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Abstract
The accurate assessment of autonomic sympathetic function is important in the diagnosis and study
of various autonomic and cardiovascular disorders. Sympathetic function in humans can be assessed
by recording the muscle sympathetic nerve activity, which is characterized by synchronous neuronal
discharges separated by periods of neural silence dominated by colored Gaussian noise. The raw
nerve activity is generally rectified, integrated, and quantified using the integrated burst rate or area.
We propose an alternative quantification involving spike detection using a two-stage stationary
wavelet transform (SWT) de-noising method. The SWT coefficients are first separated into noise-
related and burst-related coefficients on the basis of their local kurtosis. The noise-related coefficients
are then used to establish a threshold to identify spikes within the bursts. This method demonstrated
better detection performance than an unsupervised amplitude discriminator and similar wavelet-
based methods when confronted with simulated data of varying burst rate and signal to noise ratio.
Additional validation on data acquired during a graded head-up tilt protocol revealed a strong
correlation between the mean spike rate and the mean integrate burst rate (r = 0.85) and burst area
rate (r = 0.91). In conclusion, the kurtosis-based wavelet de-noising technique is a potentially useful
method of studying sympathetic nerve activity in humans.
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1. Introduction
Accurate assessment of autonomic function is important in the study and diagnosis of disorders
such as essential hypertension (Wallin and Sundlof, 1979;Mark, 1996;Gudbjornsdottir et al.,
1996), orthostatic intolerance (Furlan et al., 1998), and congestive heart failure (van de Borne
et al., 1997). Autonomic sympathetic function can be assessed in humans by direct recordings
of the muscle sympathetic nerve activity (MSNA) (Hagbarth and Vallbo, 1968).

The general appearance of the human MSNA has been described as heartbeat-synchronous
discharges from a group of sympathetic neurons, separated by periods of neural silence (Wallin
and Fagius, 1988) (e.g., see Fig. 2; Section 2.3). These bursts of activity are coupled to changes
in the blood pressure and cardiac output through the baroreceptor reflex (Pagani et al.,
1997;Furlan et al., 2000;Charkoudian et al., 2005). The most widely used MSNA processing
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method involves using an R–C circuit to rectifying and integrate the neurogram to achieve its
envelope (Delius et al., 1972;Wallin and Sundlof, 1979), a signal known as the integrated-
MSNA (Diedrich et al., 2003). At that point, bursts are identified and sympathetic activity can
be quantified in terms of burst frequency (bursts/min), burst incidence (bursts/100 heart beats)
or burst area rate (arbitrary units2/min) (Sundlof and Wallin, 1977;Sugiyama et al., 1996).

Quantification of the MSNA using bursts in the integrated neurogram has its limitations. For
instance, none of the burst parameters are capable of conveying whether a large burst is
generated by a few large amplitude sympathetic spikes (or artifacts) or many small amplitude
spikes firing in rapid succession. Also, the amount of pass band noise integrated into each burst
is dependent on the signal-to-noise ratio (SNR) of each recording, making it difficult to
compare the arbitrary unit burst amplitudes and areas across subjects.

An alternative solution to the integrated MSNA quantification problem is to implement a spike
detection algorithm in the raw neurogram which allows for the possibility of subsequent,
automated sorting of spikes into classes derived from individual single unit neurons (Diedrich
et al., 2003). Single-unit recordings have identified important differences in diseases such as
congestive heart failure and hypertension which were not demonstrated in the multiunit burst
rate (Macefield et al., 1999;Macefield and Wallin, 1999;Mary and Stoker, 2003). Since these
single unit recordings are extremely difficult to achieve and sustain manually (Wallin, 2004),
automated spike detection and classification methods will be useful in this area.

Automated wavelet-based methods have been successful in detecting and classifying neural
spikes in typical colored Gaussian noise (Letelier and Weber, 2000;Nakatani et al.,
2001;Oweiss and Anderson, 2002;Nenadic and Burdick, 2005). In particular, a wavelet-based
spike detection method has been shown to outperform common, automated amplitude
discriminators in the detection of human sympathetic spikes under varying signal to noise ratios
(Diedrich et al., 2003). However, the parameters of this algorithm were optimized from
recordings during a supine resting state, and its detection performance was not examined at
higher or lower spike rates (Diedrich et al., 2003).

One major problem common to most spike detection techniques is the accurate estimation of
noise level in the raw neurogram independent of the existing spike rate (Brychta et al., 2006).
For example, in the raw MSNA neurogram, the shape of the amplitude distribution is nearly
Gaussian during periods of neural silence (e.g., see Fig. 2; Section 2.3), but during a burst of
neural activity, the presence of neural spikes changes the amplitude distribution significantly
and most common noise estimators overestimate the noise level, leading to incorrect spike rate
estimation.

To address this problem, we propose a novel two-stage wavelet-based spike detection approach
that takes advantage of the bursting nature of the sympathetic nerve activity. This method uses
the local kurtosis to classify wavelet coefficients as belonging to Gaussian pure-noise segments
or non-Gaussian signal-plus-noise (burst) segments. The noise-related coefficients will then
be used to establish a threshold which can subsequently be applied to the burst-related
coefficients. The parameters of the two-stage wavelet method will be optimized using
simulated MSNA burst data and validated against common integrate burst measures using
recordings made during a head-up tilt protocol.

We plan to investigate the performance of the two-stage kurtosis spike detection method,
several common wavelet-based spike detection schemes, and a more traditional amplitude
discriminator using simulated sympathetic nerve signals with varying burst rate and SNR. We
hypothesize that the two-stage kurtosis spike detection method will have a more robust
performance than other commonly used spike detection schemes in terms of sensitivity and
specificity across spike rate and noise levels.
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2. Methods
2.1. Instrumentation and recording conditions

MSNA was recorded from the peroneal nerve (Vallbo et al., 1979). A unipolar tungsten
electrode with an uninsulated tip, diameter 1–5 μm and shaft diameter 200 μm (Frederick Haer
and Co., Bowdoinham, MA, USA), was inserted into the muscle nerve fascicles of the peroneal
nerve at the fibular head for multi-unit recordings. Raw nerve activity was amplified with a
total gain of 100,000, band pass filtered from 0.7 to 2 kHz (662C-3 Nerve Traffic Analysis
System, University of Iowa, Iowa City, USA), and recorded. The filtered nerve signal was also
placed through an R–C integrating circuit with a 0.1 s time constant and the output (integrated
MSNA) was simultaneously recorded. Satisfactory recordings of muscle sympathetic nerve
activity were defined by: (1) heart pulse synchronicity; (2) facilitation during Valsalva straining
and suppression during the hypertensive overshoot after release; (3) increases in response to
breath-holding; and (4) no change during tactile or auditory stimulation (Delius et al., 1972).

The continuous blood pressure (BP) waveform was measured by photoplethysmographic-
based volume clamp method (Penaz, 1973) with a finger cuff on the middle finger of the non-
dominant hand (Finapres, Ohmeda, Englewood, CO, USA). Respiration was measured using
a pneumobelt (Pneumotrace II; UFI, Morro Bay, CA). All data were acquired at 5000 Hz, 14
bit resolution using the Windaq data acquisition system (DI-720, DATAQ Instruments, Akron,
OH) and analyzed offline with custom software written in the PV Wave (Visual Numerics Inc.,
Houston, TX) and MATLAB (Mathworks; Natick, MA) environments.

2.2. Signal processing
2.2.1. Wavelet decomposition—The initial sympathetic spike detection technique
proposed by Diedrich et al. (2003) used the discrete wavelet transform (DWT) to decompose
the nerve signal into several frequency sub-bands of wavelet coefficients. However, the DWT
lacks translation invariance, meaning that a completely different set of wavelet coefficients
arises from DWT decomposition when the signal is shifted, or translated, in time (Liang and
Parks, 1996). The absence of translation invariance can be detrimental in the de-noising
(Silverman, 1999) and detection (Kim and Kim, 2003;Brychta et al., 2006) of transient neural
spikes. Alternatively, the stationary wavelet transform (SWT) is translation invariant, and has
been shown to improve sympathetic spike detection in mice (Brychta et al., 2006).

The SWT decomposition process (Mallat, 1991) is described by Eqs. (1) and (2). A signal, f,
is projected onto a dyadically-spaced set of scales (spaced using a base of 2, i.e., scale = 2j),
or levels (level j = log2(scale 2j)), using a set of level dependent quadrature mirror
decomposition filters, hj and gj, that have respective band-pass and low-pass properties specific
to each wavelet basis (Mallat, 1989). The broad scale, or approximation, coefficients, aj, are
convolved separately with gj and hj. This process splits the aj frequency information roughly
in half, partitioning it into a set of fine scale, or detail coefficients, dj+1, and a coarser set of
approximation coefficients, aj+1. During the next level of processing, a zero is placed in
between each consecutive value found in the gj and hj filters (i.e., up-sampling by two) to
achieve the gj+1 and hj+1 filters. This procedure can be iteratively continued until the desired
level of decomposition, j = J, is obtained. Note that the algorithm is initiated by setting a0 =
f.

a j+1(k) =∑n
h j(n − k)a j(k) (1)

d j+1(k) =∑n
g j(n − k)a j(k) (2)
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The aj coefficients can be reconstructed from aj+1 and dj+1 by convolving each with the
respective reconstruction filter, hj(−n) or gj(−n), and summing (Eq. (3)). Note that each
reconstruction filter is also level dependent and includes 2j − 1 zeros between each filter
coefficients. This process can be iteratively continued until the original signal, f, is recovered.

a j(k)∑n
h j(k − n)a j+1(n) +∑n

g j(k − n)d j+1(n) (3)

2.2.2. Wavelet thresholding—Most wavelet-based spike detection algorithms include
some modified form of a process known as wavelet de-noising (Donoho, 1995). In this process,
a nerve signal with additive noise, f, is decomposed using the wavelet transform and a threshold
is applied to each of the detail coefficient levels. All coefficients with an absolute value greater
than the threshold are thought to be part of an action potential and those below the threshold
are presumably derived from noise. The noise coefficients can be set to zero and a noise-free
signal can then be reconstructed and used for AP detection (Diedrich et al., 2003).

Several standard thresholds have been derived for wavelet de-noising (Donoho,
1995;Johnstone and Silverman, 1997). In the case of correlated or colored noise, the standard
deviation of the noise changes with each level and consequently requires a robust, level-
dependent estimate, σj (Eq. (4)),

σ j = median
( ∣ d j − d̄ j ∣ )

0.6745 (4)

which is later used in the calculation of the standard colored noise threshold, T j
S (Eq. (5))

(Johnstone and Silverman, 1997).

T j
S = σ j 2loge (N ) (5)

A modified form of Eq. (5) has been shown to yield better detection performance in human
sympathetic nerve activity (Diedrich et al., 2003). We will refer to this as the modified colored
noise threshold, T j

M. It is displayed in Eq. (6)

T j
M = 0.8σ j 2loge (N ) (6)

The performance of both the standard and modified colored noise thresholds will be assessed
using simulation.

2.2.3. Wavelet basis and level selection—It has been observed that not all wavelet levels
are necessary for spike detection and additional levels could actually hinder the performance
of wavelet-based detectors (Kim and Kim, 2003). In the human MSNA, we have found that
sympathetic activation during physiological interventions, such as a head-up tilt (HUT)
protocol, causes increases in the MSNA power spectral density (PSD) between approximately
400 and 2500 Hz (Fig. 1A). This frequency range approximately corresponds to wavelet levels
1–3 for a signal sampled at 5 kHz. However, the wavelet coefficient standard deviation of
levels 2 and 3 (σ2 and σ3) appear to have the most pronounced increases during HUT while
σ1 does not appear to respond to mild sympathetic activation, for instance 30° HUT (Fig. 1B).
We have therefore chosen only to use wavelet levels 2 and 3 while designing and testing the
spike detection protocol. Symlet 7 was chosen as the wavelet basis because its morphology is
similar to a sympathetic spike (Fig. 4D) (Diedrich et al., 2003).
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2.3. Two-stage kurtosis spike detection
Most standard wavelet threshold algorithms consider all of the coefficients while estimating
the noise-threshold, i.e., those associated with both the signal and the noise (Donoho, 1995).
However, the variance of the noise affecting the MSNA varies with signal quality and is
difficult to estimate using the signal itself or its wavelet coefficients when spike rates vary
(Brychta et al., 2006). As an alternative to the traditional wavelet techniques, we propose a
method that would initially separate the wavelet coefficients purely derived from the noise
from those which contain signal-plus-noise prior to thresholding (Nenadic and Burdick,
2005). In the MSNA signal, this requires identification of the wavelet coefficients related to
the neural bursts (signal-plus-noise) and those related to the areas between bursts (noise only).

The Valsalva Maneuver (VM) provides a compact example of the changes that occur in the
MSNA signal properties during dynamic fluctuations of mean blood pressure (Fig. 2). The
characteristics of the noise can be identified during Phase IV of the VM, when mean blood
pressure “overshoots” basal levels and MSNA is suppressed via baroreceptor feedback (Fig.
2C) (Mosqueda-Garcia, 1995). In general, the amplitude distribution of the noise-related
regions of the MSNA are Gaussian, a property which is preserved during wavelet
transformation (Silverman, 1999). During periods of moderate (Fig. 2A, baseline) and high
(Fig. 2B, VM Phase II) burst rates, the tails of the distribution become progressively heavier
and the central portion becomes more peaked, meaning a Gaussian fit is no longer accurate.

Local deviations from Gaussinity have been shown to be detectable using higher order statistics
(moments and cumulants higher than order two) (Nikias and Petropulu, 1993;Gerek and Ece,
2006). In particular, the kurtosis of wavelet coefficients has been employed to detect non-
Gaussian perturbation in cosmologic data (Vielva et al., 2004;Jin et al., 2005). Kurtosis is a
measure of the relative peakedness of a distribution and is defined as its fourth central moment
normalized by the square of its variance. A distribution will have a high kurtosis if there is a
concentration of values near its mean (peaked distribution) or in its tails (heavy tailed
distribution) (Moors, 1988). The kurtosis may be useful in detecting wavelet coefficients
related to neural bursts. However, to our knowledge, this technique has not been applied to
neural signals.

In the next section, we describe a method to separate pure noise wavelet coefficients from those
associated with MSNA bursts using the local kurtosis of the wavelet coefficients. The noise-
related coefficients are then used to estimate a noise threshold which is in-turn applied to the
burst related coefficients for the detection of action potentials. We have termed this algorithm
the two-stage kurtosis de-noising method.

2.3.1. Local kurtosis estimate—The local (or sliding) kurtosis computed over Nk detail
coefficients of level j, expressed as Kj, was estimated using the following equation:

K j(k) =
(1 / NK)∑n=0

NK−1
(d j(n − k) − mj(k))

4

((1 / NK)∑n=0
NK−1

(d j(n − k) − mj(k))
2)2

(7)

where mj is an estimate of the local mean of Nk level j coefficients, calculated using:

mj(k) =
1

NK
∑
n=0

NK−1

d j(n − k) (8)
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The kurtosis of a Gaussian sequence is always 3, regardless of the mean or variance of the
distribution. We expect the kurtosis of the burst related coefficients to be greater than 3 due to
the presence of action potentials with large positive and negative values, resulting in locally
heavy tails.

Once the kurtosis sequence was computed, wavelet de-noising took place in two stages. In
stage 1, a kurtosis threshold, TK, was established. All kurtosis values below TK were classified
as coming from noise while kurtosis values above TK were assumed to be burst-related. During
stage 2, the noise coefficients were used to estimate the noise standard deviation, σj, as shown
in Eq. (4). All detail coefficients located within an identified burst segment and whose absolute
value was greater than 3.5σj were retained, while all other coefficients were set to zero. The
de-noised signal was then reconstructed and action potentials were detected using a simple
peak detection scheme that locates maxima above 99% of the signal energy, as described
previously (Diedrich et al., 2003). An example of the two-stage kurtosis de-noising scheme
applied to a representative MSNA recording is displayed in Fig. 3. The optimal values for
NK and TK were determined through simulation, as described below in Section 2.3.1.

2.4. Simulated data
Simulated signals were constructed with templates extracted from recordings with sufficiently
high signal to noise ratio in eight healthy subjects during periods of sympathetic activation
(head-up tilt) (Fig. 4D). Noise was extracted from each recording during Phase IV of the
Valsalva maneuver, as shown in Fig. 2. Since the length of the noise was generally too short
for an appropriate simulation (<15 s), a 50 order autoregressive (AR) model was created using
the Burg method (Shiavi, 1999) and subsequently applied to a sequence of Gaussian random
numbers 60 s in length. Prior to AR filtering the Gaussian random numbers have a white noise
power spectral density (PSD) and normalized autocorrelation function (NACF). But after
filtering, the NACF and PSD of the simulated noise were shown to closely approximate those
of the recorded noise (Fig. 4B and C). The overall shape of the Gaussian sequence probability
density distribution is not affected by the AR filter (Fig. 4A).

The templates were then randomly inserted into neural noise in burst fashion. The burst
position, burst duration, and spike placement within each burst were all randomly assigned
according to a Poisson distribution. The average burst duration and spike rate within each burst
were fixed at 0.8 s and 60 spikes/s, respectively. Each simulation was assigned either a low (5
burst/min), moderate (25 bursts/min), or high (50 bursts/min) mean burst rate. The signal to
noise ratio (SNR) of the simulations was altered from 6 (high signal quality) to 1 (poor signal
quality). The SNR was defined as the ratio between the absolute peak amplitude of the action
potential and the standard deviation of the noise, as defined elsewhere (Diedrich et al.,
2003;Nenadic and Burdick, 2005).

2.4.1. Two-stage kurtosis de-noising method optimization—The parameters of the
kurtosis-based wavelet de-noising were optimized using the simulated data described above.
The value for the kurtosis threshold, TK, was varied from 2.8 to 5 and the number of samples
in each kurtosis calculation, NK, was varied from 250 to 4000 samples. The optimum TK and
NK values for each burst rate and each SNR were defined as those which resulted in the
maximum difference between the average percentage of correctly identified burst area and the
percentage of the remaining area falsely identified as burst related. The optimum TK and NK
values were averaged across all subjects, burst rates, and SNRs. The average TK and NK
optimums were then used in the tests of spike detection performance and the validation
discussed below.
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2.4.2. Evaluation of detection performance—The simulated signals were also used to
test the performance of several wavelet-based algorithms and an unsupervised amplitude
discriminator. The amplitude discriminator detected all peaks with an absolute value greater
than 3.5 times the standard deviation of the signal, as discussed elsewhere (Pouzat et al.,
2002). The three wavelet algorithms each used different de-noising methods which included
the standard wavelet threshold (SWTS, Eq. (5)), the modified threshold (SWTM, Eq. (6)), and
the two-stage kurtosis method (SWTK). Both the amplitude discriminator and wavelet
detection methods used a 3 ms time-window, which was observed to be the maximum duration
of a human sympathetic spike. The detection performance evaluation was repeated 12 separate
times for each of the 8 subjects. Each trial contained a different randomly distributed burst
pattern noise sequence, yielding 96 trials for each SNR and mean burst rate. The performance
of each method was quantified using the percent of correctly detected action potentials (PCD,
Eq. (9)) and the percent of false alarms (PFA, Eq. (10)).

PCD =
NCD
NAP

× 100 (9)

PFA =
NFA
NCD

× 100 (10)

NCD is the number of correctly detected APs, NAP the number of APs inserted into the
simulation, and NFA is the number of false alarms.

2.5. Validation using graded head-up tilt protocol
Seven healthy subjects (six males and one female, age 23–47) were recruited from the
Vanderbilt University General Clinical Research Center volunteer database. All subjects
underwent extensive physical examination and abstained from all drugs for at least 72 h prior
to the study. The subjects were secured to a tilt table with straps and instructed to remain relaxed
and quiet throughout all studies. After 15 min of supine rest the subjects were tilted by 15°
increments every 5 min until an angle of 60° was reached. The parameters of the integrated
MSNA bursts and the MSNA spike rates were later computed offline and compared using
linear regression. The Pearson correlation coefficient (r) was used to quantify the goodness of
fit. All studies were conducted at Vanderbilt University General Clinical Research Center and
all procedures were approved by the local institutional review board.

3. Results
3.1. Two-stage kurtosis de-noising method optimization

The results of the search for the optimal number of samples in each kurtosis calculation, NK,
and the optimal kurtosis threshold, TK, were found to be NK = 961 samples and TK = 3.7. These
values were used in the evaluation of the detection performance and the validation during
baroreflex testing.

3.2. Evaluation of detection performance
The detection performance of each of the four methods is displayed in Fig. 5. While the standard
wavelet threshold (SWTS) has the lowest percentage of false alarms (PFA) during all
simulations, its percent of correctly detected action potentials (PCD) is also lowest. The
modification to the standard threshold (SWTM), suggested by Diedrich et al., results in a higher
PCD and the PFA remains low (<10%) for SNR > 2 during moderate (25 bursts/min) and high
(50 bursts/min) burst rates. However, during low burst rates (5 bursts/min), the PFA is greater
than 15% at a SNR of 3.25 and steadily increases as SNR drops. The two-stage kurtosis de-
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noising (SWTK) demonstrates the highest PCD for SNR > 2 during all burst rates and its PFA
is similar to that of the modified wavelet threshold at burst rates of 25 and 50 bursts/min and
lower during the 5 burst/min simulations. The amplitude discriminator has a PFA that is similar
to or greater than all other detection methods during all simulations and its PCD is lower than
that of the modified and kurtosis-based wavelet thresholding methods.

3.3. Validation using graded head-up tilt protocol
Fig. 6 demonstrates that a good correlation exists between the spike rates detected using the
two-phase kurtosis method and the commonly used integrated burst rate (Fig. 6A, r = 0.85)
and burst area rate (Fig. 6B, r = 0.91) parameters. The spike rate, burst rate (Fig. 6C), and burst
area rate (Fig. 6D) also demonstrate similar increasing trends as the head-up tilt angle is
increased and the sympathetic nervous system is activated.

4. Discussion
We have demonstrated a novel spike detection scheme for human muscle sympathetic nerve
activity that uses the local kurtosis of the stationary wavelet transform coefficients to identify
pure noise coefficients, which are used to estimate a noise threshold, and signal-plus-noise
(burst-related) coefficients, which undergo thresholding. This method was shown to
outperform a similar modified-wavelet technique specifically designed for the MSNA, which
was not previously evaluated at varying burst rates (Diedrich et al., 2003). It was also shown
to have better overall detection performance than an unsupervised amplitude discriminator and
a higher percent of correctly detected action potentials than standard wavelet thresholding. The
mean spike rates detected using the two-stage kurtosis de-noising method during a graded head-
up tilt protocol were also shown to be highly correlated to commonly used integrated burst rate
(r = 0.85) and burst area rate (r = 0.91) parameters. These correlations were improved from
than those previously reported with the modified wavelet threshold (r = 0.79 and r = 0.52,
respectively) (Diedrich et al., 2003). The spike rates, burst rates, and burst area rates also
displayed similar increasing responses to increased tilt angle.

4.1. Limitations
In this study, we have focused our optimization and evaluations on recordings of the human
muscle sympathetic nerve activity. This detection technique may be applicable to other neural
or bioelectric signals with bursting characteristics, but this has not yet been investigated. In the
case of the MSNA, the kurtosis-based wavelet de-noising method was found to possess
reasonably accurate detection performance for signal-to-noise ratios greater than three
independent of the burst rate, with over 70% of the action potentials correctly identified and
less than 10% false alarms. However, detections made using this method, or any other method
tested here, on signals with SNR < 3 may not be reliable. Also, the kurtosis-based wavelet de-
nosing method may not detect levels of tonic activity that occurs between bursts. But, the initial
separation of noise segments using kurtosis may be useful in a hypothesis testing framework,
such as the general hypothesis based wavelet spike detection method suggested by Nenadic
and Burdick. (Nenadic and Burdick, 2005).

4.2. Conclusions
Sympathetic spike detection holds several potential advantages over traditional MSNA burst
detection. For instance, sympathetic spikes detection allows for the possibility of subsequent,
automated single unit analysis which has previously revealed important differences in human
pathologies such as congestive heart failure and hypertension (Macefield et al., 1999;Macefield
and Wallin, 1999;Mary and Stoker, 2003). Automated detection and classification of
sympathetic spikes also allows for the study of interaction between various single units.
Additionally, temporal and spectral analysis using spike-based quantification, as opposed to
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the standard burst methods, yields parameters that are more easily compared between subjects
(Brychta et al., 2002). In conclusion, the kurtosis-based wavelet de-noising technique is a
potentially useful method of studying sympathetic nerve activity in humans.
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Fig 1.
Power spectral density (PSD) (A) and percent increase in wavelet level standard deviations
(σj) (B) of human muscle sympathetic nerve activity (MSNA) during different stages of a
graded head-up tilt (HUT) protocol. Increasing the angle of tilt further activates the sympathetic
nervous system, and increases the power in the frequency range between 400 and 2500 Hz.
Wavelet levels 2 and 3 appear to have the most dynamic response to the sympathetic activation.
The approximate frequency range of each wavelet level is also displayed.
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Fig 2.
Tracings of the respiration (RESP), blood pressure (BP), and raw muscle sympathetic nerve
activity (MSNA) during Valsalva Maneuver. During baseline (period A), MSNA burst activity
is at a basal rate, and the recorded amplitudes are close to Gaussian (lower left panel). During
Phase II of the Valsalva Maneuver (B), BP drops rapidly causing a significant rise in the and
MSNA burst rate. The MSNA amplitudes are no longer fit by a Gaussian (lower middle panel).
In Phase IV of the Valsalva Maneuver (C), BP overshoots it baseline values and MSNA ceases.
This is assumed to be neural noise and is well fit by a Gaussian distribution (lower right panel).
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Fig 3.
Two-stage kurtosis de-noising example. The MSNA is decomposed using the SWT. A moving
kurtosis estimate is made of the detail coefficients (d2 and d3). The coefficients are grouped
into noise-related (K2 and K3 < TK) and burst-related (K2 and K3 > TK). The noise-related
coefficients are used to estimate noise level (σ2 and σ3) and burst-related coefficients undergo
thresholding. The de-noised signal is reconstructed with the ISWT.
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Fig 4.
Simulation elements. (A) Histograms of the neural noise recorded during Phase IV of the
Valsalva Maneuver (measured, black) and random simulated noise after application of an AR
filter (simulated, gray). Both demonstrate a normal probability density. (B) The normalized
autocorrelation function (NACF) of the measured (top, black) and simulated noise (bottom,
gray). (C) The power spectral density (PSD) of the measured (black) and simulated (gray)
noise. (D) The Symlet 7 wavelet (left) and two representative template action potentials (right)
displayed in normalized units (NU).
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Fig 5.
Mean results for simulations with varied noise levels and mean burst rates. The simulations
tested the performance of an unsupervised amplitude discriminator (discriminator), SWT
decomposition with standard (SWTS) and modified (SWTM) colored noise thresholds, SWT
decomposition with two-stage kurtosis threshold (SWTK). Each point on each curve represents
the mean result of 96 simulations.
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Fig 6.
Comparison of spike detection and burst parameters during a head-up tilt (HUT) protocol. The
mean spike rate shows a good correlation to the mean burst rate (A) and burst area rate (B).
The mean spike rate demonstrates the same general increasing pattern as the mean burst rate
(C) and mean burst area rate (D) as tilt angle is increased.
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