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Abstract
Abnormal autonomic nerve traffic has been associated with a number of peripheral neuropathies and
cardiovascular disorders prompting the development of genetically altered mice to study the genetic
and molecular components of these diseases. Autonomic function in mice can be assessed by directly
recording sympathetic nerve activity. However, murine sympathetic spikes are typically detected
using a manually adjusted voltage threshold and no unsupervised detection methods have been
developed for the mouse. Therefore, we tested the performance of several unsupervised spike
detection algorithms on simulated murine renal sympathetic nerve recordings, including an
automated amplitude discriminator and wavelet-based detection methods which used both the
discrete wavelet transform (DWT) and the stationary wavelet transform (SWT) and several wavelet
threshold rules. The parameters of the wavelet methods were optimized by comparing basal
sympathetic activity to postmortem recordings and recordings made during pharmacological
suppression and enhancement of sympathetic activity. In general, SWT methods were found to
outperform amplitude discriminators and DWT methods with similar wavelet coefficient
thresholding algorithms when presented with simulations with varied mean spike rates and signal-
to-noise ratios. A SWT method which estimates the noise level using a “noise-only” wavelet scale
and then selectively thresholds scales containing the physiologically important signal information
was found to have the most robust spike detection. The proposed noise-level estimation method was
also successfully validated during pharmacological interventions.
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I. Introduction
THE autonomic nervous system has a broad range of functions, including the regulation of
blood pressure, cardiac function, visceral function, and renal output. Abnormal autonomic
function has been associated with such profound disorders as essential hypertension [1]-[3],
obesity [1], [4], chronic renal disease [5], diabetes [6], [7], orthostatic intolerance [8], and
congestive heart failure [9]. The many recent insights into the murine genome have motivated
scientists to develop transgenic and gene targeted mouse models to better understand the
genetic and molecular components of these diseases [10]-[15]. One method of assessing
autonomic sympathetic function is to directly record renal sympathetic nerve activity (RSNA).
Measurement of the RSNA in mice has been recently introduced [16]-[19] and there is some
debate as to how it should be objectively quantified. The low-amplitude, multiunit sympathetic
action potentials (APs) recorded from the renal nerve are significantly corrupted by high levels
of bioelectric, mechanical, and environmental noise. Contamination from biological noise
sources is particularly common in mice because many of the electrically active organs are in
close proximity to the recording electrode due to the small frame of the animal.

Currently, the murine RSNA is quantified using two general strategies: 1) integrating the nerve
signal over short periods of 5–10 s [16] or 2) using a hardware amplitude discriminator to detect
APs [17]-[19]. The integration method is computationally efficient, but also indiscriminately
integrates artifacts and noise and makes no correction for differences in AP amplitudes. For
instance, several large amplitude APs with a low firing rate may produce the same value as
many small APs with a high firing rate. The second approach using amplitude discrimination
involves manually adjusting a voltage threshold trigger until the threshold exceeds the level of
the noise. All signal amplitudes that exceed the threshold are detected as spikes [20]. The level
of the murine RSNA threshold is typically established as the voltage at which no spikes are
detected following a bolus injection of a pharmacological agent known to increase blood
pressure and suppress the heart rate (HR) and RSNA via the baroreceptor-reflex, such as
phenylephrine (PHE), [17], [18] (Fig. 1). Similarly, investigators studying the rat RSNA have
used the highest voltage in the postmortem recording as a threshold for a subsequent off-line
amplitude discrimination procedure [21]. Postmortem activity has also been used to correct
total activity recorded during the experiment to obtain an estimate of the true neural activity
in mice [19].

Both amplitude discrimination methods currently used in the processing of small animal RSNA
signals have specific limitations. Selecting a threshold based on the maximum voltage level
during baroreflex mediated decrease of sympathetic nerve activity necessitates having to
perform pharmacological tests during each experimental protocol and it does not account for
incomplete RSNA suppression due to the presence of baroreflex independent nerve activity.
Further, this procedure can not be applied in mouse models that exhibit baroreflex dysfunction.
A threshold procedure that uses the maximum voltage of the postmortem nerve recording can
only be used for off-line analysis, may not be accurate due to changes in needle position
throughout the recording, and does not take into account bioelectric noise present during the
living state. The postmortem noise level is usually lower than the living state noise level due
additional physiological activities and biological noise in the living animal. Threshold
estimation following PHE bolus in the living mouse or after death can produce substantially
different spike detection results, as illustrated in Fig. 2.

Hardware amplitude discriminators also have several obvious general drawbacks. To begin,
they require manual threshold selection which can be both tedious and subjective. Additionally,
they only take into account the amplitude and duration of the waveform and disregard other
potentially useful attributes such as shape and frequency content. Over the past several decades,
a number of spike detection algorithms have taken advantage of these properties and improved
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upon the classic hardware amplitude discriminator approach, as discussed in several
comprehensive reviews [22], [23]. Notable contributions to this field include the unsupervised
amplitude discriminator, power or energy detectors, and the matched filter [24], [25].
Unsupervised amplitude discriminators typically establish a threshold by multiplying the
standard deviation of the signal by some predetermined factor [26]. Power detectors compute
the sum of squared amplitude using a sliding window and also use the standard deviation of
the signal to create a threshold [24]. The accuracy of these methods has been shown to decrease
significantly at low signal to noise ratios (SNRs) [24]. Matched filters generally increase the
SNR of a signal by correlating signal amplitudes with template waveforms identified from the
signal, particularly when a prewhitening filter is used [24], [25]. This process requires manual
identification of the templates for each signal analyzed and is difficult to automate due to the
changes in AP shapes that occur with different spatial relationships between the electrode and
neurons [27].

Recently, use of the wavelet transform has become popular in multiunit AP discrimination
[28]-[37]. Wavelet decomposition effectively filters the nerve signal into several frequency
sub-bands while preserving its temporal structure. Each sub-band of wavelet processing
decorrelates successive noise-related values and compares progressively more dilated versions
of a general spike shape to each point in the signal, which is similar to a generalized group of
matched filters coupled with prewhitening filters [31]. This process can ease the detection of
APs by separating the signal and noise using their distinct time-frequency signatures. Several
of these wavelet processing techniques are primarily concerned with the classification of APs
from different cells [29], [30], [32], [36], [37], a process which follows detection and can be
aided by an accurate detection algorithm that limits the number of false alarms detected.
Oweiss, et al. [35] presented a wavelet method that uses information from several electrode
channels but is not applicable to single channel, bipolar recordings of the renal nerve activity
in mice. However, others have demonstrated that wavelet methods are suitable for unsupervised
de-noising and detection of single channel, multiunit data with low signal-to-noise ratio [28],
[31], [33], [34]. In particular, wavelet-based processing has been demonstrated to be effective
in the detection of human sympathetic APs [28], suggesting that a wavelet detection method
could be applied to the mouse sympathetic nerve activity.

In general, two wavelet decomposition techniques have been used for spike detection, the
discrete wavelet transform (DWT) and the stationary wavelet transform (SWT). These
techniques have different limitations. The DWT lacks translation invariance [38]-[43] while
the SWT expands the amount of data by over-representing signals in the wavelet domain (for
details see Section II-A). However, a formal comparison between the use of the DWT and
SWT in spike detection has not yet been presented.

The primary aim of this paper is to develop an automated, wavelet-based method for spike
detection in recordings of renal nerve activity specifically for mice. The parameters of this
method will be determined using pharmacological interventions and simulated data, but will
be applicable to other data sets. The accuracy of several different wavelet decomposition
techniques and wavelet threshold algorithms will be compared to one another and to a general
automated amplitude discriminator detection method.

II. Background
A. Signal Decomposition With the Discrete and Stationary Wavelet Transform

Several wavelet techniques have been introduced to project a signal, f, onto a set of dyadically-
spaced scales on a time-frequency grid [44], [45] and have successfully been applied in the
field of neuroscience [32], [46]. The two main discrete wavelet methods are known generally
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as the DWT and the SWT. Both methods use a mother wavelet,ψ, which can be translated and
dilated according to the following equation (Matlab notation):

ψj,k(t) = 2 j∕2Ψ(2 jt − k) j, k ∈ Z (1)

where ψj,k corresponds to the wavelet function at wavelet level j and temporal translation k.
An increase in the wavelet level from j to j+1 results in a more dilated wavelet function,
ψj+1,k, with a center frequency and bandwidth that is roughly half that of ψj,k.

The fast DWT algorithm proposed by Mallat decomposes f using a set of quadrature mirror
decomposition filters,g0 and h0, that have respective bandpass and low-pass properties specific
to each mother wavelet [45]. Equations (2) and (3) describe the DWT decomposition process.
The broad scale, or approximation, coefficients aj

DWT are convolved separately with g0 and

h0 and the result is down-sampled by two. This process splits the aj
DWT frequency information

roughly in half, partitioning it into a set of fine scale, or detail coefficients d j+1
DWT and a coarser

set of approximation coefficients a j+1
DWT. This procedure can be iteratively continued until the

desired level of decomposition, j = J, is obtained. Note that the algorithm is initiated by setting
a0
DWT = f

a j+1
DWT(k) =∑

n
h0(n − 2k)aj

DWT(k) (2)

d j+1
DWT(k) =∑

n
g0(n − 2k)aj

DWT(k). (3)

The aj
DWT coefficients can be reconstructed from a j+1

DWT and d j+1
DWT by placing a zero between

each consecutive value found in a j+1
DWT and d j+1

DWT (e.g., up-sampling by two), convolving the
results with the respective reconstruction filter, h0(−n) or g0(−n), and summing. This process
can be iteratively continued until the original signal, f, is recovered

aj
DWT(k) =∑

n
h0(k − 2n)a j+1

DWT(n) +∑
n
g0(k − 2n)d j+1

DWT(n). (4)

Down-sampling the DWT coefficients between each level acts to halve their effective sample
frequency and halve the effective corner frequencies of the h0 and g0 filters for the next level
of processing. Therefore, identical filters can be used for each step of the DWT procedure. The
DWT has two main advantages: 1) Each step of the DWT requires half as many computations
as the previous step; 2) The total number of DWT coefficients never exceeds N, the length of
the original signal. A number of AP detection and classification algorithms currently use this
decomposition technique [28], [32], [33], [35].

One complication that arises from the level-to-level decimation of the DWT coefficients,
however, is a lack of translation invariance in the DWT representation of the signal [38]-
[43]. Dyadically down-sampling the approximation and detail coefficients from f(n) leads to
a completely different set of DWT coefficients than down-sampling the coefficients from its
shifted version, f(n+1). Similarly, choosing to retain the odd wavelet coefficients during the
dyadic down-sampling will result in a different outcome than retaining the even wavelet
coefficients [38]-[43].

As a result of the shift variability of the DWT, several authors have used translation invariant
decomposition techniques, such as the continuous wavelet transform or stationary wavelet
transform (SWT), for the purpose of detecting APs [31], [34]. In contrast to the DWT, the SWT
up-samples the decomposition filters by inserting zeros between every other filter coefficient
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and, consequently, avoids the translational variance problem caused by decimation [47].
Therefore, the SWT uses a set of level-dependent decomposition filters, hj and gj, which are
the h0 and g0 filters with 2j − 1 zeros between each discrete filter coefficient. The SWT
approximation and detail coefficients can then be computed using (5) and (6)

a j+1
SWT(k) =∑

n
hj(n − k)aj

SWT(k) (5)

d j+1
SWT(k) =∑

n
gj(n − k)aj

SWT(k). (6)

The SWT reconstruction process is similar to that of the DWT, although the reconstruction
filters are level-dependent an include 2j − 1 zeros between each filter coefficients. This
reconstruction process is described as follows:

aj
SWT(k) =∑

n
h j+1(k − n)a j+1

SWT(n) +∑
n
g j+1(k − n)d j+1

SWT(n). (7)

Inserting zeros between the filter coefficients allows the SWT to analyze every possible shift
of the signal while the effective sample rate at each wavelet level remains unchanged. In the
frequency domain, up-sampling acts to halve the corner frequency of both the low-pass and
high-pass decomposition filters, resulting in the same bandwidth decomposition as is found in
the DWT. The result is a redundant, or over-complete, set of detail and approximation
coefficients [39]. The drawbacks of the SWT algorithm include its increased computational
complexity and the increased number of wavelet coefficients it generates. The general
differences between the DWT and SWT are described in detail elsewhere [38]-[43]. Specific
differences between DWT-and SWT-based spike detection in murine renal nerve recordings
will be compared in this paper.

B. Wavelet-Based Spike Detection
Most wavelet-based spike detection algorithms include some modified form of a process
known as wavelet de-noising [48]. In this process, a nerve signal with additive noise, f, is
decomposed using either the DWT or SWT and a threshold is applied to each of the detail
coefficient levels. All coefficients with an absolute value greater than the threshold are thought
to be part of an AP and those below the threshold are presumably derived from noise. The noise
coefficients can be set to zero and a noise-free signal can then be reconstructed and used for
AP detection [28].

Several standard methods of deriving thresholds for wavelet de-noising have been suggested
[48], [49]. A single-level noise estimation threshold is typically used in the case of stationary
white noise with an unknown variance (σW2 ). In this case, the standard deviation of the noise
related coefficients in all detail coefficient levels is equal to σW and is usually estimated using
the level 1 detail coefficients (8) [48]. The corresponding threshold, Tw, can be applied to all
levels of detail coefficients (9). In (8), the standard deviation of the noise is estimated using
the median absolute deviation from zero (MAD) of the level 1 detail coefficients divided by
the 75th percentile of the standard normal distribution, 0.6745. This method of estimating the
standard deviation is typically used in wavelet de-noising because it less sensitive to outliers
than the traditional calculation of the sample standard deviation [50]. In (9), N is the number

of points in the signal and d
_
1 is the sample mean of the level 1 detail coefficients

σW =
median( | d1 − d

_
1 | )

0.6745 (8)

TW = σW 2 loge(N ). (9)
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In the case of correlated or colored noise, such as 1/frequency noise, the standard deviation of
the noise is level dependent [49], [51]. This type of noise requires a level-dependent noise
estimation threshold, Tj, which uses a level-dependent noise-level estimate, σj [(10) and (11)]
[49]

σj =
median( | dj − d

_
j | )

0.6745 (10)

Tj = σj 2 loge(N ). (11)

Recently, K. Kim and S. Kim also made the observation that not all of the wavelet levels are
necessary for spike detection, and additional levels could actually confound the detection
process [31]. We have therefore elected to test both of these wavelet threshold techniques on
the mouse RSNA signal using wavelet levels that contain physiologically important
information, which will be described in a later section. We will demonstrate that a spike detector
which uses the SWT and a single-level noise estimation threshold on select wavelet levels is
more robust against changes in spike rate and SNR than an unsupervised amplitude
discriminator or other wavelet-based methods.

III. Methods
A. Animal Experiments

Recordings from the renal nerve of 16 healthy C57BL/6J strain wild-type (10.1 ± 0.1 month;
31 ± 0.4 g) were used to determine the optimal parameters for wavelet-based spike detection.
All protocols were approved by the Vanderbilt University Institutional Animal Care and Use
Committee. Mice were anesthetized with 1.5% Isofluoran (in 100% Oxygen). Body
temperature was maintained at 36 °C–37 °C with an isothermal pad (Braintree Scientific, Inc.,
Braintree, MA). A bipolar stainless steel wire electrode pair (electrode distance 1–1.5 mm,
MedWire Corp, NY,) was hooked onto renal nerve of the left kidney. After adjusting the
electrodes to obtain optimal signal quality, the electrodes were secured with silicone adhesive
gel (QuickSeal, World Precision Instruments, Sarasota, FL) to ensure a relatively constant
distance relationship between the neuron and electrode throughout the recording. The nerve
signal was high-pass filtered (300 Hz) and amplified (gain 100 000) by a differential amplifier
(ISO-80, World Precision Instruments, Sarasota, FL). Blood pressure was measured through
a catheter in right femoral artery (Micro-Renathane, Braintree Scientific Inc, MA; PE-50,
Becton Dickinson, Singapore) connected to a pressure transducer (DTX Plus-4812, Becton-
Dickinson, Singapore) and carrier amplifier (13-4615-35, Gould Instruments, Cleveland, OH).
Drugs were administered through a venous catheter (Micro-Renathane, MRE-025, Braintree
Scientific Inc., MA) with an infusion pump (CMA/100, CMA, Sweden). Heart rate, blood
pressure, and renal sympathetic nerve traffic were recorded for 5 min to determine baseline
levels and then during intravenous administration of PHE (30 μg/kg, 40 μg/kg) or sodium
nitroprusside (30 μg/kg, 40μg/kg), bolus injection. 1 min baseline and 2 min after bolus
injection was analyzed. At the end of experiment, animals were euthanized with an overdose
of urethane bolus and the renal nerve signal was recorded postmortem. The signals were
recorded using a WINDAQ data acquisition system (DI410, DATAQ, Acron, OH) with 14–
bit resolution at 10 000–Hz sample frequency. The data were processed off-line using
customized software written in the Matlab environment (The MathWorks, Inc., Natick, MA).

B. Determination of the Physiologically Important Frequency Range
The physiological frequency range of the baroreflex-related mouse RSNA was determined as
the range of frequencies over which the most dominant changes in 1) average power spectral
density; 2) wavelet-level variance were observed during baroreflex mediated pharmacological
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suppression and enhancement of the RSNA and after death, when no vital activity is present.
These observations were used to determine which frequency range and wavelet levels are
important for the detection of spikes in the mouse RSNA.

1) Changes in Power Spectral Density—The Welch Periodogram method [52] was used
to compute estimates of the power spectral density (PSD) in the mouse RSNA recorded during
periods of baseline, NTP bolus injection (increase of nerve activity), PHE bolus injection
(suppression of nerve activity), and postmortem (no vital activity) in nine mice. Twenty-second
signals recorded during each physiologic intervention were divided into 1-s segments that
overlapped by 50%. Each segment was detrended, multiplied by a Hamming window, and
zero-padded. The power was estimated as the area under the PSD curve and normalized by the
baseline variance. Spectral smoothing was then performed using a 20 point moving average.
The frequency range over which the maximum changes in PSD occurred was determined to
be the physiologically important range.

2) Changes in Wavelet-Level Standard Deviation—The standard deviation of each
level of detail coefficients and in the signal itself was calculated using the median absolute
deviation from zero (MAD) divided by 0.6745 (10) in all subsequent SWT, DWT, and
amplitude discriminator methods. Changes in the standard deviation from baseline to PHE and
postmortem periods were also assessed in the signal and each of the detail coefficient levels.
All signal coefficient values were normalized to the respective baseline signal variance. The
Mann-Whitney or Wilcoxon test with a significance level of 0.05 was used for statistical
analysis.

C. Simulated Signal Construction
Simulated signals were constructed with templates extracted from the baseline periods of six
RSNA recordings with sufficiently high SNRs (Fig. 3). The templates were then randomly
inserted into neural noise taken from the postmortem recordings with a length of one minute.
The interspike intervals were randomly assigned according to a Poisson distribution [53] with
a minimum refractory period of 10 ms between spikes. Each simulation was assigned either a
low (10 spike/s), medium (30 spike/s), or high mean spike rate (60 spike/s). The SNR of the
simulations was altered from 5 (high signal quality) to 1 (poor signal quality). The SNR was
defined as the ratio between the absolute peak amplitude of the AP and the standard deviation
of the noise, as defined elsewhere [28], [34].

The simulated signals were used to test the performance of several wavelet-based algorithms
and an unsupervised amplitude discriminator, diagramed in Fig. 4. Four wavelet algorithms
were tested using the following combinations: 1) SWT decomposition with a single-level noise
estimation threshold (SWTS); 2) SWT decomposition with a level-dependent noise estimation
threshold (SWTD); 3) DWT decomposition with a single-level noise estimation threshold
(DWTS); 4) DWT decomposition with a level-dependent noise estimation threshold (DWTD).
The decomposition methods and thresholds were discussed in detail in Sections II-A and II-B,
respectively. Each of the wavelet techniques used the same mother wavelet, symlet 7 (Fig. 3),
due to its morphological similarities to an average sympathetic spike and because it has been
shown to impose less distortion on sympathetic spikes during de-noising than other commonly
used wavelets, such as Daubechies 4 [28]. Each simulated signal was decomposed into five
levels of detail coefficients and one level of approximation coefficients. Five was chosen as
the maximum decomposition level because levels higher than 5 were found to contain primarily
noise. Only wavelet levels that were deemed to have physiological significance to the mouse
RSNA spikes (determined later in Section IV-A) were used in the thresholding process, and
all other wavelet coefficients were set to zero. After the signal is decomposed and thresholded,
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the de-noised signal was reconstructed and the APs were detected using a simple peak detection
scheme that locates maxima above 99% of the signal energy, as described previously [28].

The unsupervised amplitude discriminator detected all absolute values greater than three times
the standard deviation of the signal as discussed elsewhere [26].

Both the amplitude discriminator and the wavelet detection used a window length of 6 ms,
which was observed to be the maximum duration of a mouse RSNA spike.

The performances of the five methods were quantified using the percent of correctly detected
APs (PCD) and the percent of false alarms (PFA)

PCD =
NCD
NAP

× 100 (12)

PFA =
NFA
NCD

× 100 (13)

where NCD is the number of correctly detected APs, NAP is the number of APs inserted into
the simulation, and NFA is the number of false alarms.

D. Verification of Threshold Using Physiological Data
A physiologic verification of the threshold was performed using pharmacologic data in mice.
PHE increases blood pressure and induces a baroreflex mediated suppression of RSNA, as
demonstrated in Fig. 1. Rather than using the maximum absolute voltage level during
baroreflex mediated decrease of sympathetic nerve activity [Fig. 2(A)], we determined which
thresholds would yield the maximum change in the detected spike rate from a baseline period
to the period following a PHE bolus injection by systematically varying the threshold level
and recording the corresponding maximum delta spike rate. Fig. 2(B) demonstrates that the
“optimal” amplitude discriminator threshold determined by the maximum response is neither
the maximum voltage level during PHE depression nor the postmortem noise level but an
intermediate value [Fig. 2(B)].

We applied the “maximum response optimization” approach to determine the optimal threshold
value for each wavelet level that comprised the RSNA frequency range. In detail, renal nerve
recordings that contained 60 s of baseline activity followed by approximately 60 s of reduced
nerve activity after PHE bolus injection were decomposed using the SWT. A systematic search
for the optimal threshold value was then performed on each detail coefficient level found to
hold physiologically important information. For all combinations of threshold values (which
varied from 0 to 5 σj for each wavelet level of interest) the detail coefficients with an absolute
value above the threshold were unmodified. All other coefficients were set to zero. The signal
was then reconstructed and spikes were detected using the same procedure described in Section
III-C. The spike-rate was then computed using a 1-s sliding window. The criterion used to
determine the optimal combination of thresholds was defined as the maximum difference
between the median spike rate during baseline and the minimum spike rate after PHE bolus
injection. The optimal threshold values were then compared to those used in the single-level
noise estimation thresholding scheme. Data from all 16 mice were used during this verification.

IV. Results
A. Determination of Physiologically Important Frequency Range

1) Changes in Power Spectral Density—The average normalized power spectral density
(PSD) of the renal nerve activity during periods of baseline, NTP bolus injection, PHE bolus
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injection, and postmortem is depicted in Fig. 5(A). Power in the range of 100 Hz to 1000 Hz
was dominant during all interventions in the living animal but was significantly abolished
postmortem. The power in this range was increased after NTP bolus injection and decreased
after PHE bolus injection. Complete suppression of renal nerve activity was not always
achieved during the highest dose of PHE, but this residual activity is abolished in the euthanized
animal. This suggests the presence of other renal nerve activity independent of the baroreflex
(as presented in Fig. 2). Above 1000 Hz, the average power remains relatively consistent during
the baseline, postmortem, PHE and NTP recordings, indicating that these levels are unaffected
by the RSNA and contain mostly noise.

2) Changes in Wavelet-Level Standard Deviation—To demonstrate the relationship
between the power spectral density and the variance of the wavelet coefficients and determine
the wavelet levels with physiologically important information, the change in the detail
coefficient standard deviations (σ1 – σ5 for detail levels 1–5) from baseline to post-PHE bolus
injection and postmortem periods were compared Fig. 5(B). The level 3, 4, and 5 SWT detail
coefficients have approximate respective frequency ranges of 625 –1250 Hz, 313 –625 Hz,
and 156 –313 Hz for data collected at 10 000 samples/s. The power in these frequency ranges
demonstrated the most pronounced changes during the pharmacological interventions and after
death [Fig. 5(A)]. Consequently, the standard deviation of these detail levels (σ3 – σ5) were
found to drop significantly during PHE and postmortem [p < 0.01, Fig. 5(B)]. The level 1 and
2 detail coefficients have approximate frequency ranges of 2500 –5000 Hz and 1250–2500 Hz,
respectively. The power in these frequency ranges did not change significantly during any of
the interventions Fig. 5(A), nor did σ1 and σ2 Fig. 5(B) The standard deviation of the signal
(σsignal) also undergoes a significant decline during these periods (p < 0.01).

The detail coefficients can now be separated into levels that contain the RSNA signal plus
noise and levels which contain noise only. Since both the power in the frequency ranges of the
level 4 and 5 detail coefficients and the standard deviation of the coefficients themselves
demonstrate significant changes during pharmacological tests and after death, they are assumed
to contain the majority of the information associated with sympathetic spikes. Thus, only the
level 4 and 5 detail coefficients will be subject to thresholding in each of the wavelet methods
mentioned in Section III-C during the simulations. All wavelet coefficients that either fall
below the threshold or are found in other levels, including the level 5 approximation
coefficients, will be considered noise-related and set to zero. The level 3 detail coefficients
were not included in the threshold operation because the changes in spectral power and standard
deviation in this level during pharmacological tests and postmortem were not as pronounced
and could result in a significant number of false alarms in signals with very low SNRs. The
standard deviation of the level 1 detail coefficients, σ1, will be used in the single-level noise
estimation threshold [as shown in (8) and (9)] because it was shown to remain constant
throughout the pharmacological interventions and postmortem.

B. Simulation Results
The detection performance of the unsupervised amplitude discriminator, SWTS, SWTD,
DWTS, and DWTD is described in Fig. 6. The percent of correctly detected spikes (PCD, top)
and percent of false alarms (PFA, bottom) are displayed for low (left), medium (middle), and
high mean spike rates at various SNRs (Fig. 6).

The detection performance of the amplitude discriminator method was found to be highly
dependent on the mean spike rate (Fig. 6). It demonstrated a high percent of correct detections
for signals with low and medium spike rates, but also detected the highest percent of false
alarms during most SNRs and mean spike rate situations in these simulated signals.
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The detection performance of the SWT and DWT methods with level-dependent noise
estimation (SWTD and DWTD) also demonstrated a large dependence on the mean spike rate
(Fig. 6). As spike rate increased, the percent of correct detections of the methods with level-
dependent noise estimation began to drop off at higher values of SNR. The SWT and DWT
methods with single-level noise estimation thresholds (SWTS and DWTS) show much more
consistent patterns in their percent of correct detections during changes in mean spike rate. The
single-level noise estimation methods also generally had a higher percent of false alarms than
their level-dependent counter parts, but the percent of false alarms for all wavelet methods was
below 15% for all SNRs greater than 1.5 during all mean spike rate scenarios.

The SWT methods correctly identified a higher percentage of the inserted APs than the DWT
methods with the same threshold criteria for all SNRs and mean spike rates (e.g., SWTS >
DWTS and SWTD > DWTD). The percent of false alarms was similar for SWT and DWT
methods with the same threshold criteria. The SWTS method (stationary wavelet transform
with a single-level noise estimation criteria) seemed to exhibit the most consistent performance
on the simulated murine sympathetic nerve recordings. The percent of correct detections for
this spike detection method remained above 75% and the percent of false alarms remained
below 10% for all spike rates and all SNRs above 1.8. Although the discriminator had a higher
percent of correct detections than the SWTS at very low SNRs (SNR < 1.6), it also produced
a significantly higher percent of false alarms during these SNRs as well.

C. Threshold Verification Using Physiological Data
Renal nerve recordings that contained 60 s of baseline activity followed by approximately 60
s of reduced activity after PHE bolus injection were used to determine the optimal threshold
value in each wavelet-level that comprised the RSNA frequency range. The threshold in each
of the wavelet levels of interest, levels 4(T4) and 5(T5), was systematically varied until the
threshold combination which produced the maximum difference between the median detected
spike rate during baseline and the minimum detected spike rate after administration of the PHE
bolus was determined (T4

opt and T5
opt). Fig. 7(A) demonstrates a representative example of

the results of this search normalized by σ1 the standard deviation of the level 1 detail
coefficients. From (9) we can see that TW ∕ σW = 2 loge(N ). For the signals used in this
section, N = 120s × 10,000 Hz and 2 loge(N ) ≈ 5.29. In Fig. 7(A), the maximum delta spike

rate (T4
opt ∕ σ1 and T5

opt ∕ σ1, the dark red region) is near the single-level noise estimation
threshold, i.e., T4/σ1 ≈ 5.29 (the white circle).

The threshold values T4
opt and T5

opt were determined for 16 mice and normalized using the
single-level noise normalization, i.e., dividing by σ1 Fig. 7(B). The average normalized values
for both level 4 and 5 are near the standard value of 5.29.

The SWT methods using the single-level and level-dependent noise estimation thresholds were
both used to detect the change in the detected spike rate from baseline to after PHE bolus
injection in the same 16 mouse renal nerve recordings [Fig. 7(C)]. The single-level noise
estimation threshold detected a significantly greater response to the PHE bolus than the level-
dependent noise estimation threshold.

V. Discussion
The aim of this paper was to devise an automated spike detection system specifically for mouse
RSNA which could be used as an alternative to the currently used approaches of RSNA
integration and hardware amplitude discriminators. Although we have only presented data for
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this specific neural signal, this type of optimization process and some of the results may be
applicable to other types of neural data.

We have shown that wavelet methods had a more robust performance than amplitude
discriminators when presented with simulated mouse sympathetic nerve signals with different
spike rates and SNRs. Additionally, the DWT methods, which lack translation invariance, were
outperformed by translation invariant SWT methods with the same threshold criteria. The
single-level noise estimation threshold criteria was also shown to be less dependent on changes
in mean spike rate in simulated mouse renal nerve recordings than level-dependent noise
estimation threshold algorithms. The choice of a single-level noise estimate was also close to
the maximum response thresholds determined using the physiological PHE bolus data.

Johnstone and Silverman demonstrated that the SWT has better de-noising performance than
the DWT for data contaminated with neurophysiological noise [49]. They have also suggested
that the limitations of the DWT are more apparent for signals with low signal-to-noise ratios
(SNR) and sharp discontinuities [49]. Murine RSNA APs posses these characteristics and,
consequently, a spike detection procedure based on the DWT is less effective than one which
uses the SWT. The simulated scenario in Fig. 8 demonstrates how the translation variability
found in the DWT reduces the likelihood of an RSNA APs being detected. Each peak in the
RSNA AP occupies a very short period, approximately 1 ms, or 10 points of a signal sampled
at 10 000 Hz. After two levels of decimation, less than two or three peak points remain. In the
simulated RSNA signal depicted in Fig. 8, down-sampling by eliminating odd and even
coefficients significantly alters the DWT representation and, as a result, the detection
performance of the DWT algorithm. The SWT, however, is able to detect both APs. This would
account for the lower percentage of correctly detected APs in the DWT-based detection
algorithms in our simulations and may play a role in any DWT-based detection or
discrimination of neural data.

One key feature common to both wavelet and amplitude-discriminator-based detection
methods is a threshold rule based on some estimate of the noise level. A robust threshold rule
should accurately reflect the noise level, but should be unaffected by changes in spike rate or
spike amplitude. In the case of the murine RNSA, the spike rate can be non-stationary,
particularly when different pharmacological agents are introduced. Both the automated
amplitude discriminator and the wavelet methods with a level-dependent noise threshold,
however, were significantly affected by changes in spike rate. For example, the standard
deviation of the level 4 and 5 detail coefficients change significantly during the PHE and
postmortem recordings, and these changes are presumed to be primarily caused by changes in
the mean spike rate during these states [Fig. 5(B)]. We have also observed that the standard
deviation of simulated signals (σsignal) and the standard deviation of their detail levels in the
frequency range of the RSNA spikes (σ4 and σ5) increase with spike rate. For instance,
simulated signals with identical noise and mean spike rates of 0, 35, and 75 spikes/s resulted
in σsignal of 0.25, 0.295, and 0.365 normalized unit (NU) and σ5 of 0.25, 0.43 and 1.12 NU.
However, the standard deviation of the level 1 detail coefficients, σ1, remained almost constant
(0.25, 0.253, 0.256 NU) for all spike rates. Therefore, a threshold selection rule that relates the
noise level of the level 1, or “noise-only”, detail coefficients to the threshold for the level 4
and 5, or “signal concentrated,” detail coefficients, such as the single-level noise threshold
rule, may be more appropriate detection in nerve signals with highly variable mean spike rates.
The maximum response thresholds determined with the PHE bolus data also suggested that
the use of the single-level noise estimation threshold was more suitable than the use of a level-
dependent noise estimation threshold (Fig. 7).

In light of these findings, we advocate the use of an SWT algorithm with a single-level noise
estimation threshold for the detection of APs in the murine RSNA. This method was shown to
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be the most robust when presented with variable spike rates and SNRs. Several previous
publications have used the wavelet transform for the specific purpose of spike detection in
similar multiunit neural data [28], [31], [33], [34], [54]. Kim, et al. (2003) suggested a novel
AP detection method for nerve recordings with low SNR which combined selected scales of
the SWT using point-wise multiplication and smoothing with a Bartlett window [31] and
Olkkonen, et al. (2006) demonstrated a Hilbert assisted DWT to improve SNR in nerve signals
[54]. However, neither author discusses a method to objectively automate a threshold selection
process. Both Nakatani, et al. [33] and Diedrich, et al. [28] demonstrated automated methods
for colored, normally distributed neural noise. Each implemented a level-dependent threshold
by extrapolating the parameters of the noise distribution by fitting a Gaussian to the central
quantiles of the detail coefficient amplitudes at each wavelet level. This method assumes that
the contribution of the AP waveforms to the central quantiles of the distribution is negligible,
an assumption that is valid for lower spike rates but fails for higher spike rates. Both authors
do not test their technique under conditions of variable spike rates.

Nenadic, et al. [34] uses the continuous wavelet transform (CWT) and a level-dependent
threshold to make an initial separation of signal and noise for the purpose of parameter
estimation prior to hypothesis-based spike detection. This technique is validated using
simulations with different spike rates and SNR. Our results demonstrate that the level-
dependent threshold drastically over estimates wavelet noise levels at high spike rates, resulting
in significant missed detections (Fig. 6). The discrepancy of these results may lie in the type
of neural data used. The former study involved recordings from CNS neurons with a relatively
high conduction velocity, whereas our recordings were derived from unmyelinated peripheral
neurons with a slower conducting speed (Fig. 3). The longer duration of the sympathetic APs
yields more high-amplitude points per unit time for each spike, which has a dramatic affect on
the level-dependent noise estimate, particularly at high firing rates. Although the noise in both
the signal and simulations used here are colored, the single-level noise estimation threshold
was useful because it relates the noise level in a wavelet band that is unrelated to the
physiological signal information to the wavelet levels that contain signal plus noise and avoids
overestimating the threshold in these levels at high firing rates.

A. Limitations
One significant limitation to using the SWT as opposed to the amplitude discriminator or the
DWT is the increase in computational complexity. While the amplitude discriminator requires
no transformation, the DWT requires O(N) operations and the SWT requires O(N log(N))
operations [40], which may pose a problem when applying such a method to more complex
problems, such as nerve signals recorded from a multi-electrode array. However, the SWT
requires less computational complexity than the CWT, an O(N2) process which has been used
in previous spike detection methods [34]. A second limitation is the assumption that all of the
recorded APs will have a shape similar to the symlet 7 wavelet or one of its dilations at higher
wavelet levels. Although the waveforms identified in our recordings were relatively similar to
those depicted in Fig. 3, different neuron-electrode geometries have been observed to result in
very different AP morphologies [27] and this should be considered when implementing such
a method. In this study we focused on the detection of APs and chose not to examine the sorting
of waveforms, which is typically handled following detection. As a consequence, the amount
of AP overlap in the simulations was limited. Significant AP overlap may cause multiple,
overlapped APs to be detected as 1 AP. In this case an additional waveform classifier would
be required to separate the overlapped waveforms. This has been proposed previously [28].

Extension of this method to other types of neural data and signals with transient spikes would
require a similar form of optimization process and simulated data to objectively assess detection
quality. The optimization process described here could be difficult without the use of either
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pharmacological or postmortem recordings. However, physiological interventions may be used
in order to characterize the noise process contaminating other neural data. For instance, in the
case of the human muscle sympathetic nerve activity (MSNA), a noise component may be
obtained during Phase IV of the Valsalva maneuver which is characterized by an increase in
blood pressure beyond baseline levels and, consequently, a dramatic reduction in sympathetic
nerve activity in healthy subjects [55]. The wavelet levels used in this optimization may also
differ for other signals. The APs found in the MSNA, for example, have a similar shape to
murine RSNA spikes, but have a much shorter duration [28]. As a result, the power of the
MSNA spikes was found to be concentrated between 700 and 2000 Hz [28], and would require
thresholding of the level 2 and 3 wavelet coefficients for 10–kHz recordings.

B. Conclusion
An automated spike detection method for mouse sympathetic nerve activity would eliminate
the need for establishing a subjective manual threshold or using integrated nerve activity.
Furthermore, unsupervised spike detection allows for the possibility of AP classification and
subsequent single-unit analysis of sympathetic nerve activity, which has been shown to hold
useful information [56]-[60]. In conclusion, spike detection using the SWT is a potentially
useful tool in the study of autonomic dysfunction in mice and may have implications for the
study of various cardiovascular disorders.
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Fig 1.
Representative affects of PHE bolus injection on murine arterial blood pressure, HR, and
RSNA.
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Fig 2.
(A) Noise threshold estimates using recordings during baroreflex mediated suppression of
RSNA using PHE bolus injection (left) and postmortem recordings (middle) in the same mouse.
(B) The threshold value which yields the maximum change in spike rate from PHE to baseline
(max Δ spike rate) is termed the optimal threshold level (green broken line). The nerve signal
recorded during PHE bolus (red broken lines) overestimates the noise level and the postmortem
recording (blue broken lines) underestimates the noise level.
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Fig 3.
The symlet 7 wavelet (A) and two representative mouse sympathetic AP templates, (B) and
(C), used in the simulations. Amplitudes are displayed in units normalized to the largest
absolute value in each waveform (Normalized Units; NU).
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Fig 4.
Block diagram of all detection methods. (A) Unsupervised amplitude discriminator. (B) Single-
level noise estimation wavelet threshold used with either the SWT or DWT. (C) Level-
dependent noise estimation wavelet threshold used with the SWT or DWT.
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Fig 5.
(A) Average normalized PSD of renal nerve recordings during nitroprusside (Δ), baseline (□),
PHE (O), and postmortem (∇) periods. (B) Normalized standard deviations of the detail
coefficient levels and the signal during baseline (white), after PHE bolus injection (hatched),
and postmortem (black). The changes in the standard deviation of detail levels 1 and 2 (σ1 and
σ2) are minimal, but changes in the standard deviations of the level 3, 4, and 5 detail coefficients
(σ3 – σ5) and the signal (σsignal) are significant during PHE and postmortem.
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Fig 6.
Mean results for simulations with varied noise levels and mean spike rates. The simulations
tested the performance of an unsupervised amplitude discriminator, SWT decomposition with
thresholds based on single level (SWTS) and level-dependent (SWTD) noise estimation, and
DWT decomposition with thresholds based on single level (DWTS) and level-dependent
(DWTD) noise estimation. Each point on each curve represents the mean result of 102
simulations.
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Fig 7.
(A) Representative example of the search for the optimal threshold combination for the level
4 and 5 detail coefficients (T4 and T5) normalized by the standard deviation of the level 1 detail
coefficients. (B) The mean values for the normalized T4

opt and T5
opt for 16 mice. In both cases,

the maximum response thresholds come close to the standard value calculated from (8) [5.29;
white circle in (A) and broken line in (B)]. (C) Mean changes in the detected spike rate from
baseline to after PHE bolus injection (Δ spike rate) using two different SWT threshold
algorithms. The single-level noise estimation threshold (white) detected a significantly greater
response to the PHE bolus than the level-dependent noise estimation threshold (black). Error
bars indicate SE.
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Fig 8.
Detection performance using the DWT and SWT de-noising. The top row contains a simulated
signal, f(n), containing two APs (+). The middle rows contain detail coefficient for levels 1–5
(d1 – d5) obtained using either (A) the DWT with odd down-sampling, (B) the DWT with even
down-sampling, or (C) the SWT. Broken lines in d1 – d5 are standard thresholds [(8) and (9)]
and the bottom row is the reconstructed noise-free spike train, s(n). Decimating the odd
coefficients eliminates the detail coefficients that represent the second AP, while even
decimation abolishes the first AP. Both APs are detected using the SWT method because it
does not down-sample the detail coefficients.
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