Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Feb;173(3):1287–1297. doi: 10.1128/jb.173.3.1287-1297.1991

Cloning, sequencing, and recombinational analysis with bacteriophage BF23 of the bacteriophage T5 oad gene encoding the receptor-binding protein.

V Krauel 1, K J Heller 1
PMCID: PMC207253  PMID: 1825083

Abstract

Binding of bacteriophage T5 to its receptor, the Escherichia coli FhuA protein, is mediated by tail protein pb5. In this article we confirm that pb5 is encoded by the T5 oad gene and describe the isolation, expression, and sequencing of this gene. In order to locate oad precisely, we analyzed recombinants between BF23, a T5-related phage with a different host range, and plasmid clones containing segments of the T5 chromosome. This analysis also showed that oad has little or no homology with hrs, the analogous BF23 gene. We were able to overproduce a protein that comigrates with pb5 after fusing a 2-kb segment containing oad to a phage T7 promoter. This segment contains an open reading frame that can encode a protein of the appropriate size. Its deduced amino acid sequence does not closely resemble that of any other protein in the database. The sequence upstream of the open reading frame shows typical characteristics of a promoter region with two overlapping, divergently orientated promoters.

Full text

PDF
1292

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Braun V., Schaller K., Wolff H. A common receptor protein for phage T5 and colicin M in the outer membrane of Escherichia coli B. Biochim Biophys Acta. 1973 Sep 27;323(1):87–97. doi: 10.1016/0005-2736(73)90433-1. [DOI] [PubMed] [Google Scholar]
  3. Brunel F., Thi V. H., Pilaete M. F., Davison J. Transcription regulatory elements in the late region of bacteriophage T5 DNA. Nucleic Acids Res. 1983 Nov 11;11(21):7649–7658. doi: 10.1093/nar/11.21.7649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bujard H., Hendrickson H. E. Structure and function of the genome of coliphage T5. 1. The physical structure of the chromosome of T5 + . Eur J Biochem. 1973 Mar 15;33(3):517–528. doi: 10.1111/j.1432-1033.1973.tb02711.x. [DOI] [PubMed] [Google Scholar]
  5. Calos M. P., Miller J. H. Transposable elements. Cell. 1980 Jul;20(3):579–595. doi: 10.1016/0092-8674(80)90305-0. [DOI] [PubMed] [Google Scholar]
  6. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  7. Constantinou A., Voelkel-Meiman K., Sternglanz R., McCorquodale M. M., McCorquodale D. J. Involvement of host DNA gyrase in growth of bacteriophage T5. J Virol. 1986 Mar;57(3):875–882. doi: 10.1128/jvi.57.3.875-882.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dagert M., Ehrlich S. D. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene. 1979 May;6(1):23–28. doi: 10.1016/0378-1119(79)90082-9. [DOI] [PubMed] [Google Scholar]
  9. Di Masi D. R., White J. C., Schnaitman C. A., Bradbeer C. Transport of vitamin B12 in Escherichia coli: common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J Bacteriol. 1973 Aug;115(2):506–513. doi: 10.1128/jb.115.2.506-513.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Feucht A., Heinzelmann G., Heller K. J. Irreversible binding of bacteriophage T5 to its FhuA receptor protein is associated with covalent cross-linking of 3 copies of tail protein pb4. FEBS Lett. 1989 Sep 25;255(2):435–440. doi: 10.1016/0014-5793(89)81140-8. [DOI] [PubMed] [Google Scholar]
  12. Gentz R., Bujard H. Promoters recognized by Escherichia coli RNA polymerase selected by function: highly efficient promoters from bacteriophage T5. J Bacteriol. 1985 Oct;164(1):70–77. doi: 10.1128/jb.164.1.70-77.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem. 1988;57:199–233. doi: 10.1146/annurev.bi.57.070188.001215. [DOI] [PubMed] [Google Scholar]
  14. Golub E. I. 'One minute' transformation of competent E. coli by plasmid DNA. Nucleic Acids Res. 1988 Feb 25;16(4):1641–1641. doi: 10.1093/nar/16.4.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heller K. J., Bryniok D. O antigen-dependent mutant of bacteriophage T5. J Virol. 1984 Jan;49(1):20–25. doi: 10.1128/jvi.49.1.20-25.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heller K. J. Identification of the phage gene for host receptor specificity by analyzing hybrid phages of T5 and BF23. Virology. 1984 Nov;139(1):11–21. doi: 10.1016/0042-6822(84)90325-8. [DOI] [PubMed] [Google Scholar]
  17. Heller K. J., Krauel V. Cloning and expression of the ltf gene of bacteriophage T5. J Bacteriol. 1986 Sep;167(3):1071–1073. doi: 10.1128/jb.167.3.1071-1073.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heller K. J., Krauel V. Physical map of coliphage BF23 DNA. Gene. 1986;48(2-3):293–295. doi: 10.1016/0378-1119(86)90088-0. [DOI] [PubMed] [Google Scholar]
  19. Heller K. J., Schwarz H. Irreversible binding to the receptor of bacteriophages T5 and BF23 does not occur with the tip of the tail. J Bacteriol. 1985 May;162(2):621–625. doi: 10.1128/jb.162.2.621-625.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Heller K., Braun V. Accelerated adsorption of bacteriophage T5 to Escherichia coli F, resulting from reversible tail fiber-lipopolysaccharide binding. J Bacteriol. 1979 Jul;139(1):32–38. doi: 10.1128/jb.139.1.32-38.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Heller K., Braun V. Polymannose O-antigens of Escherichia coli, the binding sites for the reversible adsorption of bacteriophage T5+ via the L-shaped tail fibers. J Virol. 1982 Jan;41(1):222–227. doi: 10.1128/jvi.41.1.222-227.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hendrickson H. E., McCorquodale D. J. Genetic and physiological studies of bacteriophage t5 I. An expanded genetic map of t5. J Virol. 1971 May;7(5):612–618. doi: 10.1128/jvi.7.5.612-618.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  24. Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol. 1981 Sep 25;151(3):389–409. doi: 10.1016/0022-2836(81)90003-6. [DOI] [PubMed] [Google Scholar]
  25. Kadner R. J., Heller K., Coulton J. W., Braun V. Genetic control of hydroxamate-mediated iron uptake in Escherichia coli. J Bacteriol. 1980 Jul;143(1):256–264. doi: 10.1128/jb.143.1.256-264.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kadner R. J., Liggins G. L. Transport of vitamin B12 in Escherichia coli: genetic studies. J Bacteriol. 1973 Aug;115(2):514–521. doi: 10.1128/jb.115.2.514-521.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Konigsberg W., Godson G. N. Evidence for use of rare codons in the dnaG gene and other regulatory genes of Escherichia coli. Proc Natl Acad Sci U S A. 1983 Feb;80(3):687–691. doi: 10.1073/pnas.80.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ksenzenko V. N., Kamynina T. P., Pustoshilova N. M., Kryukov V. M., Bayev A. A. Cloning of bacteriophage T5 promoters. Mol Gen Genet. 1982;185(3):520–522. doi: 10.1007/BF00334154. [DOI] [PubMed] [Google Scholar]
  29. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  30. Köck J., Olschläger T., Kamp R. M., Braun V. Primary structure of colicin M, an inhibitor of murein biosynthesis. J Bacteriol. 1987 Jul;169(7):3358–3361. doi: 10.1128/jb.169.7.3358-3361.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. LANNI Y. T. Lysis inhibition with a mutant of bacteriophage T5. Virology. 1958 Jun;5(3):481–501. doi: 10.1016/0042-6822(58)90041-2. [DOI] [PubMed] [Google Scholar]
  32. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  33. Lange-Gustafson B., Rhoades M. Physical map of bacteriophage BF23 DNA: restriction enzyme analysis. J Virol. 1979 Jun;30(3):923–928. doi: 10.1128/jvi.30.3.923-928.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Leavitt M. C., Ito J. T5 DNA polymerase: structural--functional relationships to other DNA polymerases. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4465–4469. doi: 10.1073/pnas.86.12.4465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. McCorquodale D. J., Chen C. W., Joseph M. K., Woychik R. Modification of RNA polymerase from Escherichia coli by pre-early gene products of bacteriophage T5. J Virol. 1981 Dec;40(3):958–962. doi: 10.1128/jvi.40.3.958-962.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. McCorquodale D. J. The T-odd bacteriophages. CRC Crit Rev Microbiol. 1975 Dec;4(2):101–159. doi: 10.3109/10408417509111574. [DOI] [PubMed] [Google Scholar]
  37. Messing J., Vieira J. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene. 1982 Oct;19(3):269–276. doi: 10.1016/0378-1119(82)90016-6. [DOI] [PubMed] [Google Scholar]
  38. Mulligan M. E., Hawley D. K., Entriken R., McClure W. R. Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):789–800. doi: 10.1093/nar/12.1part2.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rhoades M. New physical map of bacteriophage T5 DNA. J Virol. 1982 Aug;43(2):566–573. doi: 10.1128/jvi.43.2.566-573.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Riede I., Drexler K., Eschbach M. L., Henning U. DNA sequence of genes 38 encoding a receptor-recognizing protein of bacteriophages T2, K3 and of K3 host range mutants. J Mol Biol. 1987 Mar 5;194(1):31–39. doi: 10.1016/0022-2836(87)90713-3. [DOI] [PubMed] [Google Scholar]
  41. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stoker N. G., Fairweather N. F., Spratt B. G. Versatile low-copy-number plasmid vectors for cloning in Escherichia coli. Gene. 1982 Jun;18(3):335–341. doi: 10.1016/0378-1119(82)90172-x. [DOI] [PubMed] [Google Scholar]
  44. Stormo G. D., Schneider T. D., Gold L. M. Characterization of translational initiation sites in E. coli. Nucleic Acids Res. 1982 May 11;10(9):2971–2996. doi: 10.1093/nar/10.9.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  46. Stüber D., Delius H., Bujard H. Electron microscopic analysis of in vitro transcriptional complexes: mapping of promoters of the coliphage T5 genome. Mol Gen Genet. 1978 Oct 30;166(2):141–149. doi: 10.1007/BF00285916. [DOI] [PubMed] [Google Scholar]
  47. Szabo C., Dharmgrongartama B., Moyer R. W. The regulation of transcription in bacteriophage T5-infected Escherichia coli. Biochemistry. 1975 Mar 11;14(5):989–997. doi: 10.1021/bi00676a018. [DOI] [PubMed] [Google Scholar]
  48. Szabo C., Moyer R. W. Purification and properties of a bacteriophage T5-modified form of Escherichia coli RNA polymerase. J Virol. 1975 Apr;15(4):1042–1046. doi: 10.1128/jvi.15.4.1042-1046.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. WYATT G. R., COHEN S. S. The bases of the nucleic acids of some bacterial and animal viruses: the occurrence of 5-hydroxymethylcytosine. Biochem J. 1953 Dec;55(5):774–782. doi: 10.1042/bj0550774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wahl G. M., Stern M., Stark G. R. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683–3687. doi: 10.1073/pnas.76.8.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zweig M., Cummings D. J. Structural proteins of bacteriophage T5. Virology. 1973 Feb;51(2):443–453. doi: 10.1016/0042-6822(73)90443-1. [DOI] [PubMed] [Google Scholar]
  53. von Gabain A., Bujard H. Interaction of E. coli RNA polymerase with promotors of coliphage T5: the rates of complex formation and decay and their correlation with in vitro and in vivo transcriptional activity. Mol Gen Genet. 1977 Dec 9;157(3):301–311. doi: 10.1007/BF00268667. [DOI] [PubMed] [Google Scholar]
  54. von Heijne G. The structure of signal peptides from bacterial lipoproteins. Protein Eng. 1989 May;2(7):531–534. doi: 10.1093/protein/2.7.531. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES