, a soft-core potential (Eq. 55) was used.

The range for l was divided into 50 subregions (¼ 51 points). We thus

calculated 51 l-points of the integrand of Eq. 53 for the thermodynamic

integration method and for the perturbation method using Eqs. 57 and 58.

The same sampling data as used for the perturbation method was used for the

Bennett method after Pande. In the case of the electrostatic interaction

contributions, we used Eq. 54 and divided l into 25 subregions (¼ 26 points).

By performing the repulsive core first, there is no remaining singularity, so it

is not necessary to use soft-core potential for electrostatic interactions.

In the case of thermodynamic integration method, plotting the integrand

of Eq. 53 at the calculated l-points and integrating numerically we obtain the

excess chemical potential. In the case of the perturbation and Bennett methods,

we used Eqs. 57, 58, and 62, respectively. Summing up the subdivisional free

energy difference at the calculated l-points produces the excess chemical

potential. The input data to Eq. 62 is Uj–Ui and this is the same as the per-

turbation method case. As we show in the section below, these three dif-

ferent methods give us almost the same values if the sampling yields enough

precision as expected. We show some example figures of the free energy

calculation paths below.

RESULTS AND DISCUSSION

Chemical potential calculations

We now consider the results of the calculations of mexcess as

well as m as a function of concentration and standard state.

Fig. 2 a shows the integration path in the case of the most

dilute KBFF solution. The error bar of each point was es-

timated by dividing the data into 10 blocks and calculating

the standard deviation of the average values. The error bars

were largest in the region of most curvature. That region de-

mands more sampling for precise estimations. The points be-

tween 0.26 , l , 0.60 in Fig. 2 a were calculated from 1-ns

simulations, and other points were from 160-ps simulations.

Integrating this path from 0 to 1 gives the free energy dif-

ference of the vdW transfer from vacuum to solution. Fig. 2 c
is the corresponding figure for the electrostatic part. Sum-

ming up the integrated values of Fig. 2, a and c, becomes the

total free energy difference (the excess chemical potential).

Fig. 2, b and d, show the calculated values of the l-points

at the most dilute solution for the perturbation method and

Bennett method using the KBFF model. We see that Bennett

estimation points almost overlap perturbation ones. Sum-

ming the values yields the total free energy difference.

Based on the experimental trends we expected the devi-

ations from ideality to be difficult to obtain with sufficient

precision to evaluate the difference between models. Thus we

tested the precision and convergence of the three different free

energy techniques. We confirmed that the free energy values

calculated by these three different methods gave similar val-

ues for each system. For example, in the system of Fig. 2

the obtained values by thermodynamic integration method,

TABLE 2 Symbols are Nu, number of urea molecules,

and Nw, number of water molecules

Nu Nw Mole fraction Molality Molarity Volume Density

OPLS 1 1305 0.0007657 0.04253 0.04288 38.73 1.011

47 1188 0.03806 2.196 2.029 38.47 1.046

95 1077 0.08106 4.896 4.089 38.58 1.081

142 955 0.1294 8.254 6.152 38.32 1.115

189 838 0.1840 12.52 8.209 38.23 1.149

248 661 0.2728 20.83 11.04 37.31 1.193

530 0 1.0 — 22.65 38.85 1.361

KBFF 1 1305 0.0007657 0.04253 0.04286 38.75 1.010

47 1188 0.03806 2.196 2.013 38.78 1.037

95 1077 0.08106 4.896 4.027 39.17 1.064

142 955 0.1294 8.254 6.031 39.10 1.093

189 838 0.1840 12.52 7.993 39.27 1.118

248 661 0.2728 20.83 10.70 38.50 1.156

530 0 1.0 — 22.41 39.27 1.346

The units of molality, molarity, volume, and density are (mol/kg), (mol/L),

(nm3), and (g/cm3) respectively.

FIGURE 1 Typical snapshots of KBFF urea solutions. The figures corre-

spond to the systems of mole fraction 0.0007657 (a), 0.08106 (b), 0.1840

(c), and 1.0 (d), respectively. Only atoms within the sphere with 9.0 Å radius

in the center of the specific one urea molecule are drawn. Urea molecules are

drawn as space-filling and water molecules are ball-and-stick. VMD was

used for this figure.
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perturbation method, and Bennett method are respectively

2.147, 2.113, and 2.138 kJ/mol for the vdW part, and

�46.411, �46.393, and �46.398 kJ/mol for the electrostatic

part, respectively. Testing of convergence in model systems

showed that the Bennett method as implemented by Pande

and co-workers (26) gave the least errors for a given amount of

sampling (data not shown). Given that and the sub kJ/mol

precision of all the methods, we used the estimations by the

Bennett method in the following analysis for all the other

systems.

Table 3 shows the chemical potentials and their compo-

nents obtained from our simulations. Because mA of OPLS is

more negative than that of KBFF at the same concentration,

OPLS urea dissolves in aqueous model solutions using the

TIP3P water model better than KBFF urea.

The ideal part of the chemical potential does not depend as

strongly on the interaction model (see, for instance, Eq. 38).

In fact only small differences in volume or density are model-

dependent. The deBroglie wavelength term is clearly common

for OPLS and KBFF solutions. mid
A increases as the concen-

tration increases because the number of urea molecules per

volume increases (see Eqs. 37 and 38). Thus, the entropy at

higher urea concentration (mole fraction) is smaller than in

the lower one, as it should be.

We see that mexcess
A of KBFF solutions, the excess chemical

potential, is almost constant except for the pure urea system.

This requires a remarkable cancellation to obtain the same ex-

cess solvation free energy at different urea concentration for

the KBFF force field. On the other hand, for the OPLS force

field, mexcess
A decreases as the concentration increases. For such

a force field, we see that the total chemical potential change

and the excess part move in different directions. Interpreting

only the excess solvation part of the free energy, as is often

done in simple modeling, would indicate that urea dissolves

in higher urea concentration solutions more favorably.

In Table 3 we examine the potential components of mexcess
A ,

that is, mvdW
A and melec

A . mvdW
A , the vdW part of the excess

chemical potential, shows a decreasing trend as the concen-

tration increases for both models. However, this tendency

does not imply that, in urea solutions, cavity formation is more

favorable than in pure water, as we have the attractive part

contributions to consider. Ikeguchi et al. (34) calculated the

TABLE 3 Chemical potential and its components for OPLS

and KBFF model urea solutions using Eq. 37

Mole fraction mid
A mvdW

A melec
A mexcess

A mA

OPLS

0.0007657 �41.31 0.87 �56.00 �55.13 �96.44

0.03806 �31.76 0.66 �56.40 �55.74 �87.49

0.08106 �30.02 0.33 �56.19 �55.86 �85.88

0.1294 �29.01 0.49 �56.56 �56.07 �85.08

0.1840 �28.29 0.040 �56.63 �56.59 �84.88

0.2728 �27.56 �0.63 �57.11 �57.73 �85.29

1.00 �25.78 �1.29 �56.43 �57.72 �83.50

KBFF

0.0007657 �41.31 2.14 �46.40 �44.26 �85.57

0.03806 �31.78 1.29 �45.57 �44.29 �76.06

0.08106 �30.06 0.38 �44.79 �44.41 �74.46

0.1294 �29.06 �0.27 �44.22 �44.49 �73.54

0.1840 �28.36 �1.16 �43.12 �44.28 �72.64

0.2728 �27.64 �2.44 �41.83 �44.28 �71.91

1.00 �25.80 �4.82 �37.40 �43.23 �69.03

The quantity mexcess
A consists of two terms, the vdW part mvdW

A and the

electrostatic part melec
A . mvdW

A plus melec
A becomes mexcess

A in Eq. 37. The

quantity mid
A plus mexcess

A becomes the chemical potential mA. The units of

chemical potential are (kJ/mol).

FIGURE 2 The excess chemical po-

tential integrand components in the case

of the most dilute KBFF urea solution.

(a) Integration path for the calculation of

vdW terms of excess chemical potential

by thermodynamic integration method.

Integrating this path about lambda be-

comes the total vdW excess chemical

potential. (b) The 51 l-points for the

calculation of vdW terms of excess

chemical potential by Bennett accep-

tance ratio method (black asterisk) and

perturbation method (1, estimation Eq.

57, blue circle; –, estimation Eq. 58, red

triangle). Adding the differences of 51

points becomes the total vdW excess

chemical potential. Asterisk and circle

overlap very well. (c) Similar to panel a

for electrostatic terms. (d) Similar to

panel b for electrostatic terms.
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free energy profile using a Lennard-Jones potential by chang-

ing s at constant e and clearly showed that the larger the

excluded volume is made, the less soluble in aqueous urea the

solute is than in pure water. Therefore this decreasing trend of

the vdW part with increasing concentrations is caused not

because urea solutions necessarily prefer just the cavity for-

mation more than pure water in high urea concentrations, but

because they prefer vdW interactions with the inserted urea

more.

melec
A , the electrostatic term, is remarkably independent of

concentration for the OPLS model with noisy variations on

the order of tenths of a kJ/mol. On the other hand, the KBFF

model shows a smooth 5 kJ/mol change over the concen-

tration range studied here. We interpret that as a growth in

unfavorable electrostatic interactions in KBFF solutions as

the urea concentration gets higher. KBFF has substantially

larger atomic charges than OPLS or other common models.

This charge contribution is opposed by almost equal and op-

posite favorable vdW interaction contributions. This results

in an excess chemical potential mexcess
A , which becomes quite

flat with respect to concentration for the KBFF model solu-

tions. In contrast, the OPLS mexcess
A decreases monotonically

as the concentration is increasing.

The total chemical potential, mA, increases (becomes less

negative) as the concentration increases for both solutions

partially because of the entropic effect, which is included in

mid
A. Given the size of the terms we find the influence on mA

from mid
A is stronger than that from mexcess

A for urea solutions.

Fig. 3 shows the activity coefficients in different concen-

tration scales: mole fraction scale (Fig. 3 a), molality scale

(Fig. 3 b), and molarity scale (Fig. 3 c). For these plots we

took the standard state as the most dilute system in our sim-

ulations, approximating infinite dilution in the traditional com-

putational way. The original experimental data (12–14) was

in the molality scale, and it was necessary to transform the

data to obtain the experimental activity coefficients in the

different scales. We transformed the concentration scale by

using experimental density data (35) from the molality scale

(Fig. 3 b) to mole fraction (Fig. 3 a) and molarity scales (Fig.

3 c) by using Eq. 28 and Eq. 34. Note that we did not use any

experimental data for our simulated activity coefficients. We

first see that the variation in activity coefficients is striking

with respect to the different concentration scales. The values

in the three different scales coincide with each other only in

very low concentration solutions as expected.

We see in Fig. 3 that activity coefficients of the KBFF

model fit the experimental ones very well, as expected, since

that was the basis on which the force field was parameterized.

On the other hand, the OPLS are systematically smaller than

experiment. That model was not fit to the activities. Our high

precision method to calculate activity coefficients showed

that the KBFF model in fact reproduces the experimental data

even better than the authors expected in Weerasinghe and

Smith (20). Because Kirkwood-Buff G factors are the func-

tions which converge very slowly both in time and length,

a direct chemical potential calculation by a thermodynamic

method like Pande’s Bennett method gives more easily

controlled precision.

Consider the origin of the difference of activity coeffi-

cients. Fig. 3 a shows the activity coefficients in the mole

fraction scale. The simulation data was calculated by Eq. 41.

A urea molecule is some 2.5 times larger than a water mol-

ecule, so m
x;D
A , which is a function of the number of solute

and solvent molecules per volume, decreases as the concen-

tration of urea increases. This contributes in the well-known

FIGURE 3 Activity coefficients in various scales. (a) Activity coefficients

in the mole fraction scale. (b) Activity coefficients in the molality scale. (c)

Activity coefficients in the molarity scale. Solid square marks are for KBFF

urea solution by our simulations. Solid diamond marks are for OPLS urea

solution by our simulations. Multiple marks are for experimental values (12–

14,35).
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classic manner to make the activity coefficients smaller as the

concentration increases. If the volume of the solute is smaller

than that of solvent, the effect becomes the opposite. However,

in most aqueous solutions, water is smaller than the solute

so this term contributes to make the activity coefficients

smaller.

Fig. 3 b displays our results in the molality scale. It was

calculated by Eq. 43. The quantity m
m;D
A , which is a function

of the number of solvent molecules per volume, always de-

creases as the concentration of solute increases. It also con-

tributes to make the activity coefficients smaller as the

concentration increases.

Fig. 3 c shows that KBFF model solutions are remarkably

close to an ideal solution in the molarity scale. The activity

coefficients in this scale are based on Eq. 45. Therefore the

ideality in molarity scale is based on the characteristic that

the excess chemical potential (solvation free energy) is

nearly the same at different concentrations (see Table 3). On

the other hand, the activity coefficients of OPLS urea solu-

tions decrease as the concentration increases. This is because

the solvation free energy of OPLS urea solutions decreases

as the concentration increases (see Table 3). We again note

that the activity coefficient in the molarity scale most clearly

reflects the excess chemical potential or the excess solvation

free energy.

We compare the results in Table 4. Of course mexcess
A for a

given model is common. The tables clearly show the influ-

ence of concentration scale in m
x;D
A and m

m;D
A . m

m;D
A is always

smaller than m
x;D
A in the same system from the definitions

(see Eqs. 41 and 43), as a result the activity coefficients in the

molality scale are always smaller than those in mole fraction

scale.

The activity coefficient is often considered as the coeffi-

cient of the concentration in various contexts including the

chemical potential expression. In this use, the supposition is

that regardless of concentration scale, if the activity coeffi-

cient of the substance is doubled the same chemical potential

is obtained by half the amount of the substance. However,

this use of the concepts is confusing because of the strong de-

pendency of activity coefficient on the scale as we have seen.

The classic definition is useful only for very dilute solutions,

in which every scale gives essentially the same value. The

supposition is not valid for high solute concentrations such

as in living cells. Strictly speaking, activity is not an effective

concentration as pointed out previously (7).

We suggest that it is appropriate to use the chemical po-

tential itself to avoid confusion in theoretical studies. The

chemical potential does not depend on which scale we use.

One difficulty is that what we most often obtain from experi-

ments are activity coefficients in molality scale. It is necessary

to have the reference state value to recover chemical potential,

which is unfortunately essentially inaccessible experimentally.

Our simulation results show the KBFF urea model (20)

well reproduces the experimental data. Other simple, non-

polarizable models could reproduce the experimental activity

coefficient data but it is not obvious what other forms such

a model might take. The reason that the KBFF urea model

reproduces the experimental activity coefficients is because

the excess chemical potential is almost the same at different

concentrations. This is caused by a cancellation of the vdW

part with the electrostatic part as the concentration increases.

On the other hand, in the OPLS urea model, vdW contribu-

tion decreases slightly but the electrostatic part does not tend

to increase as the concentration increases, and this contrib-

utes to a smaller activity coefficient. Note that, if one could

design force-field parameters such that the vdW part increases

while the electrostatic part appropriately decreases, an ideal

solution in the molarity scale would result.

The KBFF urea model was developed by integrating in-

verse Kirkwood-Buff theory. As KB theory address only the

derivative forms, additional information is necessary to ob-

tain the absolute values. Thus only the derivative of the ac-

tivity coefficient is expressed by Kirkwood-Buff G integrals.

It is necessary to assume the appropriate excess Gibbs free

energy form to obtain the activity coefficient. We cannot know

the absolute activity itself only from Kirkwood-Buff theory.

The excess chemical potential cannot be obtained experimen-

tally in most osmolytes and electrolytes because the vapor

pressure at room temperature is too low to measure accurately.

Our simulation results show that the excess solvation free

energy of KBFF model is roughly 10.0 kJ/mol higher than

that of OPLS model (see Table 3). On the other hand, a 1–2

kJ/mol difference from the chemical potential in the standard

state (the most dilute system) produces the difference of

activity coefficients (see Table 4).

This implies that the large difference of the solvation free

energy regulates a small difference for the activity coeffi-

cients. The KBFF model reproduces the experimental activity

coefficient data, but the validity of solvation free energy is

unknown. There is no experimental solvation free energy data

TABLE 4 Activity coefficients in different scales

x Dm
x;D
A Dm

m;D
A Dmexcess

A gx
A gm

A gc
A

OPLS

0.0007657 0.000 0.000 0.000 1.000 1.000 1.000

0.03806 �0.122 �0.216 �0.610 0.744 0.717 0.782

0.08106 �0.259 �0.466 �0.731 0.671 0.617 0.745

0.1294 �0.406 �0.748 �0.944 0.580 0.505 0.683

0.1840 �0.563 �1.065 �1.462 0.442 0.361 0.554

0.2728 �0.805 �1.593 �2.604 0.253 0.184 0.350

1.00 �2.242 — �2.592 0.142 — 0.351

KBFF

0.0007657 0.000 0.000 0.000 1.000 1.000 1.000

0.03806 �0.141 �0.235 �0.027 0.934 0.900 0.989

0.08106 �0.295 �0.503 �0.146 0.837 0.770 0.943

0.1294 �0.455 �0.796 �0.228 0.759 0.661 0.912

0.1840 �0.629 �1.131 �0.025 0.768 0.627 0.990

0.2728 �0.882 �1.669 �0.017 0.696 0.506 0.993

1.00 �2.268 — 1.033 0.608 — 1.517

See Eqs. 41, 43, and 45 for the definitions of Dm
x;D
A , Dm

m;D
A , and Dmexcess

A . The

values x, m, and c stand for mole fraction, molality, and molarity, respectively.
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for urea, so it is presently difficult to judge which urea model

does better for the excess solvation. Weerasinghe and Smith

(20) is the first attempt to make a thermodynamically accurate

force field based on Kirkwood-Buff theory. Not every molec-

ular or macroscopic property is given by any one approx-

imate, mean-field force field and OPLS has many properties

not including activity which better reproduce experiment (19)

than KBFF.

Parameter comparison

We next consider the solution theory for analyzing exper-

imental activity coefficients which was recently developed in

the literature (7,8). There an analytic activity coefficient form

was derived using only the first few terms of a semi-grand

canonical ensemble. The fits to the experimental data for urea

(and other compounds) of activity coefficient data were es-

sentially quantitative from dilute solution to saturation (see

(8) for the details). The question of physical interpretation of

the parameters cannot be answered uniquely without estab-

lishing whether the fitting coefficients relate directly to ratios

of low order configurational integrals or include the effects

of higher order term effectively.

To briefly review the procedure we define the number of

waters Nw, the chemical potential of the solute m, the pres-

sure P, and the temperature T, which are constant in the Hill

nonvolatile-solute semi-grand canonical ensemble. The aver-

age number of solute molecules in the system is then gen-

erally written as

ÆNæ ¼
+

N$1

N
YN

Y0

f
N

1 1 +
N$1

YN

Y0

f
N
; (66)

where the isothermal-isobaric partition function with N sol-

utes is

YN ¼ +
V;E

e
�bðE1PVÞ

(67)

and the absolute activity is

f ¼ e
bm
: (68)

In the case of the infinite dilute solution, Eq. 66 becomes

ÆNæ ¼ Y1

Y0

f : (69)

Thus the chemical potential in the infinite dilute state is

m1 ¼ �kT ln Y1 1 kT ln Y0 1 kT ln ÆNæ: (70)

This term can be extracted readily from the results of the pre-

vious section for urea.

When the solution has finite concentration, additional

terms are necessary. If we assume that fY1/Y0 is small, Eq. 66

can be approximated with the first two terms as

ÆNæ ¼ Y1

Y0

f 1 2
Y2

Y0

f
2
: (71)

The activity coefficient in molality scale, m, becomes

g
m

A ¼
G92;mm0

4m
�1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1

8m

G92;mm0

s !
; (72)

where for a thermodynamic hydration number, Nw, and the

molar weight of water, Mw, we define

G92;m ¼
G2

g9wm0

¼ Y
2

1=Y2Y0

NwMwm0=1000
; (73)

g9w ¼
NwMw

1000
: (74)

The quantity m0 ¼ 1 [mol/kg] was introduced to make the

term dimensionless. In this case the activity coefficient, Eq.

72, may be fitted to the experimental data by one parameter

G92,m ¼ 23.5. Because the value of g9w (¼ effective gram

molecular weight of water 3 Avogadro’s number) is unknown,

it is difficult to compare this parameter with our simulation

results directly. Note that the experimental data is fit with one

parameter to a few percent up to the solubility limit.

In the case that fY1/Y0 is not small it must be included in

the denominator and Eq. 66 is approximated as

ÆNæ ¼

Y1

Y0

f 1 2
Y2

Y0

f
2

1 1
Y1

Y0

f 1 2
Y2

Y0

f
2
: (75)

In this case, the activity coefficient in the molality scale be-

comes

g
m

A ¼
G92;mm0

2m

ð1�mg9wÞ
ð2�mg9wÞ

�11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

4mð2�mg9wÞ
G92;mm0ð1�mg9wÞ2

s !
:

(76)

This function must be fit to the experimental data using two

parameters, and the combinations G92,m and g9w were chosen.

The obtained values of G92,m and g9w are ;20.98 and 0.003060,

respectively, imply G2 is 0.06420 and the number of water

molecules, Nw, obtained is 0.1698 from Eq. 74. Nw can be

interpreted as the limiting thermodynamic solvation number

of urea for the truncated series Eq. 66 extrapolated from the

solubility limit. Clearly the value 0.1698 is unreasonably

small when viewed from a molecular perspective.

We can remold this into a form compatible with our

current analysis. Substituting g9w value into Eq. 73 and taking

a natural log, we obtain

kT ln G2 ¼ f�kT ln Y2 � ð�kT ln Y1Þg
� f�kT ln Y1 � ð�kT ln Y0Þg ¼ �6:803: (77)

Let us consider whether this value obtained from the pa-

rametric method is consistent compared with our simulated
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chemical potentials. The chemical potential in the infinite

dilute solution was Eq. 70, and thus the chemical potential

for the double molecule system can be expressed as

m2 ¼ �kT ln Y2 1 kT ln Y1 1 lnÆ2Næ: (78)

On the other hand, our simulation data in Table 3 shows

that the excess term of the chemical potential mexcess
A is essen-

tially constant at low concentrations. For example, the differ-

ence in chemical potential of the ;2 M and ;4 M systems is

;1.6 kJ/mol for both OPLS and KBFF models. This dif-

ference is mainly caused not by the excess chemical terms

but by the second term of mid
A in Eq. 38. Namely, the dou-

bling of concentration causes a difference of kT ln 2 ; 1.7.

This property will be also true at two lower concentrations

such as 0.01 M and 0.02 M because of the nearly constant

excess term mexcess
A obtained from the simulations at low

concentrations (see Table 3). Therefore, our simulations sug-

gest that

�kT ln Y2 1 kT ln Y1 � ð�kT ln Y1 1 kT ln Y0Þ; 0; (79)

which is consistent with near ideality in the molar scale but

different from the two-parameter fitting result of �6.803

kJ/mol.

Our simulation data combined with the one parameter

fitting result gives a more reasonable solvation number Nw¼
1:23.5 3 1000/18.05¼ 2.36 (note that the proportion of urea

and water is 1:2.665 in the solubility limit). Therefore the

small improvement of the fitting by using two parameters

instead of one parameter is due to the effective inclusion of

higher order term effects. The balance in the fitted terms trun-

cated at second order gives the apparently physically unrea-

sonable hydration number.

We can consider the dependence on the concentration

scale used in fitting the experiments. When we use the ex-

perimental data and fitting function in mole fraction scale

instead of molality scale, the results become the same as in

molality scale, that is to say, we again obtain Nw ¼ 0.1698.

However, above we obtained a different value in the case of

the molarity scale. This is a consequence of the volume terms

that are included for the activities for molality and mole

fraction (Eqs. 41 and 43) versus its absence in the molarity

scale, Eq. 45. The activity coefficient in molarity scale is

gc ¼
g2;c

2c

1� cV1

2� cV2

�1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1

4c

g2;c

2� cV2

ð1� cV1Þ2

s" #
; (80)

where g2,c ¼ G2/V0, V0 is the volume occupied by water in

the absence of the solute, and V1 and V2 are the apparent

volumes occupied by what might be thought of as a grouping

of one or two solute molecules at a suitable concentration in

solution. Under the assumption of a second order truncation,

V2 was set to the volume in the solid state (7). The values g2,c

and V1 obtained from the fitting to the experimental activity

coefficient in the molarity scale were 20.83 [mol/L] and

0.05254 [L/mol], respectively. By setting V0 as the volume

of pure water at 298 K, we obtained G2 ¼ 0.3764, which

differs from the fitted result in molality scale G2 ¼ 0.06420.

While this may reflect the affect of implicitly including higher

order terms by truncation, we also note that the assumed con-

stants Vi are not in both fits. The validity of the assumption

that G92,m and g9w (Nw) are constant at different concentra-

tions is also unclear.

We can arrive at a similar conclusion about the magnitude

of Eq. 77 by considering the following argument based on

the volume expansion. In previous work (7) we have shown

that V2 is well approximated by the partial molar volume of

the solute in the crystal. Then the Y2 term corresponds to the

neat system containing 100% urea. Note that since we as-

sume rapid convergence of the series, slightly varying V2 can

correspond to any situation between 50% urea and 100% urea.

We then obtain kTlnG2 1 kJ/mol, the difference between muex

in the N ¼ 1 urea system and the pure urea system. Either

argument gives a similar answer, kT ln G2 ¼ 0 – 1 kJ/mol,

which differs from the fitted Eq. 77.

Nevertheless, the low order expansion method clearly fits

a variety of solute experimental data very well. We can in-

terpret why the parametric method succeeded as follows. The

experimentally estimated partition functions of most osmo-

lytes have simple shapes with respect to f. Thus, we rarely

need go beyond the second-order term approximation in the

fit. Based on our analysis above, we expect that more terms

must be taken into account for some solutions. Therefore, it

seems that the successful fitting with Eq. 76 was made pos-

sible not because high order terms in Eq. 66 can always be

neglected and approximated by Eq. 76 but because the effect

of the high order terms was included in an effective or re-

normalized way in the low order fitted coefficients. Further

research is necessary to understand the physical meaning of

the parameters from such data fits.

CONCLUSIONS

In this article, we considered the mechanism by which urea

achieves its ideality in the molar scale. The activity coef-

ficient changes quantitatively and qualitatively when using

different concentration scales and standard states. The most

useful and often used scale for the experiment is molality

scale because it is easy to measure weight experimentally.

The mole fraction scale is often preferred theoretically be-

cause Raoult’s law was originally developed on the basis of

mole fraction. The molarity scale is often used and has also

been recommended on theoretical grounds (36). In very dilute

solutions these three scales give us nearly the same activity

coefficient. In older classic studies, solutions were usually

implicitly considered to be dilute enough to ignore the depen-

dency on different scales. However, in concentrated systems

such as living cells, solutions often become dense, and the

concentration-scale dependence of the activity coefficients

becomes critical to the interpretation of thermodynamic data.
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The concept of an ideal solution derives historically from

two different points of view given by the symmetric ideal

solution and the dilute ideal solution. This difference can be

considered to be a difference in both the standard states and

scales employed. If the solution is a symmetric ideal solution

and the number of the total molecules per volume is constant

at different concentrations, it is also a dilute ideal solution in

mole fraction scale and molarity scale. The molality scale ac-

tivity coefficient is exceptional and it cannot be represented

as a symmetric ideal solution.

In addition to the difference of the scales and standard

states, the origin of nonideality or what makes the activity

coefficient differ from unity, obviously depends on the chem-

istry of the system. To understand the nature of urea-water

solutions, we performed free energy simulations of urea so-

lutions for a pair of popular molecular models for different

concentrations to examine the origin of the thermodynamic

behavior at the molecular level. In a very dilute solution

(,0.05 mol/L), the activity coefficients in every scale were

almost the same, but when the urea concentration increased

the differences became apparent.

The KBFF urea model reproduced the experimental ac-

tivity coefficient data very well because the excess chemical

potentials are almost constant in different urea concentra-

tions. This was due to the compensation between a decrease

of the vdW part and an increase of electrostatic part as con-

centration increased. The activity coefficients of OPLS urea

solutions were generally smaller than the experimental data

reflecting a different compensation.

The activity coefficient is a very sensitive measure for so-

lution properties and requires very precise chemical potential

difference calculations. Performing free energy simulations

with a satisfactory precision is still a challenging problem,

especially in multicomponent systems. The urea and water

system is a rather simple system, which does not have local

minimum states deep enough to thwart convergence, but still

required considerable computational effort for sampling. To

obtain a sufficiently accurate chemical potential computation-

ally for more complicated systems such as three-component

systems or protein systems, more efficient sampling methods

will be necessary.

For a large number of proteins, urea induces cooperative

transitions of proteins from the native state (N) to denatured

ensembles (D). The transitions that exhibit reversible two-

state behavior make possible the determination of the free

energy change for protein denaturation (37,38). The method

of determination, known as the linear extrapolation model

(LEM), is based on the known linear dependence of the dena-

turation free energy change on the molar concentration of urea

DG ¼ DG
0

N/D 1 m½urea�; (81)

where the parameters m and DG0
N/D are the slope and

intercept of an experimentally determined plot of DG versus

[urea](37). Both parameters provide key thermodynamic

descriptions of the transition, with DG0
N/D giving the free

energy change of conversion in the absence of denaturant

and m measuring the efficacy of urea in transforming N to D.

The LEM, used extensively in the protein folding field, is

empirical, and it has long been known that DG is a linear

function with respect to the molar urea concentration only;

molal or mole fraction concentration scales do not give valid

m and DG0
N/D parameters. Given that urea behaves as an

ideal solution only with respect to the molar scale, the results

in Fig. 3 c provides a clear rationale for the success of the

LEM empirical relationship and not with other concentration

scales.

Other factors, as well, are important in the success of the

LEM. Urea exhibits a favorable interaction with the native and

denatured states, with a larger number of interaction sites

occurring with the denatured states in comparison with native.

The favorable interaction is quite modest with urea out-

competing water by a very small margin for sites of interaction

(39). By analogy to a binding plot, the urea site-interaction is

in the first-order portion of the curve, even at high urea con-

centration. The success of the LEM is attributable to important

roles played by both the ideal behavior of urea on the molar

scale and the weak first-order interaction of urea with protein.

The basic thermodynamics of urea solutions presented here

provides the foundation for investigating the interaction of

urea with peptides and larger proteins. Our future work will

address these issues.
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