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SUMMARY
MicroRNAs (miRNA) are regulatory molecules that participate in diverse biological processes in
animals and plants. While thousands of mammalian genes are potentially targeted by miRNAs, the
functions of miRNAs in the context of gene networks are not well understood. Specifically, it is
unknown whether miRNA-containing networks have recurrent circuit motifs, as has been observed
in regulatory networks of bacteria and yeast. Here we develop a computational method that utilizes
gene expression data to show that two classes of circuits—corresponding to positive and negative
transcriptional co-regulation of a miRNA and its targets—are prevalent in the human and mouse
genomes. Additionally, we find that neuronal-enriched miRNAs tend to be coexpressed with their
target genes, suggesting that these miRNAs could be involved in neuronal homeostasis. Our results
strongly suggest that coordinated transcriptional and miRNA-mediated regulation is a recurrent motif
to enhance the robustness of gene regulation in mammalian genomes.

INTRODUCTION
MicroRNAs (miRNA) are post-transcriptional regulatory molecules recently discovered in
animals and plants (review in (Bartel, 2004)). They have been shown to regulate diverse
biological processes ranging from embryonic development to the regulation of synaptic
plasticity (Carthew, 2006;Kloosterman and Plasterk, 2006). Primary miRNA transcripts are
predominantly transcribed by RNA Polymerase II. After multiple steps of transcript processing,
the mature miRNA (∼22 bps) is incorporated into the RISC complex in the cytoplasm. Mature
miRNAs suppress gene expression via imperfect base pairing to the 3′ untranslated region (3′
UTR) of target mRNAs, leading to repression of protein production, and in some cases, mRNA
degradation (Bartel, 2004;Carthew, 2006;Valencia-Sanchez et al., 2006). Hundreds of miRNA
genes have been identified in mammalian genomes (Griffiths-Jones et al., 2006), and
computational predictions indicate that thousands of genes could be targeted by miRNAs in
mammals (John et al., 2004;Krek et al., 2005;Lewis et al., 2005;Rajewsky, 2006). These
findings suggest that miRNAs play an integral role in genome-wide regulation of gene
expression.

Similar to electronic circuits, gene regulatory networks (GRN) are made up of basic subcircuits,
such as feedback and feedforward loops. Pioneering work in E. coli has shown that certain
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subcircuits are favored by evolution and hence are significantly more abundant than others
(Shen-Orr et al., 2002). The identification of these recurring subcircuits, called network
motifs (Milo et al., 2002), has offered key insights into gene regulation. For instance, ∼35% of
E. coli transcription factors repress their own transcription and such negative auto-regulatory
circuits can significantly accelerate transcriptional response time (Rosenfeld et al., 2002) and
dampen protein expression fluctuations (Becskei and Serrano, 2000). Like transcriptional
repressors, miRNAs are likely embedded in a large number of GRNs, in which certain miRNA-
containing circuits may be recurrent. While all miRNAs operate through a repressive
mechanism, their functions in networks need not be simply repressive; they could have diverse
functions depending on the unique GRN context of individual miRNA-target interactions.
Hence, the identification of recurring miRNA-containing motifs in GRNs would greatly
increase our understanding of the functional roles of miRNAs in gene regulation.

Only a few studies have experimentally explored miRNA function in the context of a GRN.
They suggest that a key recurring function of miRNAs in networks is to reinforce the gene
expression program of differentiated cellular states. For instance, the secondary vulva cell fate
in C. elegans is promoted by Notch signaling, which also activates miR-61; miR-61 in turn
post-transcriptionally represses an inhibitory factor of Notch signaling, thereby stabilizing the
secondary vulva fate (Yoo and Greenwald, 2005). Networks of similar architecture can also
be found in the asymmetric differentiation of left-right neurons in C. elegans (Johnston et al.,
2005), eye and sensory organ precursor development in Drosophila (Li and Carthew, 2005;Li
et al., 2006), and granulocytic differentiation in human (Fazi et al., 2005).

The repressive effect of miRNAs on target expression is modest and is often limited to the
level of translation with little effects on transcript abundance (Bartel, 2004). Thus, an important
question is whether miRNAs act in concert with other regulatory processes, such as
transcriptional control, to regulate target gene expression at multiple levels and with greater
strength. One possibility is that the transcription of the miRNAs and their targets is oppositely
regulated by common upstream factor(s) (Type II circuits, Figure 1). For instance, an upstream
factor could repress the transcription of a target gene and simultaneously activate the
transcription of a miRNA that inhibits target-gene translation. Type II circuits may be prevalent
as genome-scale studies have shown that predicted target transcripts of several tissue-specific
miRNAs tend to be expressed at a lower level in tissues where the miRNAs are expressed
(Farh et al., 2005;Sood et al., 2006;Stark et al., 2005). In contrast, there is little evidence for
circuits in which the transcription of the miRNAs and their targets are positively co-regulated
(Type I circuits, Figure 1); only one such example has been confirmed experimentally, where
miR-17-5p represses E2F1, and both are transcriptionally activated by c-Myc in human cells
(O'Donnell et al., 2005). While Type I circuits may seem counterintuitive and its functional
significance has not been fully characterized, Type I circuits have the potential to provide a
host of regulatory and signal processing functions (Hornstein and Shomron, 2006), such as the
fine-tuning and maintenance of protein steady-states (see Discussion).

While individual examples of Type I and II circuits exist in mammalian GRNs, our goal is to
determine whether these circuits are recurrent (i.e. more prevalent than would be expected by
chance). Although existing experimental data suggests that Type II circuits are prevalent and
Type I circuits are not, the number of examples is far too few to be conclusive. It is possible
that the apparent lack of evidence for the prevalence of Type I circuits is due to the bias in the
choice of experimental systems, i.e., most existing studies used cellular differentiation systems
where Type II circuits function to reinforce differentiation decisions.

Given the dearth of known miRNA-containing networks, it is infeasible to directly determine
whether Type I/II circuits are recurrent. However, if a miRNA is involved in a larger number
of Type I (Type II) circuits than expected by chance, one would expect the transcription of the
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miRNA and a significant number of its targets to be positively (negatively) correlated across
diverse conditions. There are three challenges that complicate the identification of such
correlation signatures. The first challenge is that large-scale expression data sets containing
both miRNAs and protein-coding genes are lacking. We address this challenge by taking
advantage of the large number of miRNAs that are embedded in the introns of protein-coding
genes in human and mouse (Rodriguez et al., 2004). With few exceptions (e.g. miR-7 during
Drosophila embryogenesis (Aboobaker et al., 2005)), the expression profiles of embedded
miRNAs examined thus far are highly correlated to their host genes at both the tissue and
individual cell levels (Aboobaker et al., 2005;Baskerville and Bartel, 2005;Li and Carthew,
2005), suggesting that they tend to be co-transcribed at identical rates from the same promoter
(s) (Kim and Kim, 2007). Hence, the relative level of host-gene transcription across conditions
can accurately serve as a proxy for that of the embedded miRNA(s), even though the steady-
state levels of host-gene mRNA and that of the embedded miRNA(s) may be different.

The second challenge is that only a few miRNA targets have been verified in vivo and
computational target predictions can be noisy (Rajewsky, 2006). We address this challenge by
developing a robust method that does not rely on target prediction to detect significant over-
abundance of Type I and/or II circuits.

The third challenge is that most existing mammalian expression data sets tend to study tissues,
not individual cell types. While expression correlation over tissue conditions is likely due to
transcriptional co-regulation by common upstream factors, cell-type heterogeneity in tissues
can complicate the analysis. For example, some miRNAs and their targets could be expressed
in distinct cell types within a tissue even though their averaged expression at the tissue level
may suggest that their expression is correlated. To address this challenge, we analyze
expression data from homogeneous neuronal cell populations (Arlotta et al., 2005;Sugino et
al., 2006).

We consistently observe that Type I and/or II circuits are prevalent for a significant fraction
of the embedded miRNAs we analyzed, independent of the gene expression data sets used in
the analysis, suggesting that these two circuit types are recurrent motifs in mammalian
genomes. Strikingly, brain-enriched miRNAs tend to target brain-enriched genes and Type I
circuits are especially prevalent in mature neurons. Our findings not only confirm that Type II
circuits are abundant, but reveal the surprising genome-wide prevalence of Type I circuits,
suggesting that miRNAs are employed in recurrent gene regulatory circuits to perform
important biological functions in mammals.

RESULTS
Genes Highly Correlated in Expression with a miRNA are More likely to be Predicted as
Targets

We first sought to determine whether embedded miRNAs tend to correlate in expression with
their putative targets, a phenomenon we term “targeting bias”, by analyzing the Novartis human
expression atlas (Su et al., 2004) that comprises 79 distinct tissues/cell types (Figure 2A).
Hierarchical clustering indicates that a large number of embedded miRNA host genes are
characterized by upregulation in immune/cancer (Group II) and brain tissues (Groups I and
IV), suggesting that these miRNAs are important in cell proliferation and brain functions,
respectively. For embedded miRNAs (e.g. miR-9/9*, -153, -128) that are known to be expressed
in the adult brain (Cao et al., 2006), their host genes belonged to Groups I and IV; while host
genes of cancer-related miRNAs (Esquela-Kerscher and Slack, 2006), such as miR-15a/16, are
clustered in Group II (Figure 2A). These observations further assure us that host-gene
transcription patterns can be used as a proxy for that of the embedded miRNA.
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To assess targeting bias, we first made a ranked list of genes for each embedded miRNA based
on the extent of their expression correlation and compiled a list of targets for each miRNA
using the TargetScanS algorithm (Lewis et al., 2005). To examine if a miRNA's predicted
target set is enriched in genes that are highly correlated or anti-correlated in expression with
the miRNA, we devised a statistical test based on the hypergeometric distribution (see
Methods). For the 60 miRNAs we analyzed, 75% have a significantly higher number of
predicted targets (P < 0.05) in the top- or bottom-10 percentile of the ranked expression-
correlation list. For instance, the number of predicted targets of miR-153 that fall in the top-10
percentile of its ranked list is twice more than expected (P<10−30). In contrast, the predicted
target set of only 8% of the miRNA we analyzed show significant enrichment for genes in the
middle-10 percentile of the ranked list (Figure 2B). Interestingly, most brain-enriched miRNAs
(Group IV) exhibit targeting bias for positively correlated genes (Figure 2B, all with P<0.01).
Similar targeting bias trends were observed for mouse embedded miRNAs using the Novartis
mouse expression atlas (Su et al., 2004) (data not shown). From these results, we conclude that
many embedded miRNAs indeed exhibit targeting bias, in which their expression is often
highly correlated or anticorrelated with putative targets.

A Computational Method for Predicting whether a miRNA is biased for Type I/II Circuits given
an Expression Data Set

Although our observation of targeting bias is encouraging, one potential concern is that the
analysis requires miRNA target prediction, which can be noisy (Lewis et al., 2005;Rajewsky,
2006). Furthermore, genes with different expression patterns might have different 3′UTR
length distributions (Stark et al., 2005). In principle, these problems might have contributed to
the targeting bias we observed. Therefore, we developed an alternative method that avoids
target prediction and uses a measure that is independent of 3′UTR lengths. The new measure
stems from the observation that putative miRNA binding sites have a higher probability of
being evolutionarily conserved across mammalian genomes (Lewis et al., 2005;Xie et al.,
2005). We reasoned that if a miRNA (m) is enriched in Type I (II) networks, a higher than
expected proportion of putative binding sites in the 3′UTR of genes positively (negatively)
correlated in expression with m should be functional in vivo, and hence evolutionarily
conserved. In essence, given a group of genes (G) and a miRNA seed, our method counts the
number of seed matches (S) in the 3′UTRs of G and the number of those matches that are
conserved (C) (gray box in Figure 3), then it computes a conservation enrichment (CE) score
to indicate whether the observed conservation rate (CR=C/S) is significantly higher than that
of randomly drawn gene sets (Figure 3 step 3; CE>1.65 corresponds to P<0.05). Because the
CR measure is normalized by the number of binding site occurrences, it is independent of biases
in 3′UTR length and base composition.

To determine whether a miRNA m exhibits bias for Type I and/or II circuits given an expression
data set, we first rank genes by their expression correlation with m and slide a fixed-size
window across the ranked list to generate a series of gene groups (G) with decreasing degrees
of expression correlation to m (Figure 3 step 1). For each group in G we compute the CE score
of the two 7-mer seeds (m1-7, m2-8) of m (Figure 3 steps 2-3) (Lewis et al., 2005). If m is
enriched in Type I (II) networks, the CE score of at least one of the seeds in highly (lowly)
ranked groups is likely to be significant. We designate a miRNA to exhibit Type I (II) bias if
the CE score of its top (bottom) 10 percentile gene set is significant (i.e. CE > 1.65; Figure 3
step 4).

Many Human and Mouse Embedded miRNAs Exhibit Bias for Type I/II Circuits
We applied CE analysis to human embedded miRNAs, again using the Novartis atlas. Of the
60 miRNAs we analyzed, 67% have a significant CE score in their top-10 or bottom-10
percentile sets (P<0.05) (Figure 4A), compared to only 8% having a significant CE score in
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their middle-10 percentile sets (i.e. group of genes having insignificant expression correlation).
Overall, the CE scores of the top-10 and bottom-10 percentile sets are significantly higher than
that of the middle-10 percentile sets (Kolmogorov-Smirnov Test, P=2×10−11 and 3.6×10−5

respectively). Representative CE score profiles are shown in Figures 4B-D. Interestingly, more
miRNAs show Type I bias (48% vs 27%), partially due to the relative abundance of brain-
enriched miRNAs we analyzed. As was observed in the targeting bias analysis, a large number
of miRNAs (8 out of 12) in the brain cluster (Group IV) show Type I bias, but none show bias
for Type II (Figure 4A), suggesting that these miRNAs are not primarily involved in reinforcing
the suppression of genes expressed outside the brain (except miR-9, which shows bias for both).
The biases shown by non-brain-enriched miRNAs (i.e. Groups I and IV) are more evenly
distributed among the two types (e.g. Group II, Figure 4A). Several miRNAs have significant
CE scores in both the top-10 and bottom-10 percentile sets, such as miR-9 and miR-15a/15b/
16 (both copies: chromosomes 3 and 13), indicating that their involvement in both circuit types
is prevalent.

To assess whether the abundance of Type I/II biases is a general feature of mammalian gene
regulation, we conducted CE analysis on embedded miRNAs in mouse using the Novartis
mouse expression atlas comprising 61 tissues/cell types (Su et al., 2004). The overall trends
are consistent with those of human: of the 45 miRNAs analyzed, 69% exhibit bias for either
type, with 42% and 36% displaying bias for Type I and II (9% showing both), respectively
(Figure 4E). In comparison, less than 7% have a significant CE score in their middle-10
percentile set. As is the case for human, mouse brain-enriched miRNAs only exhibit Type I
bias, whereas other biased miRNAs are more evenly distributed among the two types. Since
Type I/II signatures are prevalent in human and mouse, these signatures are unlikely a result
of data irregularity or noise particular to one expression data set, and we conclude that both
circuit classes are recurrent in mammalian miRNA-containing networks. Our results
independently confirm that host-gene transcription patterns largely reflect those of embedded
miRNAs. If the opposite is true, one would expect a much smaller fraction of miRNAs to have
significant CE scores in the top-10 and/or bottom-10 percentile sets, likely similar to the
fraction of miRNAs with significant CE scores in the middle-10 percentile set (i.e. random
noise).

The fact that brain-enriched miRNAs tend to target brain-enriched genes suggests that some
of them may be positively co-regulated by transcription factors that specify neuronal fates (e.g.
NRSF/REST (Ballas et al., 2005); see Discussion). However, due to the heterogeneity of cell
types in brain tissues, it is possible that the expression of some of these miRNAs and their
targets does not overlap at the single-cell level. This suggests that some brain-enriched miRNAs
may also be enriched in Type II circuits, even though tissue-level analysis only shows Type I
bias due to the lack of coverage of individual cell types. Therefore, expression data on
homogeneous neuronal cell populations are needed to confirm whether Type I circuits are
indeed prevalent in the adult brain (see below). Non-brain-enriched miRNAs with Type I bias
are less likely to be confounded by cell type heterogeneity, because unlike brain-enriched
miRNAs, they tend to be differentially regulated across diverse tissue and homogeneous
cultured-cell conditions (e.g. miR-198; Figure 4B); hence positive expression correlation
between a miRNA and its targets across diverse conditions suggests that they are
transcriptionally co-regulated by common upstream factors.

The Prevalence of Type I/II Biases Persists in Homogeneous Neuronal Cell Population
Expression Profiles

To address the concern that the human and mouse data sets consist mostly of tissues but are
lacking in homogeneous cell-types, we conducted CE analysis on embedded miRNAs using
two additional mouse expression data sets: the developmental time-course of three types of
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motor neurons (MDEV) (Arlotta et al., 2005) and profiles of 12 homogeneous neuronal cell
types (NCELL) from five different brain regions (Sugino et al., 2006). Both data sets were
obtained by careful isolation of homogeneous neuronal cell populations.

The MDEV profiles comprise three motor neuron types over four developmental stages (E18,
P3, P6, P14). The samples were isolated from the mouse neocortex using a combination of
anatomical and cell sorting techniques. The expression data are highly reproducible across
biological replicates isolated from different mice (Arlotta et al., 2005), indicating that noise
resulting from the cross-contamination of other cell types is minimal. Of the 42 embedded
miRNAs analyzed, 45% exhibit bias, with 29% and 24% having significant CE scores in their
top-10 and bottom-10 percentile sets, respectively; while only 12% show significant CE scores
in their middle-10 percentile sets (Figure 5). It is not surprising that a smaller percentage of
miRNAs exhibit bias compared to the Novartis atlas, as this data set only covers the
development of a few neuronal subtypes and fewer miRNAs are expected to be regulated under
these conditions. In fact, the prevalence of Type I/II signatures is quite remarkable considering
the limited coverage of conditions, suggesting that miRNAs have diverse functions and are
deployed in a myriad of pathways. The biased miRNAs include ones known to be neuronal
(e.g. miR-7) and those whose host gene has brain-enriched expression patterns (e.g.
miR-326). However, several have host genes that are broadly down-regulated in brain tissues
of the adult brain according to the Novartis atlas (e.g. miR-106b), indicating that they may be
transiently expressed during brain development. For instance, the host of miR-106b has a Type
II signature, and its expression is elevated at E18 but continues to fall as development proceeds
(data not shown), suggesting that it may function in a large number of Type II networks to
reinforce the suppression of genes specific to later developmental stages.

Similar trends were observed in the NCELL data set, though a higher proportion (61%) of the
miRNAs analyzed exhibit bias, consistent with the fact that this data set consists of more diverse
conditions than the MDEV profiles (Figure 5D). Interestingly, significantly more miRNAs
exhibit Type I bias than Type II (44% vs 17%). Since this data set consists of mature neurons,
our results suggest that Type I circuits may be more prevalent in networks that carry out
homeostatic neuronal functions (see Discussion). The large proportion of miRNAs that exhibit
Type I and/or II bias at the individual cell-type level strongly suggests that cell type
heterogeneity alone is unlikely to explain the similar results we observed in the human and
mouse atlas data sets. We conclude that Type I and II circuits are indeed prevalent in the human
and mouse genomes.

While some miRNAs consistently exhibit bias across all data sets we analyzed, others only
show bias in some data sets (see Supplemental Data for examples). This is to be expected as
the bias detected by our method largely depends on the conditions profiled in each data set. As
with protein-coding genes, the transcription of a miRNA is likely regulated by multiple cis
regulatory modules (Howard and Davidson, 2004); thus a miRNA can be involved in a large
number of Type I or II circuits via different cis modules (see Discussion). A particular set of
profiled conditions in a given data set may only reveal transcription patterns due to the
regulation of a subset of these modules. In essence, two key factors determine whether a
miRNA would exhibit bias as detected by CE analysis: first, whether the expression of the
miRNA is differentially regulated across the profiled conditions; and second, whether a higher
than expected number of functional targets (functional implies the seed-matches of the miRNA
have a higher probability of being conserved) are positively or negatively co-regulated with
the miRNA. As more expression data containing both miRNAs and protein-coding genes
become available, CE analysis can readily be applied to further dissect the prevalence of Type
I and II circuits in diverse biological contexts.
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Identification of miRNAs with Neuronal-enriched Expression Patterns
Motivated by the observation that brain-enriched miRNAs tend to target brain-enriched genes,
we reasoned that brain-enriched miRNAs can be identified by searching for miRNAs with
significant CE scores in a group of genes with a brain-enriched expression signature. To test
this idea, we applied CE analysis to a group of mouse genes whose expression is upregulated
across all neuronal tissues profiled in the Novartis atlas (Figure S1). Table 1 lists all miRNA
seed-matches with a significant CE score (CE > 2.33, P<0.01). Strikingly, 9 out of 10 seeds at
the top of the list correspond to miRNAs known to be brain-specific or -enriched. For instance,
miR-124a is one of the most abundant and ubiquitously expressed miRNAs in the brain (Lagos-
Quintana et al., 2002). Other notable brain-enriched miRNAs in the list include
miR-9,-125,-153, and 218 (Cao et al., 2006). This result further supports our conclusion that
brain-enriched miRNAs tend to target brain genes, and provides direct evidence that the CE
score is a biologically sensitive measure of whether a miRNA functionally interacts with a
statistically significant number of targets in a gene group. High-scoring miRNAs in Table 1
not previously shown to be neuronal warrant experimental confirmation of their brain-enriched
expression pattern.

DISCUSSION
In this study, we found that the expression of embedded miRNA host genes and their predicted
miRNA targets tend to be positively or negatively correlated (Figure 2), suggesting that the
coordinated transcriptional regulation of a miRNA and its targets is an abundant motif in gene
networks. This result encouraged us to develop a robust method that does not rely on target
prediction to determine whether such circuits are prevalent in the human and mouse genomes
(Figure 3). We found that many miRNA seed-matches are evolutionarily conserved at
significantly higher rates in genes whose expression pattern is highly correlated (either
positively or negatively) with that of the corresponding miRNA (Figures 4-5), indicating that
putative targets that are coordinately regulated with a miRNA tend to be functional in vivo.
This phenomenon is widely spread in mammalian genomes: a large fraction (44-69%) of the
miRNAs analyzed show bias towards coordinated regulation with their targets, independent
of the particular gene expression data sets analyzed (Figures 4-5). We speculate that the
abundance of Type I/II circuits in the genome may be even higher because the profiled
conditions in the expression data we analyzed are limited (e.g. miR-106 exhibits Type II bias
in the MDEV data set but not in the Novartis atlas). Taken together, our results strongly argue
that Type I and II circuits are recurrent network motifs in mammalian gene networks.

Negative expression correlation between a miRNA and its putative targets has been reported
for several tissue-specific mammalian miRNAs (e.g. miR-133), where an increase in the
miRNA level often coincides with a decrease in the levels of its target transcripts at the tissue
level (Farh et al., 2005;Sood et al., 2006). However, this phenomenon can not be solely
attributed to the repressive nature of miRNA-mediated gene regulation because targeting by
miRNAs often lead to translational inhibition but has limited effects on target mRNA levels
(Bartel, 2004;Doench et al., 2003;Doench and Sharp, 2004). A plausible explanation is that
the observed negative correlation is due to Type II circuits where the suppression of target
mRNA levels is mainly driven by transcriptional control and miRNAs play a modulatory role
to reinforce such decisions (Bartel and Chen, 2004). This notion is further supported by the
observed positive expression correlation between a miRNA and its targets in Type I circuits:
elevated miRNA levels do not necessarily lead to lower target mRNA abundance at the tissue
and individual cell type levels.

The prevalence of positive expression correlation in miRNA-target pairs is surprising and
counterintuitive given the repressive nature of miRNAs. Although some positively correlated
miRNA-target pairs may result from localized expression of a miRNA and its target in distinct
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cell types within a tissue (Stark et al., 2005), mutually exclusive expression cannot account for
all positively correlated miRNA-target pairs. Indeed, Type I signatures remained prevalent
when CE analysis was applied to expression data sets obtained from homogeneous neuronal
cell populations in the adult mouse forebrain and at distinct stages of cortical motor neuron
development (Figure 5), suggesting that these miRNA and their targets are coexpressed at the
single-cell level. In Type I circuits, the expression of the target gene is controlled by two
opposing pathways, one of which is miRNA-mediated and serves as a negative feedback/
feedforward loop. This configuration implies that miRNAs modulate rather than solely
establish the expression level of their target genes (Bartel and Chen, 2004). Supporting this
notion, translation inhibition and mRNA degradation mediated by miRNAs are modest even
for reporter genes with more than one miRNA binding sites in in vitro overexpression assays
(Brennecke et al., 2005;Farh et al., 2005). The same notion also suggests that the functional
importance of miRNAs is beyond simple gene repression but is determined by the underlying
network structures.

The finding that brain-enriched miRNAs tend to target brain-enriched genes suggests that the
primary function of these miRNAs is not to reinforce the suppression of genes specific to other
tissues. However, our result does not imply that neuronal-enriched miRNAs tend to only
participate in Type I circuits in the adult brain. Indeed, we found that these miRNAs could
exhibit bias for either network type when data from homogeneous neuronal cell populations
were used in our analysis. Interestingly, the number of miRNAs exhibiting Type I bias is still
significantly higher than those showing Type II bias in the NCELL data set, even though this
phenomenon was not observed in the MDEV data set. This suggests that Type I circuits may
be more prevalent in networks operating in homeostasis—perhaps partly due to the need for
such circuits to maintain protein steady-state and regulate local translation in neurons (see
below)—as NCELL consists of mature neurons whereas MDEV only covers developing
neurons.

The following aspects might complicate the interpretation of our results. First, the prevalence
of Type I/II circuits could be a special feature of embedded miRNAs. This is unlikely, however,
because more than 80% of all known miRNAs in human and mouse reside in introns of coding
or non-coding genes (Kim and Kim, 2007;Rodriguez et al., 2004). In this sense, there are no
obvious features that distinguish the miRNAs we analyzed from the rest. In addition, embedded
miRNAs are not homogeneous by any measure: they have diverse expression patterns and
likely function in disparate biological processes. Second, post-transcriptional control of the
host gene and/or the miRNA could uncouple their expression (Obernosterer et al.,
2006;Thomson et al., 2006;Wulczyn et al., 2007). However, this phenomena is likely
condition-specific (e.g. early development (Thomson et al., 2006)) as the steady-state
expression of host genes and their embedded miRNA(s) tend to be correlated (Aboobaker et
al., 2005;Baskerville and Bartel, 2005;Li and Carthew, 2005;Rodriguez et al., 2004).
Importantly, the topology of Type I and II circuits does not preclude the possibility of post-
transcriptional control of the miRNA. For example, the miRNA need not be immediately active
after transcription in both circuit types (e.g. a delay between transcription and maturation).

Negative Auto-regulatory Feedback by Embedded miRNAs
The prevalence of Type I signatures suggests that miRNAs may be often employed in negative
feedback circuits (Figure 1). An interesting instance of negative feedback circuits involves the
targeting of a host gene by its own embedded miRNA(s). Based on TargetScanS predictions,
we identified three auto-feedback miRNAs in human (miR-26a, -128b, -488; Table S1a). Since
prior experiments have shown that non-conserved sites can confer normal levels of repression
when the target transcript is coexpressed with the miRNA (Brennecke et al., 2005;Farh et al.,
2005), and that high affinity sites without perfect seed matches may also be functional in
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vivo (e.g. good 3′ compensatory matches (Brennecke et al., 2005)), we identified 18 additional
putative negative auto-feedback loops (Table S1b/c) by searching for non-conserved seed
matches and high affinity sites (ΔG < −20 kcal/mol).

Type I and II Circuits in Neural Development
The positively correlated expression of miRNAs and targets in Type I circuits could be due to
their sharing of cis regulatory modules regulated by common upstream transcription factors.
In neuronal development, NRSF is a master transcriptional repressor that inhibits the
expression of neuronal genes in non-neuronal cells and in neuronal progenitors prior to
differentiation (Chong et al., 1995). Experimental and computational studies have identified
hundreds of protein-coding genes and a handful of miRNAs (e.g. miR-9, -29, and -135b) under
the control of NRSF (Conaco et al., 2006;Mortazavi et al., 2006;Wu and Xie, 2006). Notably,
miR-29 and miR-135b have statistically significant CE scores (2.27 and 2.68, respectively) in
genes with NRSF binding sites and brain-enriched expression patterns (data not shown),
suggesting that a larger than expected number of functional targets of miR-29 and miR-135b
are co-repressed by NRSF, and they may be co-activated as NRSF level goes down during
neuronal development. Interestingly, the 3′UTR of NRSF has conserved putative binding sites
for both miR-29 and miR-135b, likely forming Type II circuits (Wu and Xie, 2006). Indeed, in
principle a miRNA can be involved in a large number of Type I and/or II circuits because a
miRNA can target multiple genes (Figure 6A) and can be transcriptionally regulated via
different cis regulatory modules (Figure 6B).

Potential Functions of Type I Circuits
Recurrent network motifs are likely a result of convergent evolution at the network level,
presumably because certain circuit topologies are particularly versatile in carrying out
important functions in cells. A plausible function of the miRNA-mediated negative feedback/
feedforward loop (MNFL) in Type I circuits is to define and maintain target-protein steady-
states. The eukaryotic cell is a noisy environment in which transcription often occurs in a
bursting manner (Blake et al., 2006;Golding et al., 2005;Raj et al., 2006), causing the number
of mRNAs per cell—which can go as low as fractions of a copy when averaged over a
population—to fluctuate significantly. Since other processes in gene expression, such as
mRNA degradation and protein translation, are also stochastic in nature, protein levels in turn
may fluctuate considerably over time (Kaern et al., 2005). Importantly, such fluctuations can
propagate through the network, e.g. fluctuations in the level of an upstream transcription factor
can contribute significantly to expression fluctuations of downstream genes (Pedraza and van
Oudenaarden, 2005;Rosenfeld et al., 2005).

In Type I circuits (Figure 1), any deviation from the upstream factor (U)'s steady-state would
drive the target (T) and miRNA (m) away from their steady-states in the same direction, thus
m could tune the production rate of T opposite to the direction of U's fluctuation. Such noise
buffering helps to maintain target protein homeostasis and ensures more uniform expression
of T within a cell population. This may be desirable for cells that are ultra-sensitive to the level
of T, where any significant drift from the desired steady-state may lead to pathological
consequences. In addition, since the level of m defines T's translation rate, their co-expression
may allow m to fine-tune T's steady-state (Bartel and Chen, 2004). Compared to transcriptional
repressors, miRNAs may be especially effective in such circuits because they likely can tune
target protein levels more rapidly at the post-transcriptional level. Thus, miRNAs could
significantly shorten the response delay, leading to more effective noise buffering, as well as
precise definition and maintenance of steady-states.

Noise buffering by Type I circuits may be especially common in circuits with positive feedback
loops where fluctuations in any component can be amplified, driving the system to switch states
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(Figure 6C). Having MNFL in such networks may dampen network component fluctuations
and avoid random switching events. The c-Myc/E2F1/miR-17-92 network (O'Donnell et al.,
2005;Sylvestre et al., 2006) is a good example of such a circuit (Figure 6D), where the MNFLs
may prevent noise-driven transitions into proliferation. An example of such random-switching
phenotypes was observed in the yeast Galactose Network (GAL), which contains both positive
and negative feedbacks, although the negative feedback loop is mediated by proteins instead
of miRNAs. When the negative feedback in the network was removed, the GAL genes in the
network would randomly switch on and off over time regardless of whether the network is
induced (Acar et al., 2005). Given that positive feedback circuits are abundant in genomes
(Brandman et al., 2005;Ferrell, 1999), we surmise that miRNAs are frequently coupled to such
networks to provide fast feedback response.

Another potential function of Type I circuits is the regulation of local translation in neurons.
It has been proposed that the translation of neuronal mRNAs is often repressed in transport
granules and at local synapses, and that the inhibition can be released in response to synaptic
activity (reviewed in Kiebler and Bassell, 2006). Neuronal miRNAs may be transcriptionally
co-activated with their targets and constitutively lower their targets' translation rate to facilitate
activity-dependent local translation. Consistent with this notion, a brain-specific microRNA,
miR-134, has been shown to function directly as a repressor of LimK1 translation under basal
conditions. This inhibition can be relieved by the BDNF signaling pathway, thereby allowing
for local translation and spine growth (Schratt et al., 2006). Although the detailed molecular
mechanisms remain to be identified, the enrichment of Type I bias in the NCELL data set
supports the idea that miRNAs have important functions in local translation and synaptic
plasticity.

Potential Functions of Type II Circuits
In Type II circuits, a miRNA regulates its targets coherently with transcriptional control,
thereby reinforcing transcriptional logic at the post-transcriptional level. Under conditions
where the target genes are transcriptionally suppressed, such circuits can serve as a surveillance
mechanism to suppress “leaky” transcription of target genes (Bartel and Chen, 2004;Hornstein
and Shomron, 2006;Stark et al., 2005). While the basic function of Type II circuits is intuitive,
it can have sophisticated functions in networks. For instance, the miRNA-mediated repression
in Type II circuits can be part of a positive feedback loop, in which the target gene encodes a
transcription factor that can down-regulate the miRNA's expression. Such an example can be
found in Drosophila eye development, where the reciprocal repression between miR-7 and
Yan ensures their mutually exclusive expression pattern: Yan is expressed in progenitor cells
and miR-7 in photoreceptor cells (Li and Carthew, 2005). This circuit can be switched by EGFR
signaling, which transiently triggers Yan degradation. A decrease in Yan levels relieves
miR-7 from transcriptional repression, subsequently leading to the depletion of Yan in
photoreceptor cells (Li and Carthew, 2005). Positive feedback loops are often employed in
such toggle-switch circuits where a transient signal can be converted into a long-lasting cellular
response (Ferrell, 2002). Since most putative targets have only one binding site for a miRNA,
it is likely that miRNAs would act in concert with other miRNAs and/or regulatory processes
to increase the feedback strength. We speculate that miRNAs may be involved in a large
number of similar positive feedback loops to enhance the robustness of irreversible cellular
differentiation.

Conclusion
In conclusion, our results provide strong evidence that coordinated transcriptional and post-
transcriptional regulation via miRNAs is a recurrent motif to enhance the robustness of gene
regulation in mammalian genomes. If, as suggested by our findings, miRNA-mediated
repression tends to play modulatory and/or reinforcing roles in networks, miRNA loss-of-
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function phenotypes may be subtle and quantitative experimentation at the single-cell level
(Acar et al., 2005), for instance, may be necessary to reveal their functions. Further exploration
of miRNA-mediated repression in the context of gene regulatory networks will provide a
comprehensive view on how gene expression is regulated at the systems level.

EXPERIMENTAL PROCEDURES
Embedded microRNAs

Human and mouse RefSeq (Wheeler et al., 2006) genes and miRNA genomic coordinates were
extracted from the UCSC 2004/May human and 2005/March mouse databases, respectively
(http://genome.ucsc.edu/). We picked embedded miRNAs that reside on the same strand as the
host, either in introns or UTRs of Refseq genes.

Gene Expression Data Processing and Host Transcript Mapping
The pre-normalized Novartis human/mouse atlas data, along with the probe annotations were
downloaded from Novartis (http://wombat.gnf.org/index.html). The pre-normalized MDEV
and NCELL data were downloaded from the NCBI GEO database (http://
www.ncbi.nlm.nih.gov/projects/geo/). We assigned an integer id to probes on each microarray
for ease of reference (Table S7-9). Probes for individual miRNA host genes were mapped and
erroneous probes were removed before further analysis (see Supp. Data). To obtain relative
expression levels, log-transformed expression of individual probes on an array is further
normalized by subtracting the probe-median across conditions and divide by the corresponding
standard deviation.

Hierarchical Clustering and Gene Groups
The hierarchical clustering module in GenePattern (Reich et al., 2006) was used. The
parameters used were: average linkage, row centered with median, and distance using Pearson
correlation. Spearman ranked correlation was also tested as the distance measure, but the results
were essentially the same.

Target Predictions
We implemented the TargetScanS (Lewis et al., 2005) algorithm where we searched for 7-mer
seed matches in the 3′UTRs of RefSeq genes. 3′UTRs were downloaded from the UCSC
human/mouse database (see above), along with their multiz alignments. Given the multiple
alignment of each UTR, we searched for 7-mer (no gaps) human miRNA seed-matches (m1-
m7 and m2-m8) that are perfectly conserved across the human, mouse, rat, and dog genomes.

Targeting Bias Calculations
For each embedded miRNA host probe, we compiled a ranked list of genes based on their
expression correlation to the probe. We then counted the number of genes (Kx) in a miRNA's
predicted target set (T) that overlap with each of the X percentiles (where X can be top-10,
middle-10, or bottom-10) of the ranked list. If miRNA target prediction is random, on average
we expect 10% of the predicted target set to overlap each of these sets. Since target prediction
corresponds to sampling without replacement, the sampling distribution is hypergeometric with
parameters (N, 0.1N, |T|), where N is the total number of genes; and the sampling variance (s)
can be computed exactly as:

s = 0.09 ⋅ | T | ⋅ (N − | T | )
N − 1
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We then computed the z-score for each of the X percentile sets to indicate the degree of
enrichment:

Z =
Kx − 0.1 ⋅ | T |

s

The exact P value for enrichment (or depletion) can be obtained by computing the cumulative
distribution of the above hypergeometric distribution.

Conservation Enrichment Analysis
For each miRNA host probe, we generated a ranked list of genes based on their expression
correlation to the host probe. Since some genes can be represented by multiple probes on the
microarray, we removed such redundancies so that each entry in the ranked list is unique. The
rest of the procedure is as described in the main text (Figure 3). For the background distribution
estimation, we randomly sampled 1000 times K genes from all unique genes on the microarray,
where K equals 10% of the total number of unique genes on the array. For each random sample
we computed the CE score for miRNA seeds of interest. The empirical CE score distributions
of miRNA seeds are sufficiently normal so that less than 5% of the random samples have
CE>1.65 for all seeds, so we report the CE score only. To generate the ΔCE heatmaps (e.g. Fig
4A), the maximum ΔCE score of the two seed-matches (m1-7 or m2-8) are displayed for each
miRNA/probe combination.

Predicting Auto-feedback Loops
Conserved loops came directly from TargetScanS predictions. For non-conserved loops, the
3′UTRs of host genes were scanned for 7-mer seed-matches of the respective embedded
miRNA. We used Miranda (Enright et al., 2003;John et al., 2004) to scan for energetically
favorable binding sites. The parameters used were: score cutoff = 50, free energy cutoff = −20,
scale=4 (to bias 5′ matches with a factor of 4), gap extension penalty=−4 (to allow loops towards
the 3′ end).

Identifying Brain-enriched miRNAs
Standard k-means (k=40) clustering was applied to the Novartis mouse atlas using the Cluster
tool (Eisen et al., 1998). We computed the CE scores of all known miRNA seeds for one of
the resulting clusters that contains 1012 Refseq genes that are expressed in the brain tissues
profiled.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Two Classes of miRNA-containing Circuits
U denotes an upstream factor or a process that regulates the transcription rate of a miRNA
(m) and one of its targets (T). In Type I (II) circuits, the transcription rate of m and T are
positively (negatively) co-regulated by U. Both Type I and II circuits are topologically
characterized by miRNA-mediated feedback or feedforward loops acting on T. Note that in
the case of the positive (Type II) and negative (Type I) feedback circuits, U regulates the
transcription rate of m indirectly through T.
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Figure 2. Targeting Bias Analysis of Human Embedded miRNAs
(A) The expression profiles of human embedded miRNA host genes in the Novartis atlas. Four
prominent clusters were identified by hierarchical clustering.
(B) Targeting bias enrichment scores of miRNAs from major expression clusters. The color
scale reflects the degree of deviation from the 5% significance level (ΔZ), while black denotes
insignificant enrichment/depletion (i.e. P>0.05).
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Figure 3. Computing the CE Score Profile of a miRNA given an Expression Data Set
Step 1: sort all genes on the microarray based on their expression correlation to the miRNA
host gene. Step 2: for each sliding-window subset, the conservation rate (CR) of the miRNA
seed-matches is computed by counting the number of occurrences of conserved and non-
conserved matches (gray box). Step 3: The CR is used to compute the CE score based on the
background CE score distribution obtained from randomly drawn gene sets (σ denotes the
standard deviation of the background CR distribution). The CE score is the number of standard
deviations (σ) away from the expected conservation rate ( CR̄) of gene sets drawn at random.
Step 4: the centers of each sliding window subset (e.g. the top-10 percentile set centers at 95)
are plotted against the corresponding CE scores. We summarize the data by showing the scores
of the top-10, middle-10, and bottom-10 percentile sets as a heatmap. The yellow scale reflects
the amount of deviation (ΔCE) from the 5% significance level (i.e. CE>1.65). Insignificant
scores (CE <= 1.65) are shown in black.
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Figure 4. CE Analysis of the Novartis Expression Atlas for Human and Mouse
(A) ΔCE scores of the top-10, middle-10, and bottom-10 percentile sets of human embedded
miRNAs we analyzed. The scores of miRNAs in Group II (immune/cancer expression
signature) and IV (brain-enriched) are shown. Since some host genes have multiple microarray
probes, the probe IDs are also shown.
(B-D) Representative CE profiles of biased miRNAs along with their expression patterns.
Expression conditions: im=immune/cancer; br=brain; org= organs; ts=testis-related.
(B) CE score profile of miR-198. Expression patterns of genes in the top-10 percentile set are
also shown.
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(C) miR-153 is brain-enriched and its Type I CE score profile is typical of miRNAs in Group
IV.
(D) miR-15b and miR-16 (embedded in the same host gene) exhibit both Type I and II biases.
(E) ΔCE scores of the top-10, middle-10, and bottom-10 percentile sets of mouse embedded
miRNAs we analyzed. Brain-enriched miRNAs only exhibit significant CE scores in their
top-10 percentile sets.
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Figure 5. CE Analysis of the Mouse Motor Neuron Development (MDEV) and Homogeneous
Neuronal Cell (NCELL) Data Sets
(A) ΔCE scores of the top/middle/bottom percentile sets of mouse embedded miRNAs in the
MDEV data set.
(B-C) CE score profiles of miR-103 and miR-342, representative of miRNAs showing Type I
and II bias, respectively.
(C) ΔCE scores of the top-10, middle-10, and bottom-10 percentile sets of embedded miRNAs
in the NCELL data set.
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Figure 6. Circuits with miRNA-mediated Positive and Negative Feedback Loops
(A) The NRSF/miR-29 network. A miRNA can be embedded in both Type I and II circuits. In
addition to potentially targeting NRSF, miR-29 putatively targets a significant number of
neuronal genes (T) that are co-repressed by NRSF.
(B) Illustrates how a miRNA can be embedded simultaneously in both Type I and II circuits
in relation to a single target. U1 and U2 regulate the miRNA and its target via different cis
regulatory modules. Depending on whether U1 or U2 is active, the expression of the miRNA
will positively or negatively correlate with that of the target.
(C) A hypothetical toggle-switch network with two transcription factors (T1 and T2) and two
miRNAs (m1 and m2) with both Types I (T1-m1/T2-m2) and II (T1-m1-T2 and T2-m2-T1)
circuits. Such networks are typically characterized by two stable states where only one of T1
or T2 is active. Each miRNA is involved in a positive and a negative feedback loop. The former
functions in conjunction with other positive feedbacks to reinforce the active state (T1 or T2
active) and allow transient signals to turn the circuit on or off. The latter could buffer
fluctuations and prevent random switching events. MiRNAs may be especially effective at
providing feedback with short delays.
(D) The c-Myc/E2F1/miR-17-20 network in human. c-Myc and E2F1 can activate each other's
transcription and both can activate the transcription of the miR-17 miRNA cluster. Two Type
I circuits are present: the miR-17-mediated negative feedback to E2F1, and the c-Myc-activated
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feedforward loop to E2F1. These negative loops mediated by miRNAs could prevent random
activation of c-Myc/E2F1 due to fluctuations in their expression.
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Table 1
Mouse miRNAs with significant CE scores in a brain-enriched gene group.

seed CE score matched miRNA(s) brain/neuronal expression citation
AAGCCAU 4.68 mmu-miR-135a/mmu-miR-135b (Sempere et al., 2004)
UGCCUUA 4.42 mmu-miR-124a (Lagos-Quintana et al., 2002)
AAGCACA 4.13 mmu-miR-218 (Sempere et al., 2004)
UGCAAAC 4.10 mmu-miR-452 (Dostie et al., 2003)
CACUGCC 3.79 mmu-miR-34a/c mmu-miR-449 (Kim et al., 2004)
AGCACAA 3.74 mmu-miR-218 (Sempere et al., 2004)
CUGUAGA 3.36 mmu-miR-139 (Sempere et al., 2004)
ACUGCCU 3.28 mmu-miR-34b/c (Kim et al., 2004)
ACUGCCA 3.22 mmu-miR-34a mmu-miR-449 (Kim et al., 2004)
CCUCUGC 3.21 mmu-miR-298
AUUCUUU 2.87 mmu-miR-186
GUAUGUA 2.78 mmu-miR-466
AGCAAUA 2.76 mmu-miR-137
UGCAGUA 2.74 mmu-miR-217 (Dostie et al., 2003)
CCCAGAG 2.71 mmu-miR-326 (Kim et al., 2004)
AGACGGA 2.69 mmu-miR-340 (Kim et al., 2004)
GGAGAAG 2.66 mmu-miR-207 (Dostie et al., 2003)
ACCAAAG 2.66 mmu-miR-9 (Lagos-Quintana et al., 2002)
ACGCACA 2.62 mmu-miR-210
GCAGACA 2.62 mmu-miR-346 (Kim et al., 2004)
CUAGGAA 2.60 mmu-miR-384
CCGUGUU 2.57 mmu-miR-411
UCUGAUC 2.52 mmu-miR-383
GGACCAA 2.49 mmu-miR-133a/b (Mortazavi et al., 2006)
AGUCAUA 2.47 mmu-miR-468
GUUCUCA 2.42 mmu-miR-146
UAACCUA 2.40 mmu-miR-154
AUGGAGU 2.38 mmu-miR-136 (Miska et al., 2004)
GCAAUAA 2.37 mmu-miR-137
miRNAs known to be expressed in the brain are highlighted in blue.
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