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Mechanosensitive activation of K™ channel via
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Invarious types of cells mechanical stimulation of the plasma membrane activates phospholipase
C (PLC). However, the regulation of ion channels via mechanosensitive degradation of
phosphatidylinositol 4,5-bisphosphate (PIP,) is not known yet. The mouse B cells express large
conductancebackground K* channels (LK) thatareinhibited by PIP,. Ininside-out patch clamp
studies, the application of MgATP (1 mMm) also inhibited LK}, due to the generation of PIP, by
phosphoinositide (PI)-kinases. In the presence of MgATP, membrane stretch induced by negative
pipette pressure activated LK}z, which was antagonized by PIP, (> 1 M) or higher concentration
of MgATP (5 mm). The inhibition by PIP, was partially reversible. However, the application of
methyl-3-cyclodextrin, a cholesterol scavenger disrupting lipid rafts, induced the full recovery of
LKy, activity and facilitated the activation by stretch. In cell-attached patches, LK}, were activated
by hypotonic swelling of B cells as well as by negative pressure. The mechano-activation of LKy,
was blocked by U73122, a PLC inhibitor. Neither actin depolymerization nor the inhibition of
lipid phosphatase blocked the mechanical effects. Direct stimulation of PLC by m-3M3FBS or
by cross-linking IgM-type B cell receptors activated LKps. Western blot analysis and confocal
microscopy showed that the hypotonic swelling of WEHI-231 induces tyrosine phosphorylation
of PLC~2 and PIP, hydrolysis of plasma membrane. The time dependence of PIP, hydrolysis and
LKyg activation were similar. The presence of LK}, and their stretch sensitivity were also proven
in fresh isolated mice splenic B cells. From the above results, we propose a novel mechanism
of stretch-dependent ion channel activation, namely, that the degradation of PIP, caused by
stretch-activated PLC releases LKpg from the tonic inhibition by PIP,.
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Ion channels play critical roles in immunological
responses. Although the most widely known players
are Ca’'-permeable channels (Gallo et al. 2006), K*
channels provide the electrical driving force required for
Ca*" influx, cell volume regulation, and for apoptotic
volume decrease (Beeton & Chandy, 2005). B cells are the
principal cellular mediators of specific humoral immune
response to infection. In a mouse B cell line (WEHI-231),
we previously reported novel voltage-independent, large
conductance background-type, K* (LKpg) channels that
are inhibited by phosphatidyl inositol 4,5-bisphosphate
(PIP,). While LKy, was originally named BKyg (Nam et al.
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2004), the acronym was changed to LK}, here to prevent
confusion with the calcium-activated K™ channel (BK¢,,
maxi-K). LKy, channels show low activity in the
intact cell membrane while their activity increases
spontaneously after excising the membrane (inside-out
(i-o) configuration). In i-o patches, LKy, channels
are reversibly inhibited by applying MgATP to the
cytoplasmic side, and the inhibition was found to be
blocked by wortmannin, an inhibitor of phosphoinositide
(PI)-kinase. Thus, it has been suggested that the molecular
systems that regulate PIP, levels are tightly associated with
LKy, channels (Nam et al. 2004).

PIP, is increasingly being recognized as a key
physiological regulator of ion channel/transporters
(Hilgemann et al. 2001; Horowitz et al. 2005; Suh &
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Hille, 2005). While most PIP,-sensitive ion channels are
positively regulated, LKy, channels are inhibited by PIP,
along with TRPV1 and cyclic nucleotide-gated cation
channels (Hilgemann et al. 2001; Suh & Hille, 2005). In
spite of the conspicuous large conductance (~300 pS),
LKyg-like channels with PIP, sensitivity have not yet been
found in other types of cells, and the molecular identity is
still unknown.

Although LKy, were originally termed ‘background’
K* channels due to their voltage independence, their
activity in the intact resting B cells is very low, which
is most likely due to the PIP, generated from the
phosphorylation of phosphoinositides (Nam et al. 2004).
Therefore, in pilot studies, we explored the activating
conditions for LKy, channels. In these trials we found
that mechanical stimulation by negative pressure of patch
pipette or osmotic swelling of B cells reversibly activates
LKy, channels. It has been recently reported that osmotic
swelling and shear stress activate tyrosine kinase (Syk) in
DT40 B cells (Miah et al. 2004; Qin et al. 1997), and elevate
[Ca*]; in mouse B cells by activating phospholipase Cy
(PLCy) and non-selective cation channels (Liu et al. 2005;
Zhu et al. 2005).

The PLC-mediated hydrolysis of PIP, by membrane
receptor activation is a widely observed regulatory
mechanism of PIP,-sensitive ion channels (Suh & Hille,
2005). Considering that membrane stretch is also an
activating condition for PLC (Moore et al. 2002; Ruwhof
et al. 2001; Zhu et al. 2005; Liu et al. 2005), ion channels
regulated by PIP, might be affected by membrane stretch
in a PLC-dependent manner. However, no study has been
performed to investigate whether stretch-dependent PLC
activation regulates the PIP,-sensitive ion channels. Since
cells are exposed to various levels of mechanical stimuli,
the elucidation of any such signalling mechanism would
provide an intriguing insight into ion channel regulation.
In the present study, we propose that the mechano-
sensitive activation of LKy, channels are mediated by
PLC-dependent hydrolysis of PIP,.

Methods
Cells

WEHI-231 cells were grown in 25 mm Hepes RPMI 1640
media (Gibco, Grand Island, NY, USA) supplemented with
10% (v/v) fetal bovine serum (Hyclone, Logan, USA),
50 um 2-mercaptoethanol (Sigma, St Louis, MO, USA),
and 1% penicillin—streptomycin (Gibco) at 37°C in 20%
0,-5% CO,. Mouse primary B cells were prepared from
the spleens of 6-week-old C57BL/6 mice. The animals
in this study were procured, maintained, and used in
accordance with the guidelines of the Institutional Animal
Care and Use Committee (IACUC) of Seoul National
University and Sungkyunkwan University. Mice were first
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deeply anaesthetized using 100% CO, in an induction
chamber. Following deep anaesthesia, mice were quickly
killed by cervical dislocation, and the spleens removed
to a small container filled with chilled PBS solution
supplemented with 2% (v/v) fetal bovine serum. Spleens
were dissociated into a single cell suspension, and B cells
were isolated using a Spin-Sep B cell enrichment kit (Stem
Cell Technologies, Vancouver, Canada). Isolated cells were
more than 95% B220-positive by flowcytometric analysis
using a FACSCalibur (Becton Dickinson, San Jose, CA,
USA). Isolated splenic B cells were kept in RPMI 1640
culture medium until used, which was within 5h of
isolation.

Electrophysiology

Cells were transferred into a bath mounted on the
stage of an inverted microscope (IX-70, Olympus, Osaka,
Japan). The bath (approximately 0.15ml) was super-
fused at 5 ml min~! and voltage clamp experiments were
performed at room temperature (22-25°C). Patch pipettes
with a free-tip resistance of about 2.5 M2 were connected
to the head stage of a patch-clamp amplifier (Axopatch-1D,
Axon Instruments, Union City, CA, USA). pCLAMP
software v.9.2 and Digidata-1322A (Axon) were used to
acquire data and apply command pulses. Single channel
activities were recorded at 10 kHz in cell-attached (c-a)
and inside-out (i-o) configurations. Voltage and current
data were low-pass filtered at 2 kHz. Current traces were
stored and analysed using Clampfit v.9.2 and Origin
v.7.0 (OriginLab Corp., Northampton, MA, USA). Data
were analysed to obtain amplitude histograms and total
channel activities (np,) where n and p, are the observed
levels of channel opening and the open probability,
respectively. Since the total number of channels (N) varied
for patches, a normalized open probability (P, = np,/N)
was calculated for patch to patch comparisons. The total
numbers of LK}, (N) were confirmed for each experiment
by equilibrating i—o patches with MgATP-free solution.
Data are represented as means =+ s.E.M. Student’s t test was
used to determine significance at the 0.05 level. In Fig. 84,
one-way ANOVA (Bonferroni) with post hoc comparison
was performed.

Western blotting and immunoprecipitation

WEHI-231 cells were stimulated with hypotonic
solution (158 mosmolkg™'; 10 mm Hepes, 80 mm KCl,
pH7.4) for various times. Cells were then harvested
and suspended in homogenization buffer (20 mm
Hepes, pH7.4, 5mM sodium pyrophosphate, 5mm
EGTA, 1 mm phenylmethylsulphonyl fluoride (PMSEF),
10 ugml™' aprotinin, 10 ugml™' leupeptin, 10 mm
2-glycerophosphate, 3 mm Na;VO,, 50 mm NaF), and
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lysed using a 22-gauge needle. Nuclei were removed
by centrifugation at 800 ¢ for 5min, and supernatants
were separated by centrifugation at 30,000 ¢ for 30 min
into membrane (pellet) and cytoplasmic (supernatant)
fractions. An equal amount of protein from each fraction
was resolved by SDS-8% PAGE and immunoblotted
with anti-PLCy 2 antibody (Cell Signalling Technologies,
MA, USA) followed by HRP-conjugated anti-rabbit
antibody (Upstate Biotech, VA, USA). The intensities
of protein bands were quantified using Multi Gauge
software (Fuji Film, Japan) and data are expressed as
membrane PLCy2 signal/cytoplasmic PLCy2 signal
ratios. Membrane fractions were immunoprecipitated
using anti-phosphotyrosine antibody (Upstate Biotech)
overnight at 4°C, and then to protein G agarose for 2 h at
4°C. The samples were then immunoblotted as described
above, and the membrane was stripped for 30 min
at 50°C in stripping buffer (60 mm Tris-HCl, pH 6.8,
100 mm 2-mercaptoethanol, 2% SDS) and re-probed with
anti-o-tubulin. When indicated, whole-cell lysates were
immunoprecipitated without the subcellular fractionation
procedure.

Confocal microscopy of WEHI-231 cells transfected
with enhanced green fluorescent protein-coupled
plextrin-homology domain of PLC61 (PH-EGFP)

WEHI-231 cells were transiently transfected with
PH-EGFP (0.5 mgml~! from Dr Dong Min Shin, Yonsei
University College of Dentistry, Seoul, Korea) using
Nucleofector (Amaxa GmbH, Cologne, Germany)
according to the manufacturer’s manual. Laser
scanning confocal microscopy (Olympus, FlowView
TM 300, Olympus, Japan) was applied to visualize
PH-EGFP (excitation 488nm) in the periphery
of cells under isotonic normal Tyrode solution
(290 mosmol kg™') and hypotonic (174 mosmolkg™")
conditions. Hypotonic solution was made by simple
dilution of normal Tyrode solution with distilled
water because the removal of sucrose induced optical
artifacts. The obtained images were analysed using Igor
(Wavematrix, Lake Oswego, OR, USA), public domain
software Image] (Wayne Rasband, National Institute of
Health, Bethesda, MD, USA) and Origin 6.1 (OriginLab
Corp.). A specific cross-section at a constant vertical
position was chosen for each cell that was analysed.

Experimental solutions and drugs

The pipette solution used for cell-attached (c-a) and inside
out (i-o) patch clamps, and the bath solution for c-a
contained (mm): 145 KCl, 1 EGTA and 10 Hepes at a pH
of 7.4 (titrated with KOH). The bath solution for i-o patch
clamps contained (mm): 145 KCI, 1 EGTA, and 10 Hepes
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at a pH of 7.2 (titrated with KOH). Fluoride-vanadate
cocktail (FV solution), an inhibitor of lipid phosphatases,
contained (mmM): 5 NaF, 0.5 Na;VO,, 140 KCl, 1 EGTA,
10 Hepes at a pH of 7.2 (titrated with KOH). PIP,
was initially purchased as a chloroform solution. The
chloroform was evaporated off under a stream of N, to
leave PIP, residue. Recording solution was mixed with
this residue and then sonicated for > 60 min on ice in
the dark. PIP, was purchased from Avanti (Alabaster,
AL, USA). XY-14 ([1,1-difluoro-3,4-bis(oleoyloxy)butyl]
phosphonate (sodium salt)) was purchased from Echelon
(Salt Lake City, UT, USA), and all other chemicals and
drugs were purchased from Sigma.

Plasma membrane stretching

Membranes were usually stretched by applying a negative
pressure to a patch electrode. Actual pressures applied
were calibrated and are presented as mmHg. In some
experiments, membrane stretch was achieved by the
hypotonic swelling of cells. For this purpose, the
concentration of KCl in the bath solution was reduced to
80 mm and the total osmolality was controlled by adding
sucrose, except in the confocal microscopy experiment (see
above).

Results

In the i-o configuration, a spontaneous single channel
current with an amplitude of close to 20 pA was observed
at a holding voltage of —60 mV in about 50% of 850 trials.
With symmetrical concentrations of K in the pipette and
bath solution, the approximate unitary conductance was
320-340 pS. In each experiment, the reversible inhibition
of LKpg channels by applying MgATP to the cytoplasmic
side was confirmed to identify LKy, channels, as described
in our previous study (Nam et al. 2004). With 1 mm
MgATP on the cytoplasmic side, membrane stretch by
the negative pipette pressure reversibly increased the
normalized open probability (P,) of LKy, channels in
a pressure-dependent manner (Fig. 1A and B). At 5mm
MgATP, the stretch-sensitivity of LKy, channels was
largely suppressed (Fig. 1B), but without MgATP, P, was
0.854 £ 0.01284 and the application of a negative pressure
(—27 mmHg) increased P, slightly to 0.914 4 0.0098
(n=6). The time dependence of activation (Fig.1C)
showed that quasi-steady-state activation takes about 60 s
at —27 mmHg. At lower levels of stretch, the LK}, channel
activity increased continuously during the time analysed
here. Although higher levels of negative pressure (e.g.
—43 mmHg) induced faster activation (Fig. 1A), they were
not analysed for the sustained stretch due to the instability
of patch membrane. For cell-attached (c-a) patches, the
small P, of LK, channels was increased more than
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10-fold (0.00031 4 0.00012 to 0.00338 + 0.00131, n = 26)
by applying —27 mmHg of negative pressure for 20s
(Fig. 1D and E). The low activity of LKyg channels recorded
in the c-a condition was similar to those recorded under
i-o conditions with 5 mm MgATP.

The stretch-induced activation of LKy, channels was
reversible. However, after a sustained stretch (> 10 min),
the channel activity became non-reversible or only
partially reversible in 14 out of 55 patches (Fig.24
and B). The permanently active LK}, channels in the
presence of MgATP were still inhibited by the addition
of PIP, or phosphatidylinositol 4'-monophosphate (P14P)
(Fig. 1E and F). Unlike the potent inhibitory action of
PIP; alone (Fig. 3), the inhibition by PI4P (2 um) required
MgATP (Fig. 2C). Thus, it was supposed that the key sub-
strates for the generation of PIP,, i.e. phosphoinositides,
might have been lost or metabolized during stretch of
the plasma membrane. Thus, the mechanosensitivity
was examined in the presence of exogenous PIP,.
A weak activation of LKy, channels by stretch was
observed under the relatively low concentration of PIP,

A . -43 mmHg
MgATP 1mM
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(1 uM) by membrane stretch (—27 mmHg). However, at
higher concentrations, the mechanosensitive activation
was almost completely blocked (Fig. 3). These results
suggested that membrane stretch somehow lowers the
concentration of PIP, in the plasma membrane, which
relieves LK}, channels from the tonic inhibition by PIP,.
Unlike the effect of MgATP, the inhibition by PIP, was
not spontaneously reversed by washout after a prolonged
application (> 1 min after confirming the inhibition of
LKypg channels, Fig. 4A). To accomplish a partial recovery
from the PIP, effect, an early washout as soon as
confirming the inhibitory effect (< 20s) was necessary
(Fig. 4B). According to the literature PIP, is concentrated
at the inner leaflets of lipid rafts defined as cholesterol-
and sphingolipid-rich membrane microdomains (Edidin,
2003; Rodgers et al. 2005). Thus, we tested whether the
integrity of lipid raft is crucial for the highly potent and
irreversible inhibition of LK}, by PIP,. The application
of methyl-g-cyclodextrin (MBCD, 2 mm), a cholesterol
scavenger disrupting lipid rafts (Kilsdonk et al. 1995),
significantly facilitated the recovery of LKy, channels from

negative pressure (mmHg)

Hl MgATP 1 mM
° ] MgATP 5 mM 14
| [ MgATP free

Figure 1. Effects of membrane stretch
on LKy,g channel activity in inside-out
(i-o) and cell-attached (c-a) patches

A, for i-o patches, negative pressure was
applied through a pipette after confirming

i é‘ : inhibition of LKpy channels by MgATP
0l < (1 mm). Throughout the figures, the letter
0.0 Jacteti=——M-. NN ] N , : ; i ; . X ‘c’ and horizontal arrows indicate the closed
0-65 -13 -20 -27 -43 0 40 80 120 and open levels of LKpg channels,
negative pressure (mmHg) time (s) respectively. B, summary of normalized open
probability (P,) measured at various
D E negative pressures and different MgATP
concentrations. C, time course of the
P, increase in Py induced by membrane
0.005 4 stretch. Mean values of normalized P,
0.004 ] (100 x Po/Po.max (%); Po.max Was obtained
- under MgATP-free conditions) were plotted
0.003 every 10 s under continuous negative
0.002 J pipette pressure; —13 (n =11, m), =20
- (n=12,0)and =27 mmHg (n = 13, A).
0.001 7] D and E, a representative trace of c-a
0.000 - recording and summary of P, responses to
control -27 mmHg negative pressure (—27 mmHg).
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the inhibition by PIP, (Fig.4C). Interestingly, recovery
from PIP,-induced inhibition of LKy, channels by MBCD
was prominently accelerated by a combined membrane
stretch (Fig. 4D).

From the above results, we hypothesized that PIP,
in the plasma membrane is decreased by stretch, which
would occur via activation of either lipid phosphatase
(LPP) or phospholipase C (PLC). To inhibit LPP, a cocktail
of fluoride and vanadate (FV solution, see Methods) is
widely used (Zhang et al. 1995; Huang et al. 1998). The
presence of FV solution did not block the stretch-induced
activation of LK, channels (Fig. 5A and B). Interestingly,
the pretreatment with FV solution hampered the recovery
of LKy, channels from MgATP-induced inhibition, and
the full recovery was attained by membrane stretch
(hatched bars in Fig.5B). This result suggested that
dephosphorylation by LPP might be involved in the
recovery from MgATP-induced inhibition, and that the
membrane stretch circumvented the LPP inhibition. We
also tested XY-14, a recently described LPP inhibitor
(Smyth et al. 2003). Pretreatment with 10 um XY-14
did not inhibit the stretch-induced activation of LK,
(Fig. 5C).

A

MgATP 1 mM -20 mmHg
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To investigate the role of PLC, U73122 (an inhibitor
of PLC) and its negative analogue, U73343, were used.
Under c-a conditions, 2 um U73122 was applied after
confirming the activation of LKy, channels by applying
negative pressure (—20 mmHg). The stretch-dependent
activation of LK}, channels was slowly reversed by U73122,
whereas the inactive analogue U73343 (10 um) had no
effect (Fig.6A and B). Moreover, the effect of U73122
appeared specific to the stretch-dependent activation of
LKypg because another type of ion channel with a smaller
conductance was unaffected by U73122 (indicated by ‘M’
in Fig. 6A). Under i-o conditions, for unknown reason(s),
the combined application of 2 um U73122 and negative
pressure made the patch membranes highly unstable.
Therefore, the concentration of U73122 and U73343 was
lowered to 0.25 um, and was applied in the early phase
of membrane stretch (Fig. 6C and D). U73122 almost
completely suppressed the LKy, channel activity under
the sustained negative pressure (—13 mmHg). U73343
showed a weak inhibitory effect, which was, however,
much smaller than the effect of U73122. LKy, channels
were activated not only by the local stretch using patch
pipettes but also by the hypotonic swelling of cells

+PIP, 5 uM

B

20 pA

+ PI4P 5 M

Figure 2. Irreversible activation of LKy,
channels by chronic stretch and
PIP;-dependent inhibition

Representative traces of i-o recording under
symmetrical K™ conditions. Time breaks with
corresponding durations are indicated in the
traces. A and B, by chronic stretch (=20 mmHg,
20 min), the activity of LK,q channels remained C
increased after relieving the negative pressure
in the presence of MgATP. In this state, the
addition of PIP; or PIP (PI4P) inhibited LKpg
channels. C, maximum LKpg channel activity
was confirmed by excising a membrane patch
in the absence of MgATP. The application of
PI4P alone did not inhibit LKpg channels,
whereas the co-application with MgATP
abolished LKpg channel activity.
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Figure 3. Weak effects of membrane stretch on
LKy channels under the direct inhibition by PIP,
A-C, representative traces of i-o recording obtained at
different PIP, concentrations (1, 2 and 5 um).

D, summary of normalized open probabilities (P,)
measured under the constant negative pressure

(—27 mmHg) at different PIP, concentrations (n = 3-5).

Figure 4. Effects of M3CD and membrane stretch
on recovery from the PIP;-induced inhibition of
LK,g channels

A, by a sustained application of PIP; (e.g. > 1 min after
confirming the inhibition of channels), the LKpy channel
activity was not recovered by washout of PIP, up to

20 min. B, an immediate and prolonged washout of
PIP; (< 20 s after confirming the inhibition) induced a
partial recovery of LKpq channel activity. The
summarized results are shown as a bar graph (n =9,
right panel). C, recovery of LKpg channels from
inhibition by PIP, was facilitated by adding MBCD

(2 mm). Right panel, summary of the mean P, (n = 6).
D, membrane stretch (—20 or —27 mmHg) combined
with MBCD also facilitated LKy channel recovery from
the previous application of 2 um PIP, (dotted line, PIP;
washout). Similar results were obtained in three more
cases. All the above experiments were i-o recordings.
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under c-a conditions (Fig. 7). The osmolality of bath
solution was controlled by adding or removing sucrose to
prevent changes in ionic concentration. The activity
of LKy, channels was slowly increased by switching to
hypotonic bath solution (158 mosmol kg™'), which was
blocked by pretreatment with U73122 but not by U73343
(Fig. 7B-D).

PLCy2isknown as a major PLC type in B cells (Hempel
& DeFranco, 1991; Kim et al. 2004). Western blot analysis
showed that the hypotonic swelling (158 mosmolkg™")
induces the membrane translocation of PLCy2 and
tyrosine phosphorylation. Also, the stimulation of
membrane IgM-type Bcell receptors by cross-linking

Mechano-chemical activation of K+ channel
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with antibodies (BCR-ligation) induced similar responses
(Fig. 8A and B). After swelling, tyrosine-phosphorylated
PLCy2 (pY-PLCy2) was highly detected in membrane
fractions and in whole-cell lysates. It is notable that an
appreciable amount of PLCy2 and pY-PLCy2 in the
membrane fraction were also detected in the control
condition (Fig. 84 and B).

To confirm the hydrolysis of PIP, by membrane stretch,
EGFP-PH-expressing WEHI-231 cells were treated with
hypotonic solution (158 mosmolkg™!) and visualized
with confocal microscopy. Representative images of
the WEHI-231 cell are shown with the histogram of
fluorescence intensity along the horizontal axis (Fig. 8C).

A MgATP 1 mM
FV
-20 mmHg
I Vi N
c c
£ | g ‘
S | ~ 0 @
<
Q.
30s |&
B 7 FV
* —
0°
0.2 1 * ]
0.0 . .
control MgATP MgATP MgATP  -20 mmHg
-20 mmHg w/o
C
XY-14 10 uM
MgATP 1mM
-20mmHg
Figure 5. No significant effect of lipid phosphatase C ’7 W h - i
inhibitors on the stretch-induced activation of “ ] ‘
LKpg channels s
A, after confirming the inhibition of LK, channels by - |g
MGgATP (1 mm) in the i-o recording, a cocktail of 10 mm 10s
fluoride and 0.5 mm vanadate was applied (FV, dotted D _
line). The membrane stretch (—20 mmHg) increased 0.8 XY-14 10 uM
LKpg channel activity in the presence of FV (n = 9). The ]
recovery from MgATP-induced inhibition was 06
incomplete in the presence of FV whereas the combined 1
stretch of membrane facilitated the recovery of LKpg o’ 0.4 b
channel activity (n = 6). B, summary of the above b * *
experiments shown as bar graphs. The data of hatched 0.24
bars were obtained in the absence of MgATP. ] I_T_|
C, pretreatment with XY-14 (10 uMm) did not block the 0.0 - —— — — "
stretch-induced activation of LK, channels. D, summary control Mg-ATP Mg-ATP Mg-ATP  Mg-ATP
of the above experiments shown as bar graphs (n = 6). -20 mmHg -20 mmHg
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Figure 6. Suppression of the
stretch-induced activation of LKpg
channels by the PLC inhibitor, U73122
Effects of U73122 and its negative analogue
U73343 were tested in c-a (A-C) and i-o
(D-F) configurations. A and B, in the c-a
condition, the stretch-induced activation of
LKpg channels was slowly reversed by
treatment with U73122, but not by its
negative analogue U73343. The letter ‘M’
indicates the open level of another type of
channel with medium conductance. Right
panels are histograms of LKpg channel
activity (NP,) reflecting the time-dependent
changes. C, summary of the effects of
U73122 and U73343 in the c-a patches. The
larger activity in the presence of U73343
was due to prolonged stretch to confirm the
negative effects of U73343. D, in the i-o
recording, the application of U73122

(0.25 um, 10 min) slowly reversed the
stretch-induced activation of LKpg channels
(n = 8). E, the prolonged application of
U73343 induced a partial reverse of the
stretch-induced LKy, channel activation

(n =5). F, summary of the effects of
U73122 and U73343 in the i-o patches.
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In the control condition, fluorescence signal was shown
along the plasma membrane which was largely decreased
within 2min of hypotonic swelling. The decreased
fluorescence was recovered by perfusion with isotonic
solution. In the confocal fluorescence images, the
peripheral fluorescence (the amplitudes within peak
=+ 1 pm) was integrated along the membrane and regarded
as membrane fluorescence (F,). The fluorescence
intensity of inner cytosol was also integrated (F.). The
averaged time-dependent changes of fluorescence ratio
(Fm/F.) under the hypotonic conditions demonstrate that
it took approximately 100 s for the half-decrease of F,,/F.
(Fig. 8D). Such time dependency was comparable with the
mean activation of LKy, channels by hypotonic swelling
(Fig. 8D, filled circles).

To directly stimulate membrane-bound PLC,
m-3M3FBS (a chemical activator of PLC (Bae et al.
2003; Horowitz et al. 2005), was applied to i-o patches
after confirming the inhibition of LKy channels by
MgATP. The addition of m-3M3FBS was found to activate
LKy channels (n=4, Fig.9A), whereas its negative
control analogue, 0-3M3FBS, had no effect (n =3, data
not shown). We also tested whether the stimulation of
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Figure 7. Activation of LKp4 channels by
hypotonic swelling and its inhibition by -
U73122
A, in c-a configuration, the osmolality of the
bath solution was changed as indicated in the D
figure. The letter ‘M’ indicates the open level of 2.0
another type of channel with medium ]
conductance. B and C, representative traces in 1.6
the presence of U73122 or U73343. 1 2:
D, summary of the above results. After o e
confirming the hypotonic activation of LKpq z 0.8
channels (158 mosmol kg=", 2-3 min, n = 11), T
U73122 (4 um, n = 6) or U73343 (10 um, 0.4
n = 5) was applied for an additional period 3
(5-10 min). The larger activity in the presence 0.0
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WEHI-231 cells by BCR-ligation modified LK}, channel
activity. In the c-a recording of control WEHI-231 cells
the P, of LKy, channels was very low (0.00031 & 0.00012)
as mentioned above (Fig.1D). The P, was increased
11-fold by applying negative pressure (—27 mmHg,
155). After chronic BCR-ligation (2.5 ug ml~! anti-IgM
Ab, >8h), the basal P, of LKy, channels increased
to 0.00183 £ 0.00087, and the same negative pressure
further increased the P, to 0.00844 4 0.00244 (n =26,
Fig. 9B).

The role of actin cytoskeleton in the mechanosensitive
regulation of LKy, channels was investigated in c-a
conditions. The application of 10 um cytochalasin D
(cyto D) for 10 min did not affect the activities of LKy,
channels (Fig. 9C). Interestingly, another type of channel
with smaller conductance (marked as ‘M’, Fig. 9C) was
activated by the short treatment with cyto D, but was
not investigated during this study. For a more complete
disruption of the actin cytoskeleton, WEHI-231 cells were
chronically treated with cytoD (5 um, 90-120 min) or
latrunculin A (lat A, 5 um, 60—120 min). These treatments
did not block the stretch activation of LKy, in c-a patch
(Fig. 9D). However, for an unknown reason the overall

406 406
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158
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10 min 5 min
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- |

n=6

of U73343 was due to longer treatment with
hypotonic condition than the initial control.
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Figure 8. Activation of PLC~2 and PIP, hydrolysis by hypotonic swelling of WEHI-231 cells

A, Western blot analysis of membrane and cytosolic fractions. Increased density ratios (membrane/cytoplasmic)
indicate the membrane translocation of PLCy 2. In the lower panel, the ratios obtained under different periods of
hypotonicity (158 mosmol kg~—') were normalized to control ratio (n = 5). The density ratio was also increased by
B cell receptor (BCR)-ligation (n = 6, open column, anti-lgM Ab 5 g mI=", 2 min). *P < 0.05 tested by ANOVA
with post hoc comparison (Bonferroni). B, increased tyrosine phosphorylation of PLCy2 (pY-PLCy2) by hypo-
tonic swelling in total cell lysates (upper panel) and membrane fractions (lower panel). Upper panel: anti-PLCy 2
immunoprecipitates from whole-cell lysates were subjected to Western blot analysis using anti-pY-PLCy2 Ab
(top) and anti-PLCy2 Ab (bottom). Lower panel: Western blotting of membrane fractions with anti-pY-PLCy 2
Ab (top) and anti-a-tubulin Ab (middle). C, representative confocal images of EGFP-PH expressed in WEHI-231
cells in control (upper), hypotonic conditions (158 mosmol kg=", 2 min, middle), and reverse to isotonic control
(290 mosmol kg~", 3 min, lower). The fluorescence intensity along the horizontal axis (white bar) and the amplitude
histograms (right column; a.u., arbitrary units). D, summary of the time-dependent translocation of the fluorescence
from membrane (Fm) to cytosol (Fc) under hypotonic conditions (n = 7, 0). For each cell, the minimum and maximum
ratios (Rmin, Rmax) Were obtained and used for the calculation of normalized ratio (Fm/Fc,norm, left vertical axis).
F/Feinorm = 100 X (R — Rmin)/(Rmax — Rmin). In the same panel, the time-dependent increase of LKpy channel
activity (Po, right vertical axis) were also obtained by hypotonic swelling in c-a patches and the mean values are
plotted together (n = 5-13, ®). Note that the P, values between 175 and 250 s were omitted to prevent confusion
with F/Fe.
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activity of LK,z channels appeared to decrease after chronic
treatment with cyto D but not with lat A (Fig. 9D).

Finally, LKy, channel expression and its stretch
sensitivity were also examined in freshly isolated splenic
B cells. In the c-a condition using a KCI (145 mm) pipette
solution, single-channel currents of large amplitude (ca
20 pA at —60 mV) were observed (21 patches out of 106
trials). In i-o patches, outward current was completely
abolished by replacing K™ with isomolar Na', thus
indicating K* selectivity (Fig. 10A). Like LK}, channels
in WEHI-231 cells, P, was initially low but gradually
increased on applying negative pressure to membranes
(Fig. 8B). The activity of LKy, channels in splenic B cells
was also reduced by MgATP (2 mm) on the cytoplasmic
side of i-o patches, and was increased by the application
of negative pressure through the pipette (—13 mmHg,
Fig. 8C).
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Discussion

This study shows the mechanosensitive regulation of LKy,
in WEHI-231 and freshly isolated splenic B cells of mice.
Several hypotheses have been initially proposed to explain
the mechanism of the stretch-dependent activation of the
PIP,-sensitive LK}, channel: (1) conformation changes
of LKy, caused by lateral tension, (2) transmission of
force by cytoskeletal structures, (3) stretch-sensitive lipid
phosphatases, and (4) stretch-sensitive PLC.

For the first hypothesis, the negligible effect of stretch
in the presence of PIP, (> 2 um, Fig. 2) suggests that
lateral tension per se does not play a key role. In the
present study, lipid-derived agents affecting membrane
fluidity or thickness were not tested because of concerns
that those agents might unavoidably change the local
concentration of PIP; or the integrity of PIP,-rich micro-
domains. Actually, agentslike MBCD were found to induce
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n T | | ‘
\
It 00 {180l | <
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25s
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0.004
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-27 mmHg -27 mmHg
C ca 10 min
[ control | cyto D 10 uM
c /
M
Figure 9. Effects of PLC activation and actin - g—
depolymerizers on the activity of LKpy channels 10s
A, a representative trace of i-o recording. The
application of m-3M3FBS (50 um) slowly activated LKpq Po (10%)
channels in the presence of MgATP (1 mwm). B, summary h
of the effects of BCR-ligation on LKpg channel activity 4
recorded in the c-a configuration with or without ]
negative pressure (—27 mmHg). C, the acute effect of 3]
cytochalasin D (cyto D, 10 um, 10 min) on the c-a patch. b o
Note that the activity of the medium conductance 2] T
channel (level M) was increased whereas LK was b E
unaffected. D, summary of the chronic effect of cyto D 1] N
(5 uM, 10 h, n = 10) or of latrunculin A (lat A, 5 um, b !
10 h, n=12) on LKpg channels and their activation by 0 — ]
stretch (=27 mmHg). control cyto D lat A
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the activation of LKy, channels, which was supposedly due
to the dispersions of PIP,-rich lipid rafts. In relation to
the second hypothesis, many types of mechanosensitive
channels are affected by cytoskeletal integrity (Hamil
& Martinac, 2001; Cho et al. 2002). The cytoskeleton
hypothesis is an intriguing idea since PIP,, the key
modulator of LKy, channels, provides an anchoring site
for actin filaments (Yin & Janmey, 2003). However, in the
present study, response to stretch was not blocked by
cyto D or lat A (Fig. 9).

TREK2, a cloned mechano-gated background K*
channel, is positively regulated by PIP,, and the electrical
charge-dependent interaction between C-terminal peptide
and PIP; in the inner leaflet was proposed as a mechanism
of mechanosensitivity (Chemin ef al. 2005). In contrast
with the positive modulation of TREK2 by PIP,, the stretch
sensitivity of LK}, channels was potently abolished by PIP,
(> 2 um), suggesting that the mechanosensitivity of LKpg
channels is dependent on an indirect pathway different
from TREK2. A schematic hypothesis was that membrane
stretch tilted the equilibrium of PIP, metabolism to
the hydrolytic or dephosphorylating direction (the third

J. H. Nam and others

J Physiol 582.3

and fourth hypotheses), which was drastically reversed
by exogenous PIP,. The effects of U73122 and lipid
phosphatase inhibitors on the mechano-activation of LKy,
channels more specifically indicate the involvement of
PLC.

Interestingly, chronic stretching (> 10 min) of excised
patches induced the partially irreversible activation of LKy,
channels, though this was fully inhibited by combined
treatment with PI4P and MgATP (Fig. 2). Since PI4P alone
did not inhibit LKy, channels, this suggested that chronic
membrane stretching had actually depleted the PI pool
through the hydrolysis of PIP,. Under the osmotic stretch
of WEHI-231 cells, a substantial decrease of plasmalemmal
PIP, occurred with time courses similar to the activation
of LK}, channels (Figs 1 and 8). Therefore, the most likely
scenario appears to be that membrane stretch activates
PLC, decreases local PIP,, which in turn releases LKj,
channels from tonic inhibition by PIP, (see our schematic
model in the online Supplemental material). Although
the activation of LK}, channels by PLC-activating agonists
increased LK}, channel activity (Fig. 9), we do not show
here that such agonists circumvent the LK, channel

KCI
4 N e\
NaCl KCI
-60 mV 0m + 60 mV -60 mV om + 60 mV
iE
H 3
f 02s ™
B
c-a | -27 mmHg |
C I
>
__ |z
o
N
2s
C MgATP 2mM/FV
-13 mm Hg Figure 10. Functional expression of LKyg channels

|
10s

10 pA

100 (s)

and their stretch-sensitive activation in mouse
splenic B cells

A, a representative i-o patch experiment demonstrating
the K selectivity of channels. Large conductance
channel activity (20 pA at —60 mV) was completely
abolished by replacing K* with Na* on the cytoplasmic
side. B, in c-a patches, multiple LKpg channels were
slowly activated by negative pressure (=27 mmHg). C, in
i-0 patches, LKy,q channel activities were suppressed by
MGgATP (2 mm), and this was partly reversed by applying
negative pressure through the pipette (—13 mmHg).
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activation by osmotic swelling due to their low potency.
Further investigation of potent agonists linked with PLC
is required to further validate the last hypothesis of the
mechanosenstive PLC pathway.

Mechanosensitive PLC activation has been shown in
several cell types (Missiaen et al. 1996; Ruwhof et al. 2001;
Moore et al. 2002; Zhu et al. 2005). A novel suggestion from
our study is that the stretch-dependent PLC activation
can also regulate ion channels via changing the level of
PIP,. The stretch effects in i-o patches suggest that putative
mechanosensitive PLC molecules might be associated with
the plasma membrane. In fact, a substantial amount
of PLCy2 was consistently observed in the membrane
fraction of untreated WEHI-231 cells (Fig. 8).

Although the local stretch of patch membrane by
suction could not be directly compared with the
hypotonic inflation of cells, the positive effects on LKy,
channels and blocking by PLC inhibitor (U73122) was
similarly observed. Also, the hypotonic swelling increased
membrane translocation and phosphorylation of PLCy 2.
The similar time-dependent changes of PIP, in the plasma
membrane and the activation of LK, channels (Fig. 8D)
further supports the hypothesis that mechanosensitive
PLCs play a key role at the whole-cell level as well
as the localized stretch. However, since the recorded
membrane patches are held by the micropipette, it was
questioned how the channels are activated by general
swelling of cells. Considering the widespread decrease of
plasmalemmal PIP, by hyposmotic conditions, we guess
that the PIP, in the relatively small patch membrane could
be diluted (e.g. lateral diffusion through the membrane
inner leaflet). Since the local concentration and movement
of PIP, is still a highly complicated and controversial
theme (McLaughlin et al. 2002; Cho et al. 2005), further
investigation is required to understand this result.

The c-a recording after BCR-ligation showed the
increased activity of LKy, channels and proportional
augmentation of stretch effects (Fig. 9). This suggests that
the mechanosensitive regulation of K* channels might
have more implication when combined with immuno-
logical stimuli. Recent studies by Freedman’s group have
also demonstrated the phosphorylation of PLCy and
the release of IP; by hypotonic swelling in the murine
splenic B cells (Liu et al. 2005). Moreover, according to the
literature, signalling from PLCy2 in murine B cells leads
to the activation of non-selective cation channels (NCS)
via an arachidonic acid-dependent signalling pathway
(Zhu et al. 2005). Taken together, the activation of
LKpg channels and plausible membrane hyperpolarization
might provide an electrical driving force for Ca*" influx
via NSC and/or store-operated Ca®" channels, which
might be amplified by mechanical stimuli. The activity
of LKy, channels in intact Bcells (c-a condition) was
considerably lower than the maximum activity observed
in i-o patches, which could be due to a relatively high

© 2007 The Authors. Journal compilation © 2007 The Physiological Society

Mechano-chemical activation of K+ channel 989

concentration of ATP or some unknown intrinsic factors
in the intact cytoplasm. In this respect, a substantial
increase in LKy, channel activity in the intact B cells
might be induced if the local concentration of ATP is
lowered under metabolic inhibition or by the formation
of long filopodial projections lacking mitochondria. In
B cells, the stimulation of Bcell receptors induces the
formation of long filopodial projections, called membrane
nanotubes (Gupta & DeFranco, 2003; Onfelt et al. 2004).
Such conditions might also provide higher sensitivity to
mechanical stress originating from the flow of plasma in
vivo. To support such speculation, however, the molecular
identity and immunohistochemical localization of LKj,
channels in the subcellular domain are required.

In conclusion, we propose that the local degradation
of PIP, is accelerated by membrane stretch, which
also releases LK, channels from MgATP-dependent
inhibition. As mentioned above, the membrane stretch-
and cell volume-dependent PLC activation is being
recognized in various types of cells. Although the
molecular identification of the LKy, channels and the
mechanisms of PLC activation remained to be elucidated,
the regulation of PIP,-sensitive ion channels through the
mechano-chemical signalling pathway provides a novel
mechanism to be pursued for understanding cellular
functions.
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