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A physical and mathematical model for wine fermentation kinetics was adapted to include the influence of
temperature, perhaps the most critical factor influencing fermentation kinetics. The model was based on
flask-scale white wine fermentations at different temperatures (11 to 35°C) and different initial concentrations
of sugar (265 to 300 g/liter) and nitrogen (70 to 350 mg N/liter). The results show that fermentation temper-
ature and inadequate levels of nitrogen will cause stuck or sluggish fermentations. Model parameters repre-
senting cell growth rate, sugar utilization rate, and the inactivation rate of cells in the presence of ethanol are
highly temperature dependent. All other variables (yield coefficient of cell mass to utilized nitrogen, yield
coefficient of ethanol to utilized sugar, Monod constant for nitrogen-limited growth, and Michaelis-Menten-
type constant for sugar transport) were determined to vary insignificantly with temperature. The resulting
mathematical model accurately predicts the observed wine fermentation kinetics with respect to different
temperatures and different initial conditions, including data from fermentations not used for model develop-
ment. This is the first wine fermentation model that accurately predicts a transition from sluggish to normal
to stuck fermentations as temperature increases from 11 to 35°C. Furthermore, this comprehensive model
provides insight into combined effects of time, temperature, and ethanol concentration on yeast (Saccharomyces
cerevisiae) activity and physiology.

The progress of a wine fermentation is determined by the
concentration of residual sugar. Problem fermentations occur
when the completion of sugar utilization exceeds 7 to 10 days
(sluggish fermentations) or when sugar utilization ceases with
more than 0.4% wt/vol residual sugar still present in the wine
(stuck fermentations) (5). Sluggish and stuck wine fermenta-
tions are often associated with musts that contain inadequate
nutrients. The primary nutrient associated with these problem
fermentations is nitrogen. The minimum concentration of re-
quired nitrogen in order to complete fermentation may be
dependent upon other factors, such as temperature and initial
sugar concentration. More comprehensive reviews of all
known factors that lead to problem fermentations are available
(1, 5, 6, 14); however, in this work, to predict problem fermen-
tations, we concentrated on developing a comprehensive
model that includes the three main factors of temperature and
initial nitrogen and sugar concentrations.

These three variables are well-known critical factors for de-
termining the kinetics of wine fermentations. Ough and Am-
erine performed extensive studies to characterize the effects of
temperature on cell growth, sugar utilization, and ethanol pro-
duction (25, 26). Others have studied yeast (Saccharomyces
cerevisiae) sensitivity to ethanol at various temperatures (22,
27, 28). In addition, insufficient nitrogen has been well docu-
mented as an important factor that leads to stuck and sluggish
fermentations (1, 2, 5, 14, 15, 20). Ough also studied the com-
bined effects of initial nitrogen concentration and temperature

on fermentation rates (23), while still others have studied the
combined effects of initial sugar concentration, temperature,
and pH on fermentation (9, 24). Overall, these works present
a plethora of data that support the importance of understand-
ing the effects of temperature and initial nitrogen and sugar
concentrations on wine fermentation and that supply ample
qualitative evidence of how each variable affects the overall
rate of fermentation (sugar utilization). However, none of
these previous studies presented a comprehensive model that
includes all three of these variables and that can consistently
predict problem fermentations.

Several physical and mathematical models have been devel-
oped for predicting wine fermentation kinetics. One of the first
mechanistic models of enological fermentations that incorpo-
rated the relevant state variables, such as sugar concentration
and temperature, was developed by Boulton in 1980 (7). Caro
et al. also developed a similar mechanistic model for grape
must fermentation which took into account other microbial
functions, such as respiration and synthesis of products other
than ethanol (8). Nanba et al. developed a kinetic wine fer-
mentation model that incorporated yeast sensitivity to ethanol
and temperature effects of yeast cell growth parameters (21).
Other researchers have also developed more empirical models
within an enological context (4, 13, 16). However, none of
these models have been shown to acceptably predict problem
fermentations with respect to temperature and initial condi-
tions. A more comprehensive review of these models, along
with others, can be found in the work of Marin (19).

One problem with the aforementioned mechanistic models
is that the chosen limiting nutrient for cell growth was sugar.
Substantial evidence has shown a strong link between nitrogen
and yeast growth (2, 14, 20, 23), and a proven method for
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avoiding certain sluggish or stuck fermentations has been the
addition of nitrogen sources (5). Therefore, the inclusion of
nitrogen as a component for yeast growth is critical in a model
aimed at predicting problem fermentations. The first enologi-
cal model to include a nitrogen-limited cell growth mechanism
was developed by Cramer et al. (11). Malherbe et al. also
developed a model that incorporated nitrogen-limited growth
(18). However, neither of these models successfully incorpo-
rates the effects of temperature in a manner that allows the
prediction of sluggish and stuck fermentations.

Here we elaborate on the model previously presented by
Cramer et al. (11) by including the effects of temperature. This
model consists of five coupled ordinary differential equations
(ODEs) that are combined with four one-dimensional regres-
sion models (describing the effects of temperature on three
temperature-dependent model parameters and initial nitrogen
conditions on one model parameter) to accurately predict the
variation of sugar utilization for different temperatures and
different initial concentrations of sugar and nitrogen. This is
the first comprehensive model that predicts a transition from
sluggish to normal to stuck wine fermentations with respect to
increasing temperature.

MATERIALS AND METHODS

Experimental design. Fermentations of 400 ml were performed in 500-ml
Erlenmeyer flasks with fermentation locks. Fermentations were run at six tem-
peratures (11, 15, 20, 25, 30, and 35°C), and samples were taken at appropriate
intervals throughout the fermentation (12 to 18 samples during each fermenta-
tion). At each temperature, three different juice conditions were used. The three
conditions used in these experiments were normal sugar and normal nitrogen,
normal sugar and low nitrogen, and high sugar and normal nitrogen. A fourth
juice condition (high sugar and low nitrogen) was used for model validation and
was performed at 11 and 35°C. For these experiments, “normal” and “high”
sugar correspond to 265 g/liter and 300 g/liter, respectively, while “low” and
“normal” nitrogen correspond to 80 mg N/liter and 330 mg N/liter, respectively.
Each flask experiment was run in duplicate for a total of 40 fermentations. °Brix
(measured with a DMA 35N densitometer; Anton Paar, Ashland, VA), total cell
count, and viable cell count were taken for all experiments. In addition, sugar
(glucose and fructose), ethanol, ammonia, and �-amino nitrogen data were
collected for one of each replicated pair of experiments by using procedures
described below.

Fermentations and juice preparation. For all fermentations, diluted Chardon-
nay juice was used, with sugar and nitrogen added back to appropriate levels. The
purpose of diluting the juice was to create a medium where sugar and nitrogen
levels could be manipulated, but all other nutrients were equal throughout the
experiments. The juice was from the 2002 vintage and was supplied by Beringer
Blass Wine Estates (Napa, CA) from a vineyard in Sonoma County, CA. The
juice had the following measurements: °Brix, 25.4; titratable acidity, 7.5 g/liter;
pH, 3.35; ammonia, 111 mg N/liter; and �-amino nitrogen concentration, 172 mg
N/liter. Sulfur dioxide was added to the juice at 50 mg/liter. A yeast nutritional
supplement (Superfood; The Wine Lab, Napa, CA) was also added to the juice
at 500 mg/liter just prior to making dilutions.

In order to obtain the previously mentioned juice conditions, juice was diluted
3:1 (3 parts water or stock solutions to 1 part juice) to a total of 400 ml in a
500-ml Erlenmeyer flask. Sugar was added back by means of a 550-g/liter stock
solution composed of 50% glucose (Sigma Chemical Company, St. Louis, MO)
and 50% fructose (Sigma Chemical Company, St. Louis, MO) dissolved in
sterile, filtered, deionized water. Nitrogen was added by means of a stock solu-
tion consisting of 10 g/liter diammonium phosphate (DAP; Sigma Chemical
Company, St. Louis, MO). Fermentation flasks were made up to 400 ml with
sterile deionized water.

The yeast used in all fermentations was Premier Cuvee (Red Star, Milwaukee,
WI). Fermentations were performed in temperature-controlled incubators with
shaker tables set at a constant 120 rpm. Temperature and agitation levels were
maintained throughout the fermentation. Fermentations were monitored until
the normal sugar and normal N flasks reached a constant sugar level for at least
2 days (300 to 800 h, depending on the temperature).

Fermentation sampling procedures. Samples (approximately 3.5 ml/sample)
were taken at appropriate times. Three milliliters of the sample was filtered
through a 0.45-�m syringe filter into a 5.0-ml sterile test tube with a sealing cap
and was frozen for later analysis. The remainder of the sample was used imme-
diately for obtaining total cell count and viable cell count as well as for obtaining
an optical density reading.

Viable and total cell concentration procedures. For determining total and
viable cell counts, a Bright-Line hemacytometer (Hausser Scientific, Horsham,
PA) was used under a Zeiss light microscope at �400 magnification. A 100-�l
sample was diluted with water such that when a final dilution with methylene
blue at a 1:1 ratio was made, the final dilution would give a minimum of 100 cells
and a maximum of 400 cells in the counting area of the hemacytometer. Samples
were mixed on a vortex mixer at each stage of the dilution. The methylene blue
used was 0.02% wt/vol in a citrate buffer. Cells were allowed to be in contact with
methylene blue for at least 1 min, but not more than 5 min. Blue cells were
counted as dead, and noncolored cells were counted as live. Five of the 25
squares in the hemacytometer grid were counted, and the result was multiplied
by 5 to give a total count. Except for early in the fermentation when the cell
number was very low, a minimum of 100 cells were counted. When time permit-
ted, replicate counts were made using the chamber on the opposite side of the
hemacytometer. Each cell count was converted to grams per liter of cell mass,
assuming that each cell weighs 4 � 10�11 g and that the 25 squares in the
hemacytometer grid were covered with 10 �l. Based upon replicate flask exper-
iments, the standard deviations of total cell mass and viable cell mass estimates
were a maximum of 0.63 g/liter and 0.48 g/liter, respectively, with a significantly
smaller replication error found during the exponential growth phase (approxi-
mately the first 100 h), closer to 0.005 g/liter.

High-pressure liquid chromatography analysis for sugars and ethanol. Sam-
ples were analyzed by high-pressure liquid chromatography for glucose, fructose,
and ethanol (30). The system used was a Hewlett-Packard 1100 series with two
HPX-87H columns (Bio-Rad; catalog no. 125-0140) in series, preceded by a
cation H� guard column (Bio-Rad; catalog no. 125-0140). The detector used was
an HP 407A refractive index detector. Elution was isocratic using a mobile phase
of 1.5 mM sulfuric acid at a flow rate of 0.6 ml/min. The column temperature was
maintained at 50°C. The injection volume used was 20 �l. The columns were
flushed with water for at least 1 h after every 18 to 24 samples.

Determination of total nitrogen concentration. Before and during fermenta-
tions, total nitrogen was determined by separately measuring ammonia concen-
tration and alpha amino acid concentration and summing the two values. Alpha
amino acid concentration was measured using the procedure described previ-
ously by Dukes and Butzke (12). Ammonia was determined via an enzymatic kit
produced by R-Biopharm (South Marshall, MI).

Determination of model parameters and generation of simulated fermenta-
tions. Sugar, nitrogen, ethanol, total biomass, and viable biomass concentrations
were used for parameter estimation. However, only the first seven observed time
points of total and viable biomass were used. These time points were used
because the model is thought to represent cell activity and not cell viability.
However, cell activity is not yet easily measured (11). MATLAB software (ver-
sion 7.0; The MathWorks, Inc., Natick, MA) was then used to find values for the
seven model parameters. Markov chain Monte Carlo integration (MCMC) in
conjunction with Bayesian parameter estimation (10) was used to determine the
expectation and credible regions of all seven model parameters for each fermen-
tation (see “Parameter estimation” below). All parameter regression surfaces
were performed using Bayesian robust linear regression and MCMC methods
(see “Regression modeling of model parameters” below). A function called
“metrop2” in a free toolbox from the Laboratory of Computational Engineering
(http://www.lce.hut.fi/research/mm/mcmcstuff/) was adapted to perform all
MCMC procedures.

Fermentation model. The nitrogen-limited model utilized in this paper was
first proposed by Cramer et al. (11). It consists of five coupled ODEs:

dX
dt

� �XA (1)

dXA

dt
� �XA � kdXA (2)

dN
dt

� �
�XA

YX/N
(3)

dE
dt

� �XA (4)
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dS
dt

� �
�XA

YE/S
(5)

where the five state variables are total biomass (X [g/liter]), active biomass (XA

[g/liter]), nitrogen (N [mg/liter]), ethanol (E [g/liter]), and sugar (S [g/liter]). The
specific growth rate for cell mass (�) is a function of nitrogen concentration

� �
�maxN

KN � N
(6)

where �max and KN are the maximum specific growth rate and the Monod
constant for nitrogen (N)-limited growth, respectively. The death rate or rate of
cell inactivation (kd) is a function of total ethanol concentration

kd � k�dE (7)

where k�d is a parameter that describes the sensitivity of yeast to ethanol. The
rate of sugar utilization per cell is a function of sugar concentration

� �
�maxS

KS � S
(8)

where �max and KS are the maximum specific rate of sugar utilization and the
Michaelis-Menten-type constant for sugar utilization, respectively. In total, there
are seven model parameters: �max, the maximum specific growth rate; KN, the
Monod constant for nitrogen-limited growth; k�d, a death or inactivation param-
eter describing the sensitivity of the cells to ethanol; �max, the maximum rate of
sugar utilization; KS, the Michaelis-Menten-type constant for sugar transport
across the cell membrane; YX/N, the yield coefficient for cell mass grown per mass
of nitrogen utilized; and YE/S, the yield coefficient for ethanol produced per sugar
consumed.

There are two minor differences between the previous model (11) and the
model presented here. First, total cell mass has been included in the here-
presented model. This inclusion does not change the model at all. Total cell mass
is included in this work to later illustrate the difference between total and active
cell mass. The second difference is that we no longer refer to active cell mass as
viable cell mass. Cramer et al. (11) provided significant evidence that suggested
live cells may not be completely active in terms of growth, utilization of sugar and
nitrogen, and production of ethanol. Thus, we have formally acknowledged this
in the model by renaming viable cell mass as active cell mass.

To adapt this model for temperature dependence, we first assume that the
basic structure of the coupled ODEs does not vary with temperature. Only the
parameters within the ODEs (�max, k�d, �max, KN, KS, YX/N, and YE/S) are
considered to be potential functions of temperature. Here, we find the temper-
ature dependence of these parameters and then we model this temperature
dependence by using robust polynomial regression (see “Regression modeling of
model parameters” below). We developed the polynomial model simply to fa-
cilitate interpolation between data values from the temperatures studied. For
this reason, it would be possible to utilize other regression models, lookup tables,
neural networks, nonlinear regression of Arrhenius-type equations, or any other
expression that describes the experimentally derived temperature dependence of
the model parameters.

RESULTS

Sugar utilization. °Brix curves were measured for all fer-
mentations and are presented in Fig. 1. First it should be noted
that the replicate experiments demonstrate the highly repro-
ducible nature of the observations. Several key features can be
seen with respect to changing temperature and initial condi-
tions. At high temperatures, regardless of initial conditions,
fermentations have an initial period of rapid sugar utilization,
followed by a sudden cessation as the fermentation becomes
stuck. At midrange temperatures, fermentations reach dryness
in the minimum amount of time (i.e., normal fermentation
activity). At low temperatures, fermentations were very slug-
gish. Normal nitrogen and sugar conditions at low tempera-
tures result in fermentations that reach completion. However,
for high-sugar or low-nitrogen conditions, fermentations be-
come stuck or at least are extremely sluggish.

Initial sugar conditions seem to have a smaller effect on the

overall rate of sugar utilization. For example, at 11°C, the
normal sugar and normal nitrogen fermentations dropped an
average of 29.1 °Brix in 815 h, while the high-sugar fermenta-
tions and normal nitrogen fermentations dropped an average
of 29.2 °Brix in 815 h. While there are definitely visual differ-

FIG. 1. Experimental °Brix curves for three different initial condi-
tions and six different temperatures. (a) Normal sugar and normal
nitrogen. (b) High sugar and normal nitrogen. (c) Normal sugar and
low nitrogen. Each different temperature is shown with a different
symbol, and the fermentation for each temperature was performed in
duplicate. The data from these duplicate fermentations give an indi-
cation of the small inherent experimental error observed for these
measurements.
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ences between normal and high initial sugar concentrations,
there do not seem to be drastic changes in the overall rate of
sugar utilization.

Initial nitrogen conditions had a much stronger effect on the
overall rate of sugar utilization. For example, at 11°C, the
normal sugar and low-nitrogen fermentations dropped an av-
erage of 22.3 °Brix in 815 h. Likewise, normal sugar and low-
nitrogen fermentations at all other temperatures had a signif-
icantly lower overall change in °Brix compared to normal sugar
and nitrogen and high-sugar and low-nitrogen fermentations
given the same change in time of fermentation.

Model fit. All 18 fermentations (three initial conditions at six
temperatures) were fit to the model, and each resulted in a
corresponding set of model parameters. Figure 2 shows two
plots of typical model fits for various fermentations. Notice
that sugar, ethanol, and nitrogen are accurately fit to the
model. More discrepancies exist between the fits for cell mass.
At lower temperatures, total cell mass seems to gradually in-
crease even after the exponential growth phase. The observed
viable cell mass at lower temperatures gradually decreases;
however, in order to more accurately fit the other state vari-
ables (sugar and ethanol), the model predicts that cell activity
decreases more rapidly. In general, total cell mass is more
accurately predicted for higher temperature fermentations and
cell activity more closely follows the measured cell viability
(Fig. 2). In Fig. 2b, we see that the experimental total cell mass
does not increase after the exponential growth phase and that
the viable cell mass more rapidly decreases. These model fit
results are consistent with the results of Cramer et al. (11).

Effects of temperature and initial conditions on model pa-
rameters. The resulting model parameter values were then
tested for significant relationships with temperature and initial
conditions. The maximum specific growth rate (�max), the in-
activation constant (k�d), and the maximum specific sugar uti-
lization rate (�max) were all shown to have significant relation-
ships with respect to temperature (Fig. 3). Both �max and �max

gradually increase by a factor of six as the temperature shifts
from 11 to 35°C. The inactivation constant k�d also increases as
temperature shifts from 11 to 35°C; however, once the tem-
perature increases higher than 25°C, a more drastic increase
occurs. It should be noted that k�d at 35°C is approximately 13
times greater than k�d at 11°C. The yield coefficient between
cell mass production and nitrogen utilization (YX/N) was found
to significantly change with respect to the initial nitrogen con-
centration (Fig. 4). All other parameters (YE/S, KN, and KS)
were found to not change significantly with respect to temper-
ature or initial conditions. Figure 5 shows these variables with
respect to temperature.

Comprehensive model. A comprehensive model was then
formed by combining the relationships shown in Fig. 3 and 4
with the fermentation model shown in equations 1 through 8.
For any given temperature and initial nitrogen concentration,
the parameters �max, k�d, �max, and YX/N can be estimated from
the relationships shown in Fig. 3 and 4. The parameters deter-
mined to not have a significant effect with temperature or
initial conditions (YE/S, KN, and KS) are set to the mean value
of all fermentations (e.g., KS would be set to approximately 10
g/liter). Estimates for all seven parameters are then combined
and placed into equations 1 through 8 to estimate the time
profiles of all five state variables (X, XV, N, E, and S).

This comprehensive model was then shown to accurately
predict a transition from sluggish to normal to stuck fermen-
tations as the temperature rose from 11 to 35°C. Figure 6
shows this transition for both normal sugar/normal nitrogen
and normal sugar/low-nitrogen fermentations. In general,
model fits are best near 20°C; at extreme temperatures, model
fits are slightly less accurate. The underlying feature to recog-
nize in Fig. 6 is that at low temperatures, the sugar utilization
rate is low; at the midrange temperatures, fermentations seem
more normal; and at high temperatures, sugar utilization starts
out rapidly and is then followed by a sudden cessation of
fermentation activity. Experimental data and model fits are a

FIG. 2. Typical model fits for two different fermentations. (a) Nor-
mal sugar and low-nitrogen fermentation at 15°C. (b) Normal sugar
and normal nitrogen fermentation at 30°C. Both panel a and panel b
show all five state variables: sugar, viable cell mass (filled circles), total
cell mass (open circles and broken line), nitrogen, and ethanol. It
should be noted that the model does not predict viable cell mass but
rather active cell mass (solid line).
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close match and both show these underlying phenomena, un-
like previous models for wine fermentation kinetics.

Model predictions at extreme conditions. To test the pre-
dictive capabilities of the comprehensive model, two additional

fermentations were performed at extreme conditions. One ex-
periment was at 11°C, and the other was at 35°C. Both of these
fermentations had high levels of sugar and low levels of nitro-
gen (an initial condition set that had not been tested). Figure
7 shows the model predictions and experimental data of all five
state variables for both experiments. Both sugar utilization and
ethanol production are accurately predicted by the model, with
some minor discrepancies. For example, the residual sugar left
in the fermentation at 35°C is slightly lower than what was
predicted by the model. Predicted nitrogen concentrations are
relatively accurate, with some minor discrepancies. For exam-
ple, the model predicts that both fermentations will utilize all
available nitrogen; however, some residual amounts remain at
the end of fermentation. The model predictions of total cell
mass concentration are relatively accurate; however, in both
cases, the experimental data increase slightly after the expo-
nential growth phase. The least accurately predicted state vari-
able is the viable cell mass. This result is expected because the
model predicts active cell mass (a currently immeasurable vari-
able) and not viable cell mass. In both cases, the predictions of
active cell mass decrease more rapidly than does the experi-
mentally observed viable cell mass.

DISCUSSION

Here we demonstrate that the model first proposed by
Cramer et al. (11) has been successfully adapted to wine fer-
mentations at various temperatures and initial conditions. This
success is shown through the model’s ability to fit various types
of fermentation activity with respect to temperature and initial
conditions (Fig. 2 and 7). Furthermore, the changes in the
types of fermentation activity (i.e., sluggish, normal, stuck) can
be accurately predicted by the model (Fig. 6). The reason

FIG. 3. Three model parameters from equations 1 through 8 were
shown to have a significant relationship with respect to temperature. Each
parameter estimate shows the mean value from the MCMC integration
(F) along with its 95% credible region (vertical lines). Regression surfaces
(solid lines) also include a 95% credible region (dotted lines). The max-
imum specific growth rate (a) increases by a factor of 6 as temperature
increases from 11 to 35°C. The ethanol sensitivity constant which causes
cell inactivation (b) increases by a factor of 13 as temperature increases
from 11 to 35°C. The maximum rate of sugar utilization (c) increases by
a factor of 6 as temperature increases from 11 to 35°C. Also note that
some of the data points were plotted slightly off-center so as to prevent the
overlap of error bars.

FIG. 4. One model parameter from equations 1 through 8 was
found to have a significant relationship with respect to initial nitrogen
concentration. The yield coefficient between cell mass and nitrogen
was about two times greater at lower initial nitrogen concentrations.
The mean value from the MCMC parameter estimation is shown (F)
along with the 95% credible regions (vertical lines). Regression sur-
faces (solid lines) also include a 95% credible region (dotted lines).
Also note that some of the data points were plotted slightly off-center
so as to prevent the overlap of error bars.
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behind this transition can be understood by examining the
relationship each parameter has with respect to temperature.
For example, the overall sluggish behavior of the fermenta-
tions at low temperatures can be understood by observing that
the maximum sugar utilization rate (�max) is lower at low
temperatures (Fig. 3c). The stuck fermentations at higher tem-
peratures can be explained by the significantly higher cell in-
activation constant (k�d) sharply increasing above 25°C (Fig.
3b). While the cells may prefer a higher temperature for
growth and sugar utilization, they become increasingly more
sensitive to ethanol at higher temperatures. One potential ex-
planation for this could be an increased physical response of
the cell lipid bilayer to ethanol at elevated temperatures (17,
29). Furthermore, the quantitative predictions made by the
model accurately resemble the observed experimental data at
all temperatures studied, which span the normal range for
industrial wine fermentations. While previous mechanistic
wine models have been successful at predicting fermentation
kinetics at room temperature (11) or for midrange tempera-
tures (18), this is the first time that a wine model has been able
to predict transitions to problem fermentations caused by high
or low temperatures.

The model was also able to accurately predict fermentation
activity at extreme conditions that had not been previously
tested. From Fig. 6, we can see that model fits are typically less
accurate at 11 or 35°C. However, data from fermentations
using novel initial conditions (high sugar and low nitrogen) at
these temperatures were shown to be accurately predicted by
the model (Fig. 7). This shows that the model is robust across
extreme conditions and could be used to predict problem fer-
mentations at temperatures and initial conditions not yet ob-
served, making it an interesting candidate for use in a practical
winery setting.

The main discrepancy between the model fit and the data is
the difference between experimental and model predictions of
cell mass after the exponential growth phase. The difference
between model predictions of cell activity and the experimen-
tally observed cell viability is to be expected and is consistent
with the results of Cramer et al. (11). This difference is likely
due to cells that are inactive rather than dead. For example,
ethanol may be preventing sugar transport into the cell, thus
reducing sugar utilization even though the cells are not yet
dead. Regardless of the reason, it seems certain that the cell
viability measurements made are not a good measure of cell
activity. This is the main reason that only the first seven data
points from total and viable cell mass are included into the
parameter estimation routine. This approach is well justified by
the model’s excellent prediction capabilities of sugar and eth-
anol (the most important state variables from an enologist’s
point of view). The model was also unable to predict that the
total cell mass for many fermentations gradually increased
after the exponential phase. This result may be due to the
gradual degradation of nitrogen sources being generated from
dead yeast cells. This source of nitrogen could then potentially
be utilized by the active cells for cell reproduction. Regardless,
not accounting for such additional cell growth had little to any
effect on the final quantitative predictions of the other state
variables.

Another small discrepancy between the model and the
data is that the nitrogen measurements suggest that not all

FIG. 5. Three model parameters from equations 1 through 8 were
shown to not have a significant relationship with respect to temperature or
initial conditions. These parameters (Monod constant for nitrogen-lim-
ited growth [a], Monod constant for sugar transport [b], and the yield
coefficient between ethanol and sugar [c]) are plotted against tempera-
ture. Each parameter estimate shows the mean value from the MCMC
integration (F) along with its 95% credible region (vertical lines). Notice
that the error bars are typically larger than the variation between the
estimated mean values. Also note that some of the data points were
plotted slightly off-center so as to prevent the overlap of error bars. It
should be noted that the error bars are the dominant features of these
plots.
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nitrogen is utilized during fermentation. Some small amount
of nitrogen is typically left over in the fermentation. This
leftover amount may be due to the inability of the yeast to
utilize some types of nitrogen sources. However, fermenta-
tions at higher temperatures consistently resulted in higher
residual nitrogen levels at the end of the fermentations (Fig.
7). This result could be due to cell growth inhibition at
higher temperatures due to ethanol. Due to this added sen-

sitivity of ethanol at higher temperatures, the cells may be
unable to fully utilize all of the available nitrogen.

One interesting finding for the presented model is that the
yield coefficient of cell mass on nitrogen turned out to signif-
icantly vary with respect to the initial nitrogen concentration
(Fig. 4). The simplest and most likely explanation for this
observation is that at higher concentrations of initial nitrogen,
a different nutrient component could be growth limiting. This

FIG. 6. The comprehensive model fits of sugar utilization for normal sugar/normal nitrogen and normal sugar/low nitrogen fermentations
ranging from 11 to 35°C. Notice that the model is able to explain the experimental transition from sluggish fermentation activity at low
temperatures to normal fermentation activity at midrange temperatures to stuck fermentation activity at high temperatures.
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explanation would be consistent with the findings and data of
Cramer et al. (11) and Malherbe et al. (18). A related potential
explanation is that the cell mass yield is different for various
forms of nitrogen. The juices in this work were first diluted,
and then appropriate additions of DAP were added back to
achieve the desired levels of nitrogen. The original juice con-
tained 111 mg N/liter (ammonia) and 172 mg N/liter (�-amino

nitrogen). After the dilution and addition of DAP, the low-
nitrogen juices contained about equal parts nitrogen from am-
monia and �-amino nitrogen. However, over 85% of the ni-
trogen in high-nitrogen juices was from ammonia. This
difference in initial nitrogen composition could lead to differ-
ences in observed yield. As the temperature dependence of the
fermentation is well predicted, regardless of the initial nitrogen
level and composition, it is apparent that these two issues can
be separated, leaving further explanation of the changes in
biomass yield on nitrogen for further detailed study.

Despite these model discrepancies, the presented model ac-
curately predicts the most important state variable: sugar con-
centration. Sugar utilization is of the utmost importance for
any model that aims to aid in the prediction of stuck and
sluggish fermentations. The accurate prediction of ethanol
concentration, cell growth, cell activity, or nitrogen consump-
tion gives valuable insight into microbial physiology; however,
for the purposes of winemaking, accurate predictions of these
variables are primarily important because they lead to the
accurate prediction of sugar utilization. This model may be of
value to winemakers because it always yields reasonable pre-
dictions of sugar utilization. Winemakers could potentially use
this model to make decisions in the winery. For example, if a
must is known to have a low level of nitrogen, a winemaker
may typically supplement the natural level of available nitro-
gen with DAP to avoid a stuck or sluggish fermentation. How-
ever, certain winemakers may prefer to avoid the use of DAP
because of the expense or because they believe it affects wine
quality. The model presented in this paper could then be used
to predict when the addition of DAP is critical and when it can
be avoided.

Another important result to be stressed is that low-nitrogen
fermentations are more sensitive to extremes in temperature.
For example, Fig. 6 shows that for normal nitrogen conditions,
any temperature between 11 and 25°C could be used to com-
plete the fermentations (although 25°C would be the fastest).
For low-nitrogen initial conditions, fermentation activity more
easily becomes problematic at higher or lower temperatures.
The optimal temperature range to complete low-nitrogen fer-
mentations becomes smaller. While the experimental data at
low-nitrogen levels were not allowed to go to completion, the
model suggests that a temperature of 20°C would yield the
greatest opportunity to finish a low-nitrogen-level fermenta-
tion.

While low levels of nitrogen have long been linked with
problem fermentations, what the relationship between low lev-
els of nitrogen and problem fermentations is has not been
precisely determined. Some authors have linked low nitrogen
to low cellular activity (2, 3), while others associated this con-
dition with resulting low levels of biomass (11, 20). The data
presented in this paper support the latter of these two hypoth-
eses. Only one of the model parameters was shown to vary with
respect to the initial nitrogen concentration. In addition, this
one parameter (YX/N) only determines the amount of cell mass
produced from a given quantity of nitrogen and does not di-
rectly affect the metabolic rates of reaction within a given cell.
In the context of the fermentations used in this study, we can
conclude that low levels of nitrogen contribute to the problem-
atic fermentations because they result in fewer cells. However,

FIG. 7. Predictions made by the comprehensive model for two dif-
ferent fermentations at extreme conditions. Experiments for both
panel a and panel b start from high-sugar/low-nitrogen conditions;
however, the experiment for panel a was run at a low temperature and
that for panel b was carried out at a high temperature. The activity of
both fermentations is relatively well predicted. The main differences
between experimental and simulated predictions are the underestima-
tions of viable (filled circles) and total (open circles and broken line)
cell mass. However, sugar utilization is the most critical state variable
to predict. Furthermore, it should be noted that the model predicts
active cell mass and not viable cell mass. Thus, a difference between
model prediction and observed data is expected.
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this conclusion may not hold for other juices or strains of yeast
which may react differently to low levels of nitrogen (15).

The adaptation of the presented model to industrial fermen-
tations will be dependent upon collecting samples and deter-
mining the key state variables. These tasks must be carried out
for several fermentations at different temperatures and condi-
tions before predictions can be made. The empirical modeling
methods presented below in “Parameter estimation” and “Re-
gression modeling of model parameters” are carefully con-
structed to fully leverage all of the available information from
the observed data and make optimal decisions with respect to
parameter estimates and regression surfaces. However, these
methods are not necessary for constructing a working model
capable of predicting problematic fermentations. For example,
a simple lookup table could be used to estimate model param-
eters that are temperature dependent (i.e., a regression model
is not necessary to determine that fermentations at 11°C will
result in a maximum specific growth rate of approximately 0.05
h�1). Future versions of this model may implement more-
informative regression models for temperature dependence
(e.g., mixtures of Arrhenius-type equations); however, these
regression models will still be dependent upon data collected
and parameters estimated for new systems.

In conclusion, we have shown that the presented model can
accurately predict fermentation behavior across a wide variety
of temperatures and initial conditions. This model is the first
wine fermentation model that predicts a transition from slug-
gish to normal to stuck fermentations with respect to increas-
ing temperature. Furthermore, the model could be used in a
winery setting to determine the length of time required to
finish a fermentation based on just the concentration of sugar
and nitrogen in the juice, the optimal temperature to reach a
minimum in sugar concentration, or whether the addition of a
supplementary nitrogen source is critical. In order to adapt this
model to various systems, it would be necessary for a winery to
first collect data on the various state variables during the
course of different fermentations. Once this collection of data
has been achieved, a comprehensive model could be used to
make predictions for new systems in different winery settings.
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APPENDIX

Parameter estimation. Bayesian parameter estimation was used to
estimate the seven model parameters for each set of fermentation
data. The likelihood (L) for a given set of fermentation data was
defined as

L�D�b,	
 � �
i�1

7 � 1

	X�2�
exp��

�Xi � X̂i

2

	X
2 �

�
1

	Xv�2�
exp��

�XAi � X̂Ai

2

	Xv
2 � �

� �
i�1

n � 1

	S�2�
exp��

�Si � Ŝi

2

	S
2 �

�
1

	E�2�
exp��

�Ei � Êi

2

	E
2 �

�
1

	N�2�
exp��

�Ni � N̂i

2

	N
2 �� (A1)

where D is the entire set of data collected for one fermentation, b is the
vector of all model parameters (�max, KN, k�d, �max, KS, YX/N, and YE/S),

TABLE A1. Values used to define the prior probabilities over all
model and noise parametersa

Parameter Mean Standard
deviation

Model
Log(�max) �3 1.2
Log(KN) �4.61 0.7
Log(k�d) �9.21 1
Log(YX/N) 3.43 5
Log(YE/S) �0.755 2
Log(�max) �1.2 2
Log(KS) 2.3 0.7

Noise
Log(	X) �2.3 0.05
Log(	Xv) �4.6 1
Log(	S) 0 2.24
Log(	E) 0 2.24
Log(	N) �2.3 0.05

a The mean and standard deviation values are for normal distributions defined
over the log of each parameter.

TABLE A2. Estimated parameter values for each of the regression surfacesa

Model
parameter

Value for regression surface

a0 a1 a2

Mean 5% CR 95% CR Mean 5% CR 95% CR Mean 5% CR 95% CR

Log(�max) �3.92 �4.14 �3.70 7.82 � 10�2 6.98 � 10�2 8.79 � 10�2 NA NA NA
Log(KN) �4.73 �5.02 �4.44 NA NA NA NA NA NA
Log(k�d) �9.81 �10.6 �8.94 �1.08 � 10�3 �1.94 � 10�1 �3.30 � 10�2 4.78 � 10�3 3.16 � 10�3 6.58 � 10�3

Log(YX/N) 3.50 3.31 3.70 �3.61 �4.35 � 10�3 �2.93 � 10�3 NA NA NA
Log(YE/S) �5.98 � 10�1 �6.36 � 10�1 �5.58 � 10�1 NA NA NA NA NA NA
Log(�max) �2.30 �3.22 �2.74 7.71 � 10�2 6.66 � 10�2 8.85 � 10�2 NA NA NA
Log(KS) 2.33 1.99 2.65 NA NA NA NA NA NA

a Estimated parameter values for each of the regression surfaces shown in Fig. 3, 4, and 5. When regression surfaces did not utilize all linear parameters, the symbol
NA (not applicable) is put in place of the estimated value. For example, log(k�d) utilizes a0, a1, and a2 (a quadratic surface); however, log(KN) utilizes only a0 [thus,
all values of log(KN) are estimated by the mean value of a0]. CR, credible region.
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	 is a vector of the noise parameters for each state variable (	X, 	XA,
	S, 	E, and 	N), n is the total number of points collected for each state
variable, Xi is the experimental observed total cell mass at the ith

observation, and X̂i is the model prediction for the total cell mass at the
ith observation. Similarly, the circumflex marks the model prediction as
opposed to the experimental value (no circumflex) for each of the
other state variables as well. These model predictions are calculated
using the model parameter values in b and equations 1 through 8.

Prior probabilities were then defined for each of the seven model
parameters and each of the five noise parameters. For example, the
prior probability over the maximum specific growth rate was

Plog��max
� �
1

1.2�2�
exp��log��max
 � 3�2

1.22 � (A2)

This is essentially using a normal distribution to state that all fermen-
tations will have a �max value between 0.0001 h�1 and 1.8 h�1 and most
likely be closer to 0.05 h�1. Notice that we define the prior probability
of �max over the log(�max) because it is a positive constant. Similar
prior probabilities are defined over all model and noise parameters in
the form of a normal distribution. The mean and standard deviation
for each of these priors is shown in Table A1. These priors are then
combined with the likelihood function (equation A1) to form the
posterior probability.

P�b,	�D
�L�D�b,	
P�b
P�	
 (A3)

where P(b) and P(	) are the combined priors for all model and noise
parameters and P(b,	�D) is the posterior distribution for all model and
noise parameters given a set of data, D. This posterior is evaluated via
MCMC integration to find the mean and credible regions shown for
each model parameter shown in Fig. 3, 4, and 5 (10).

Regression modeling of model parameters. A robust method of
regression was used to determine the regression surfaces shown in Fig.
3 and 4. The model for each surface was linear and in the form of the
equation

log�k̂�d
 � a0 � a1T � a2T2 (A4)

where a0, a1, and a2 are parameters to be estimated, and T is temper-
ature in Celsius. As an example for all three parameters, the likelihood
function to estimate k�d is shown by equation A5

L�D�a,	kd
 � �
i�1

18 � 1

fi	kd�2�
exp��

log�k�di
 � log�k̂�di
�
2

� fi	kd

2 �	 (A5)

where D represents the data for the model parameter estimates of k�d,
a represents the regression parameters in equation A4, 	kd is the noise
parameter associated with k�d, log(k̂�di) is the estimation of k�d for the
ith fermentation from the regression surface of equation A4, and fi is
the standard deviation of the credible region for the ith parameter
estimate. Essentially, all the fi values do is adjust the importance of the
fit for each parameter value based upon the size of its credible regions.
For example, the credible regions at high temperatures are larger in
Fig. 3b. Thus, fi when T is 35°C is greater than fi when T is 11°C. No
prior distributions were used for the regression surface parameters (a)
or the noise parameter 	kd. Thus, MCMC integration was used to
evaluate likelihood in equation A5 and to estimate mean values and
credible regions for the regression surface parameters (10). The values
for all regression surfaces are summarized in Table A2.
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