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Summary Sublines of the human small-cell lung carcinoma (SCLC) cell line GLC4 with acquired resistance to
teniposide, amsacrine and mitoxantrone (GLC4/VM20 ,, GLC4/AM3, and GLC4/MIT60 ,, respectively) were
derived to study the contribution of DNA topoisomerase Ila and -,B (Topolla and -,B) to resistance for Topoll-
targeting drugs. The cell lines did not overexpress P-glycoprotein or the multidrug resistance-associated protein
but were cross-resistant to other TopoIl drugs. GLC4/VM20x showed a major decrease in Topolla protein
(54%; for all assays presented in this paper the GLC4 level was defined to be 100%) without reduction in
TopoII,B protein; GLC4/AM3X showed only a major decrease in TopoII,B protein (to 18%) and not in Topolla.
In GLC4/MIT60 ,, the Topolla and -,B protein levels were both decreased (Topolla to 31%; TopoII,B protein
was undetectable). The decrease in Topolla protein in GLC4/VM20 and GLC4/MIT60,,, was mediated by
decreased Topollcx mRNA levels. Loss of Topolla gene copies contributed to the mRNA decrease in these cell
lines. Only in the GLC4/MIT60x cell line was an accumulation defect observed for the drug against which the
cell line was made resistant. In conclusion, Topollcx and -/3 levels were decreased differentially in the resistant
cell lines, suggesting that resistance to these drugs may be mediated by a decrease in a specific isozyme.
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The interest in type II DNA topoisomerases (Topolla and -,B)
increased after it was shown that these isozymes are targets
for certain drugs used in cancer therapy (Liu, 1989). TopoIl
drugs stabilise the covalent binding of Topoll to DNA
during the catalytic cycle of the enzyme. The presence of this
so-called cleavable complex leads to DNA damage by
interactions with molecules that move along the DNA
strand (Howard et al., 1994), and ultimately to cell death
by an unknown mechanism. There is a causal relationship
between drug-induced topoisomerase IT-mediated DNA
breaks and cytotoxicity (Covey et al., 1988). Although
Topollx displays similarities at the sequence level with
TopoII,B (Austin et al., 1993), differences can be found in
expression pattern during the cell cycle (Woessner et al.,
1991; Kimura et al., 1994), chromosomal localisation of the
genes encoding both enzymes (Tan et al., 1992), distribution
of the proteins in the nucleus (Zini et al., 1994) and the
optimal potassium chloride concentration for catalytic
activity (Drake et al., 1989). It was suggested that Topollcx
is more sensitive for Topoll-targeting drugs than TopoII,B
(Drake et al., 1989) and that Topollo-mediated strand breaks
contribute most to cytotoxicity (Woessner et al., 1990).
A major problem involved in anti-cancer treatment with

Topo inhibitors is the emergency of drug resistance. This can
be mediated by overexpression of drug efflux pumps such as
P-glycoprotein (P-gp) and the multidrug resistance-associated
protein (MRP) (Ling, 1992; Cole et al., 1992; Zaman et al.,
1994). Overexpression of these pumps results in increased
efflux of drugs from the cell before they reach their target
(Topoll) in the cell nucleus. However, changes in Topoll
level can also induce resistance.

Topoll-related drug resistance results from a decrease in
cleavable complex formation in the nucleus, which will lead
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to less DNA damage and less cell death. Less cleavable
complex formation can be due to a decrease in TopoIl
protein, Topoll point mutations changing drug or ATP
binding or the binding characteristics of Topoll to DNA,
changed cellular localisation of Topoll (Feldhoff et al., 1994)
or an altered phosphorylation status of the enzyme (reviewed
in Beck et al., 1994b; Pommier et al., 1994).

Previously, we have described a cell line panel derived
from the small-cell lung carcinoma (SCLC) cell line GLC4,
with increasing doxorubicin resistance (Versantvoort et al.,
1995). In this panel, drug accumulation defects and MRP
expression levels increased with increasing resistance while P-
gp was not involved. In addition, Topoloc protein levels
decreased with increasing resistance, which could be related
to decreased Topolla gene copy numbers as was found by
fluorescence in situ hybridisation (FISH; Withoff et al., 1996).

To analyse further the importance of Topoll in Topoll
drug resistance, the GLC4 cell line was made resistant in vitro
for teniposide (VM26), amsacrine (mAMSA) and mitoxan-
trone. These three compounds are all known to inhibit
Topoll. The cell lines were characterised for cross-resistance,
P-gp and MRP expression, drug accumulation level and
Topollo and -/ characteristics such as gene copy number,
mRNA expression, protein content and Topoll activity.

Materials and methods

Cell lines

GLC4 is a SCLC cell line isolated from a pleural effusion. Its
doxorubicin-resistant subline GLC4/ADR350o (resistance fac-
tor to the drug of interest in subscript) was characterised and
described previously (Versantvoort et al., 1995; Zijlstra et al.,
1987; De Jong et al., 1990, 1993; Muller et al., 1994; Withoffet
al., 1994). GCL4/ADR350, displays a drug accumulation defect,
no P-gp overexpression, MRP overexpression and decreased
Topoll activity due to decreased Topollcx and -3 protein levels.
These cell lines were used for comparison with the new cell
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lines. The newly developed VM26, mAMSA and mitoxantrone-
resistant sublines called GLC4/VM20 ,, GLC4/AM3x and
GLC4/MIT6,O , respectively, were derived from the parental
line by incubating GLC4 cells continuously in stepwise
doubling drug concentrations, starting with the concentration
of the drug of interest which reduced the survival of GLC4 to
50% (IC50), until concentrations of 384 nm VM26 (after 5
months), 584 nM mAMSA (9 months) and 403 nM mitoxan-
trone (9 months) were reached. The experiments were
performed with cell lines which were cultured without drug
for 10-21 days. All cell lines were cultured in RPMI 1640
medium (Gibco, Paisley, UK) containing 10% fetal calf serum
(Sanbio, Uden, The Netherlands).

Cytotoxicity assay

IC5s values for doxorubicin (Pharmacia, Woerden, The
Netherlands), VM26 (Bristol-Myers, Squibb, Woerden, The
Netherlands), mAMSA (Parke Davis, Amsterdam, The
Netherlands), mitoxantrone (Lederle, Etten-Leur, The Neth-
erlands), fostriecin (Parke Davis, Ann Arbor, MI, USA),
camptothecin (Sigma, St Louis, MO, USA) and cisplatin
(Bristol-Myers Squibb) were determined using the microtitre-
well tetrazolium assay as described previously (Timmer-
Bosscha et al., 1989). The cells were incubated continuously
for 4 days with the drug of interest. Aliquots of 7.5 x 104,
20 x 104, 7.5 x 104, 7.5 x 104 and 15 x 104 cells ml-' for GLC4,
GLC4/ADR350x, GLC4/VM20x, GLC4/AM3x and GLC4/
MIT60o,, respectively, were used.

Drug accumulation studies

Cells (1 x 106 ml-') were incubated for 1 h with the drug of
interest at 37°C or 0°C (correction for background signal).
Pilot studies (not shown) were performed to determine
appropriate incubation concentrations for each drug. After
1 h incubation with 5 ,UM doxorubicin, 15 /iM VM26, 10 ,UM
mAMSA or 3 jgM mitoxantrone, cells were washed three
times in phosphate-buffered saline (PBS) at 0°C and
resuspended in PBS at 0°C for drug accumulation measure-
ments on a flow cytometer (mitoxantrone and doxorubicin)
or pelleted for drug extraction purposes (VM26 and
mAMSA) after counting the number of isolated cells. Mean
mitoxantrone and doxorubicin fluorescence levels per cell
were determined using a dual beam flow cytometer (Coulter
Epics-Elite), essentially as described previously (Van der
Graaf et al., 1994). Mitoxantrone was excitated by a helium-
neon laser (Spectra Physics; 633 nm, power 40 mW) and
detected using a standard Omega 675 filter with a bandpass
range of 40 nm. Doxorubicin fluorescence was determined
using an argon laser for doxorubicin excitation at 488 nm
and the same Omega 675 detection filter. Determination of
intracellular mAMSA by high-performance liquid chromato-
graphy (HPLC) was performed as described previously (De
Jong et al., 1993). VM26 accumulation was determined with
HPLC as described by Guchelaar et al. (1993). The
accumulation level of each drug of the parental cell line at
the given concentration was set at 100% and the intracellular
drug levels of the resistant sublines were determined as a
percentage relative to this value. Each experiment was
performed as least three times.

P-gp and MRP detection

Immunohistochemistry for P-gp was performed on cytospins
with indirect immunoperoxidase staining with the C-2 19
antibody (Thamer Diagnostica, Uithoorn, The Netherlands).
MRP protein levels were determined by Western blotting of
membrane protein fractions of each cell line as described
previously (Muller et al., 1994) using monoclonal antibody
MRPm6 kindly provided by Professor RJ Scheper, Free
University, Amsterdam, The Netherlands (Flens et al., 1994),
and visualised by enhanced chemoluminescence (Amersham).
These experiments were performed at least in triplicate.

TopoII activity assay and Western blotting of TopoIIx and -ft

Nuclear extracts containing Topoll protein were isolated and
Topoll kinetoplast-decatenation activity assays were per-
formed as described by De Jong et al. (1990). For Western
blotting, 7.5 jig of nuclear protein was size fractionated by
sodium dodecyl sulphate (SDS) polyacrylamide gel electro-
phoresis (7.5%) and blotted onto polyvinylidene difluoride
membranes (Millipore, Etten-Leur, The Netherlands) using a
semidry blot system. Topolla was detected with the DNA
topoisomerase II polyclonal antibody of Cambridge Research
Biochemicals, (Northwich, UK) and TopoIIf with antibody
281 (kindly provided by Dr F Boege, Wulrzburg, Germany).
Antibody binding was detected using the Western-Light
chemiluminescent detection system (Tropix, Leusden, The
Netherlands) and disodium 3-(4-methoxyspiro{1,2-dioxitane-
3,2'-(5'-chloro)tricyclo[3.3. 1.1 3,7]decan}-4-yl)phenylphosphate
(CSPD, Tropix) as the chemiluminescence substrate. Chemi-
luminescence was detected with Kodak X-Omat XAR
radiographic film by densitometry. Activity assays and
Western blotting were performed in triplicate.

Northern blotting

Total RNA was isolated and the quality of the samples was
checked by agarose gel electrophoresis (Withoff et al., 1994).
Intact RNA was transferred onto positively charged nylon
membranes (Hybond N+, Amersham, Chalfont, UK) by
vacuum slot-blotting. The Topollo (obtained from KB Tan)
and TopoII,B (derived by polymerase chain reaction from a
plasmid obtained from ID Hickson) probes were described
previously (Versantvoort et al., 1995). A human 28S rRNA
probe was kindly provided by WHA Dokter (Dokter et al.,
1993). Probes were labelled with [32P]dCTP (3000 Ci mM-',
Amersham, 's-Hertogenbosch, The Netherlands) using a
oligolabelling kit (Pharmacia Biotech, Woerden, The Nether-
lands). Blots were hybridised overnight at 65°C in 0.5 M
disodium hydrogen phosphate, pH 7.2, 1 mm disodium-
EDTA and 7% SDS. Post-hybridisation washes were
performed sequentially in 2 x SSC/0. 1% SDS, 1 x SSC/0. 1%
SDS and 0.1 x SSC/0.1% SDS for 30 min at 65°C
(SSC =0.15 M sodium chloride plus 0.015 M sodium citrate,
pH 7.0). Membranes were exposed to Kodak X-Omat XAR
radiographic film (Brunschwig, Amsterdam, The Nether-
lands) between intensifying screens at - 80°C. Band
intensities were determined densitometrically using the
UltraScanXL laser densitometer (Pharmacia, Uppsala,
Sweden). Expression levels were corrected for 28S rRNA
expression obtained after stripping and rehybridisation of the
membranes. The experiments were performed in triplicate.

TopoIIa FISH

The cosmid clone for Topolla (ICRFclO5bO4155) was
developed from the Imperial Cancer Research Fund
Reference Library (Lehrach et al., 1990). It was biotin
labelled as described previously (Murphy et al., 1995) using
the Bionick nick-translation kit (Gibco BRL, Life Technol-
ogies, Paisley, UK). Labelled probe was taken up in
hybridisation solution (50% formamide, 2 x SSC, 500 jig
ml-' salmon sperm DNA, 10% dextran sulphate). In situ
hybridisation was performed essentially as described before
(Coutts et al., 1993). Metaphase spreads of the cell lines were
fixed in 3: 1 methanol/glacial acetic acid for 1 h at room
temperature (RT). Lymphocytes were used as a control in
each hybridisation. Slides were briefly rinsed with 2 x SSC
and treated with 100 jig ml-' RNAase A for 1 h at 37°C.
Chromosomes were treated with pepsin (0.01% in 10 mM
HCI) for 10 min at 37°C. Pepsin-treated chromosomes were
post-fixed for 10 min at RT in Streck Tissue Fixative (Streck
Laboratories, Omaha, NE, USA), dehydrated by sequential
washings with 70% ethanol and 100% ethanol and air dried.
Chromosomes were denatured by heating in 70% formamide,
2 x SSC for 3 min at 80°C and dehydrated. The Topollx
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probe was denatured for 5 min at 80°C and incubated for
15-30 min at 37°C before use. Denatured probe (10 ,ul) was
added to the slide, and hybridisation was performed
overnight under a sealed coverslip at 37°C. Probe detection
was performed as described before (Kallioniemi et al., 1992),
with slight modifications. Slides were washed in 50%
formamide, 1 x SSC at 42°C for 20 min, followed by a wash
in 2 x SSC at 42°C for 20 min. All the following steps were

performed at RT. The first detection layer consisted of
fluorescein isothiocyanate (FITC) - avidin DCS (Vector labs,
Burlingame, CA, USA) in 4 x SSC-TB (T is 0.05% Tween 20,
B is 0.5% block reagent; Boehringer Mannheim, Lewes, UK)
for 45 min. Slides were washed for 10 min in 4 x SSC-T. The
second detection layer consisted of biotinylated anti-avidin D
(Vector labs) in 4 x SSC-TB for 45 min. Again, the slides
were washed for 10 min in 4 x SSC-T. The third detection
layer consisted of FITC -avidin in 4 x SSC-TB for 45 min.
The final wash was performed in 4 x SSC-T for 20 min. Slides
were dehydrated before mounting in Vectashield H1000 anti-
fade medium (Vector labs) containing 0.3 ,ug ml-' propidium
iodide (PI) and 0.1 ,ug ml-' 4,6-diamino-indole. Fluorescence
was detected using the Bio-Rad MRC-600 laser scanning
confocal microscope (Richmond, CA, USA) equipped with a

krypton -argon laser. Unedited PI staining and probe signals
were stored on optical disks and have been retained. Images
were processed using edge enhancement algorithms (Comos
software, Hemel Hempstead, Bio-Rad, UK) and stored as

separate files. PI and probe fluorescence signals were merged
using Comos and Nexus software (Bio-Rad). Optimal colour
balance of the pseudo-colour images were achieved using
image processing software (Photomagic, Micrografx, TX,
USA). Final figures were annotated and printed directly from
Micrografx Draw, using a dye sublimation printer (Colour
Ease, Kodak, Harrow, UK). Topolla gene copy numbers
were determined by counting 50- 100 metaphase nuclei per
cell line.

Statistics

Spearman rank correlations were determined to screen for
correlations between protein and mRNA levels, mRNA and
activity levels and mRNA levels and resistance factors to the
various drugs. The Student's t-test was performed to identify
drug accumulation defects. The results were considered to be
significant when P<0.05.

Results

Cell lines

The parental cell line GLC4 grows partly floating/partly
attached, the doxorubicin- and the VM26-resistant sublines
strongly attached to the culture flask and the mAMSA- and
the mitoxantrone-resistant sublines floating in the medium.
The doubling times of GLC4/VM20 , GLC4/AM3x and
GLC4/MIT60X were, respectively, 1.3, 1.1 and 1.0 times
increased when compared with the doubling time of the
parent cell line GLC4 (16.9 h).

Resistance factors of the cell lines to various anti-cancer drugs

Cross-resistance factors were analysed for the drugs used to
induce resistance in the cell line panel and for fostriecin
(Topoll-activity inhibitor; Boritzki et al., 1988), camptothecin
(TopoI inhibitor) and cisplatin (alkylator, a non-Topoll-
related drug). The results summarised in Table I show that
GLC4/AM3, displays a higher resistance factor to doxo-
rubicin than to mAMSA itself. GLC4/ADR350, and GLC4/
VM2,o, are sensitive to fostriecin compared with GLC4; the
other cell lines are almost unchanged regarding their
fostriecin sensitivity when compared with the parental cell
line. None of the cell lines show remarkably high cross-

resistance factors to camptothecin or cisplatin. All cell lines
are cross-resistant to the other Topoll drugs.

Drug accumulation

The following drug accumulation defects were identified.
GLC4/ADR350, displayed accumulation defects for doxo-
rubicin (29% intracellular doxorubicin present compared
with GLC4 after incubating the cells for h with 5 pM
doxorubicin) and VM26 (27% of the GLC4 value at 15 pM
VM26), which is in agreement with results obtained
previously (Versantvoort et al., 1995; De Jong et al.,
1993). No accumulation defect for mitoxantrone was found
in this cell line, although it overexpressed MRP. GLC4/
MIT60x displayed a mitoxantrone accumulation defect (55%
of the GLC4 value at 3 gM mitoxantrone). It can be noted
that the cell volumes could not explain the differences found
in drug accumulation level. (According to the FACS data,
GLC4/ADR350, and GLC4/MIT60x cell volumes were

approximately 5% lower and GLC4/VM20x cell volume
was 10% lower than GLC4; GLC4/AM3x had the same cell
volume as GLC4.)

Protein expression of P-gp and MRP and TopoIIcx and -/3

mRNA and protein levels

Immunohistochemistry showed that P-gp was not over-

expressed in any of the cell lines (results not shown). Figure
I shows a MRP Western blot. Only the doxorubicin-
resistant subline displayed overexpression of MRP protein
as reported previously (Versantvoort et al., 1995; Muller et
al., 1994). The other resistant sublines displayed MRP
protein levels lower than the parental cell line, GLC4.
Representative Topoll cx and -/3 Northern and Western
blotting results are also shown in Figure 1. In Table II, the
Topoll expression data are summarised and expressed as a

percentage of the GLC4 value. Topollo and -,B mRNA levels
seem to be regulated differentially. In GLC4/ADR350 x,
Topollcx and -/ mRNA levels decrease similarly compared
with the levels in GLC4; in the other cell lines, this is not the
case. TopolloI levels are the lowest in GLC4/VM20. and
GLC4/MIT60 , TopoII,B levels decrease especially in GLC4/
AM3X and GLC4/MIT60,. The protein levels correlate with
the mRNA levels for TopollI and TopoII3 (see Figure 2a
and b).

Table I Resistance factorsa+ s.d. of the cell lines for various anti-cancer drugs

GLC4 GLC4/ADR350x GLC4/VM20x GLC4/AM3x GLC4/MIT60x
Doxorubicin 1 344.9+ 57.0 8.3 + 5.6 4.6+ 3.0 3.6+0.5
VM26 1 134.8+29.9 21.5+5.3 2.6+0.5 4.6+1.0
mAMSA 1 12.8+1.6 6.5+1.6 3.5+0.8 7.9+0.8
Mitoxantrone 1 27.5 +15.0 3.7+1.8 3.3 +1.5 60.3 +16.5
Fostriecin 1 0.4+0.1 0.6+0.1 1.1+0.1 0.8+0.3
Camptothecin 1 2.3 +0.9 1.1+0.1 0.9+0.1 1.4+0.3
Cisplatin 1 2.1+0.7 1.7+0.2 0.8+0.2 0.8+0.2

aThe resistance factor is calculated by dividing the IC50 value of the resistant cell line by the IC50 value of the
parental cell line, GLC4 for each drug (n= 3 or more).
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Figure 1 Representative TopoIIa, Topolf, and MRP Northern and Western blot results. It shows the Topolla and -ft mRNA
signals and the 28S signals after rehybridisation of the same blot (3,ug of total RNA was loaded). For Topolla and -ft Western
blotting, 5,g of nuclear extract was loaded; for MRP Western blotting, 20 pg of membrane protein was loaded (except for GLC4/
ADR350x for which 5,pg was loaded to prevent overexposure). ADR, GLC4/ADR350x; VM, GLC4/VM20x; AM, GLC4/AM3 ,;
MIT, GLC4/MIT60 x)

Table II Topollax and -ft mRNA and protein levels (±s.d.), Topolla gene copy number per 100 cells and
Topoll activity (±s.d.) (n.3; the value found for GLC4 was defined as 100%)

TopoIIa
TopoIIa TopoIIa gene copy TopolIf TopoII,B Topoll
mRNA protein number mRNA protein activity

GLC4 100% 100% 100% 100% 100% 100%
GLC4/ADR350 x 29+8 33 + 21 67 34+11 30 + 19 50+ 0
GLC4/VM20 x 44+9 54+26 72 74+26 93 +44 58 + 38
GLC4/AM3x 91+23 105+36 93 28+26 18+5 100+0
GLC4/MIT6o 40+15 31+ 22 68 9(n = 2) NDa 33 +14

aTopollft protein levels were too low to be quantitated (ND, = not dectable).

TopoII activity

The results of the Topoll activity assay are summarised in
Table II. In the four Topoll drug-resistant cell lines, there
was a correlation between Topollo mRNA levels and overall
Topoll activity (see Figure 2c). No correlation was observed
between TopoII,B mRNA levels and Topoll activity (Figure
2d). This may suggest that TopoII,l does not contribute to
overall Topoll activity, or that TopoII,B protein levels are
lower than Topollcx protein levels. However, in view of the
reported instability of the TopoII,l isoenzyme (Danks et al.,
1994), this finding may also suggest that Topollf is rapidly
degraded in the activity assay buffers.

TopoIIa FISH results

No Topollc gene rearrangements were found with Southern
blotting (results not shown). Therefore, gene dosage effects
that could contribute to the decrease in Topollca mRNA
levels in the resistant cell lines were studied with FISH. In
Figure 3, representative FISH results are shown, displaying a

metaphase characteristic for the majority within the
populations of lymphocytes, GLC4, GLC4/MIT6Ox and
GLC4/AM3 ,. The figure shows two TopollI gene copies in
lymphocytes and GLC4/MIT60 , and three Topolla gene
copies in GLC4 and GLC4/AM3 ,. The majority of the GLC4/
ADR350, and GLC4/VM20x cells possessed two Topolla gene
copies (not shown). As can be seen from Table II the
Topollo mRNA decrease in GLC4/VM20, and GLC4/MIT60,
may be caused by gene dosage effects, as there seems to be a

relation between the relative mRNA level in these cell lines
and the number of gene copies counted per 100 cells within
each cell line.

Correlation of TopoII isoenzyme levels with resistance factors
to TopoII drugs

The resistance levels of the cell lines for the various drugs
(Table I) were correlated with Topollx and -,B mRNA levels
(Table II). For the drugs mAMSA (r =-0.87, P= 0.03),
VM26 (r = -0.90, P = 0.02), mitoxantrone (r =-0.90,
P= 0.02) and fostriecin (r= 0.80, P= 0.05), a relationship
with Topolcx mRNA levels was observed.

Discussion

Several reports have been published correlating Topoll levels
with drug sensitivity (Deffie et al., 1989; Fry et al., 1991). Direct
evidence for a correlation between drug sensitivity and Topoll
expression came from transfection studies using eukaryotic
(including human) TopoII-expression vectors (Nitiss et al.,
1992; Asano et al., 1995; McPherson et al., 1995).

In a doxorubicin-resistant SCLC cell line (GLC4/
ADR350 x ), we have described that doxorubicin resistance
was due to multifactorial changes (Versantvoort et al.,
1995; Zijlstra et al., 1987; De Jong et al., 1990, 1993;
Meijer et al., 1987). Relevant resistance-associated features
of GLC4/ADR350, are its cross-resistance to a wide variety
of drugs, drug accumulation defects, overexpression of
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Figure 2 (a) Comparison of Topollc mRNA and protein level and (b) TopoII,B mRNA and protein level throughout the cell line
panel. (c) Comparison of TopoIla mRNA levels with overall TopolI activity. (d) TopoII,B mRNA levels with TopoIl activity. The
correlation coefficients for a, b, c and d are respectively: r=0.80, P=0.05; r= 1.00, P<0.01; r=0.87, P=0.03, and r=0.56, P= not
significant. ADR, GLC4/DOX350 <; VM, GLC4/VM20 ,; AM, GLC4/AM3 ,; MIT, GLC4/MIT60 ,. The mRNA and protein values
found in GLC4 were set a 100%.

MRP and down-regulation of Topollcx and -,B. In order to
study the importance of TopoIl in resistance to Topoll
drugs, we developed three cell lines with resistance for other
Topoll-targeting drugs from the same parental cell line,
GLC4.

From the cross-resistance factors presented in Table I, it
was concluded that all the resistant sublines showed cross-
resistance for the 'classical' Topoll inhibitors (doxorubicin,
VM26, mAMSA and mitoxantrone). Although P-gp and
MRP may be involved in resistance for VM26 and
mitoxantrone, no overexpression of these proteins was

observed. Also, no drug accumulation defects were found in
GLC4/VM20, and GLC4/AM3 ,. This indicates that Topoll
isoenzyme decreases alone can determine resistance. It was of
interest to find that GLC4/MIT.,, shows a mitoxantrone
accumulation defect. Possible explanations for the mitoxan-
trone accumulation defect in GLC4/MIT60x could be the
enhanced activation (phosphorylation) of the MRP protein
(Ma et al., 1995), a changed membrane structure of the cell,
altered localisation of mitoxantrone in the cell by compart-
mentalisation in vesicles giving rise to an altered fluorescence
signal or overexpression or activation of a yet unknown drug
efflux pump. The possibility that changes in intracellular
compartmentalisation may also play a role in the resistance
of these cell lines was not investigated.

In a recent review, several Topoll drug-resistant cell lines
were listed (Beck et al., 1994b). The Topoll-related
resistance mechanisms, which were also reviewed, were
almost always found to involve the Topolloc isoenzyme.
However, the authors suggested that the role of TopoII,B
might also be of importance. Indeed, we observed that in
ovarian tumours TopoII mRNA levels correlated better
with overall Topoll activity than TopoIla mRNA levels
(Van der Zee et al., 1995). Others showed that in lung
cancer cell lines no clear association existed between
TopollI level, Topoll activity and sensitivity to doxorubi-

cin and etoposide (Yamazaki et al., 1995). Topollo and
TopoII,B levels vary in different tumour types (D'Andrea et
al., 1995). Therefore, the Topolla/TopoIIlB ratio may be of
importance in drug resistance. The possible relevance of
TopoII,l was also shown by data obtained with cDNA PCR
for mononuclear cells isolated from chronic lymphocytic
leukaemia patients, in which Topollx mRNA levels were
often low or even undetectable whereas TopoII,B levels were
relatively high as determined by PCR (Beck et al., 1994a).

In our cell lines, Topolla and -# levels decreased
differentially which may be owing to the use of drugs from
different drug classes. Topollcx was down-regulated consider-
ably in GLC4/ADR350 x, GLC4/VM20, and in GLC4/MIT60x.
TopoIIlf was down-regulated especially in the GLC4/
ADR350s,, GLC4/AM3. and GLC4/MIT60 ,. The down-
regulation of Topollo mRNA may be caused by gene
dosage effects, as the majority of the cells in the resistant
sublines containing decreased Topollo mRNA levels have
lost one TopoIIal gene copy (from three to two). We
postulate that in the parental cell ine, GLC4, a small
population of cells is present containing two Topolla gene
copy numbers that are selected during resistance develop-
ment. This selection mechanism was previously demonstrated
in a cell line panel with increasing doxorubicin resistance
levels (Withoff et al., 1996). Southern blot analysis of the
Topolla gene using genomic DNA restricted with various
restriction enzymes had already shown no restriction pattern
differences between the cell lines, indicating that the Topolla
gene was not rearranged in the resistant cell lines (results not
shown).

GLC4/VM20x and GLC4/AM3x especially, may be used for
the study of the contribution of down-regulation of Topolla
and TopoIIl IN in resistance, as these cell lines do not show
expression of any of the other resistance mechanisms which
were investigated. Therefore, the cross-resistance pattern in
these cell lines may result from a decrease in Topolla and/or
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Figure 3 Representative FISH results for (a) lymphocytes, (b) GLC4, (c) GLC4/AM3, and (d) GLC4/M1T60x

-# alone. Down- or upregulation of the level of Topollf in
these cell lines by antisense or gene transiection techniques
may be useful to study the importance of TopoIlfl in
resistance.

The results obtained for GLC4/M IT60 x suggest that
Topoll, is not essential for cell survival as this cell line
contains no detectable TopoII,B protein. This finding is
confirmed by Harker et al. (1995) who described three
mitoxantrone-selected human tumour cell lines of different
origin, in which Topollf was also undetectable. Additionally,
it was described that a cell line with acquired resistance to
VP16 due to an altered TopoIIa protein (a 160 kDa
cytoplasmic-located form), but with unaltered TopoII,B
levels, was not cross-resistant to mitoxantrone (Feldhoff et
al., 1994). Taken together, these results suggest that Topoll-
related mitoxantrone resistance may be mediated by TopoIIlf.
On the other hand, it was found that preincubation of human
leukaemia cells with mitoxantrone did not protect TopoII,B
from degradation, while VM26 did (Danks et al., 1994). More
research is needed to clarify the relationship between
mitoxantrone and TopoII,B. It is possible that Topollo has
taken over functions that are normally performed by TopoII3.
Immune fluorescence studies using Topolla-specific mono-
clonals might reveal whether Topolla is located in nucleoli,
where TopoII,B performs its function (Zini et al., 1994).

Although the possibility exists that other (unknown)
resistance mechanisms may also be involved in resistance
development of the presented cell lines, we performed a
Spearman rank correlation test to see whether Topoll levels

predict the resistance (sensitivity) pattern of the cell line
panel. Significant correlations were found between Topolla
mRNA levels and resistance to mAMSA, VM26, mitoxan-
trone and fostriecin (see Results section). Decreased Topolla
mRNA levels seem to predict mAMSA, VM26 and
mitoxantrone resistance. This is in agreement with the
hypothesis that the TopolIx enzyme is more sensitive for
Topoll drugs than Topollfl. It is therefore remarkable that
GLC4/AM3x has not decreased its Topollx level but its
Topollf level, as this cell line was also derived from GLC4.
Furthermore, a significant correlation was found between
decreased Topollx mRNA levels and fostriecin sensitivity.
Fostriecin is a drug which inhibits Topoll activity and does
not induce cleavable complexes like other drugs used in this
study (Boritzki et al., 1988). De Jong et al. (1991) postulated
that in GLC4/ADR350x the decreased Topolla might be the
reason for the enhanced sensitivity to fostriecin compared
with GLC4. Fostriecin is a Topoll-activity inhibitor and does
induce more cell death in cells containing less Topoll, as
Topoll is essential for cell survival. The findings in the other
three resistant cell lines seem to confirm this observation.
Furthermore, a decrease in TopoII,B level did not contribute
to fostriecin sensitivity as GLC4/MIT60 , which does not
express Topoll, protein, is not hypersensitive for fostriecin.
The correlations described above indicate in our opinion that
the Topoll changes found in these cell lines contribute
significantly to resistance development. At present, it remains
unclear whether similar changes in TopolI level are
important in resistance development of human tumors.
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The results obtained for the panel of cell lines described

here suggests that further studies are required on the
relation between mitoxantrone and known efflux systems
and on the influence of TopoIIfl in resistance and sensitivity
to some drugs, usually considered to be associated with
TopolI. The cell line panel which is described in this paper
may contribute significantly to Topoll research as it
provides resistant sublines of one parental cell line (so they
have a relatively similar genetic background) with different
Topoll isoenzyme expression patterns. One cell line displays
only a TopoIlc decrease (GLC4/VM20 x), one only a
TopolIl decrease (GLC4/AM3 x), one a decrease in both
isozymes (GLC4/ADR350 x) and one displays a decrease in
Topollcx and has undetectable TopoII protein levels
(GLC4/MIT60 x).

Abbreviations
B, 0.5% block reagent; CSPD, disodium 3-(4-methoxyspiro{ 1,2-
dioxitane-3,2'-(5'-chloro)tricyclo[3.3. 1.1 3,7decan}-4-yl)phenyl phos-
phate; FISH, fluorescence in situ hybridisation; FITC, fluorescein

isothiocyanate; HPLC, high performance liquid chromatography;
mAMSA, amsacrine; MRP, multidrug resistance-associated pro-
tein; PBS, phosphate-buffered saline (0.58 M disodium hydrogen
phosphate, 0.17 M sodium dihydrogen phosphate and 0.68 M
sodium chloride); P-gp, P-glycoprotein; PI, propidium iodide;
SCLC, small-cell lung carcinoma; SDS, sodium dodecyl sulphate;
SSC, 0.15 M sodium chloride, 0.015 M sodium citrate, pH 7.0; T,
0.05% Tween 20; Topolla and -,B, DNA topoisomerase Ilx and /1;
VM26, teniposide.
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