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TOPICAL REVIEW

Mechanisms of cardiac potassium channel trafficking
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The regulation of ion channels involves more than just modulation of their synthesis and

kinetics, as controls on their trafficking and localization are also important. Although the body

of knowledge is fairly large, the entire trafficking pathway is not known for any one channel. This

review summarizes current knowledge on the trafficking of potassium channels that are expressed

in the heart. Our knowledge of channel assembly, trafficking through the Golgi apparatus and

on to the surface is covered, as are controls on channel surface retention and endocytosis.
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The intracellular trafficking of membrane proteins such
as ion channels is complex. These molecules must be
synthesized in the endoplasmic reticulum, assembled and
processed appropriately, then trafficked and targeted to
the membrane or membrane subdomains where they
will function. Involved are ER resident proteins like
chaperones and glycosylases, microtubules and their
associated motors, transport vesicle and Golgi apparatus
components, the actin cytoskeleton, myosins, anchoring
proteins and more. The specific roles of these various
components in the trafficking of ion channels are only
beginning to be elucidated, and the entire trafficking
pathway is not known for any single channel. This review
will examine our knowledge of the trafficking of potassium
channels that are expressed in the heart in the context
of our knowledge of trafficking mechanisms in general.
The generalized path of a channel travelling through a
cardiac myocyte will be described from channel synthesis
to recycling. Specific knowledge will be highlighted as will
many of the gaps in that knowledge. While some results
have been confirmed in cardiomyocytes, most work has
been conducted using heterologous cells such as HEK293
cells and Xenopus oocytes.

Early events in the endoplasmic reticulum

A channel’s life begins in the endoplasmic reticulum. As
demonstrated for Kv1.3 – and probably true for most
channels – assembly begins concurrently with synthesis
on the rough ER (Kosolapov & Deutsch, 2003; Kosolapov
et al. 2004; Robinson & Deutsch, 2005; Lu & Deutsch,
2005). Of course, not every nascent channel will assemble
properly and quality control checks exist to ensure that

only properly folded and assembled channels are exported
from the ER. These checks as well as forward trafficking
and/or retention signals are incorporated within the
channel primary sequences and have profound influences
on the fates of the newly synthesized channels. The
simplest control on channel fate may relate to the
inappropriate exposure of hydrophobic residues to solvent
upon misfolding. Such a channel may be retained in the
ER simply because it aggregates there with other misfolded
proteins. Similarly, hydrophobic exposure to solvent
probably promotes degradation of misfolded channels
by the proteosome (Asher et al. 2006). This mechanism
has been well explored in human ether-à-go-go-related
protein (hERG) mutants that are defective in trafficking
(Furutani et al. 1999; Gong et al. 2005; Gong et al. 2006;
Anderson et al. 2006), some of which, interestingly, can
be rescued by hERG-binding drugs (Zhou et al. 1999;
Ficker et al. 2002; Paulussen et al. 2002; Gong et al. 2005;
Rossenbacker et al. 2005) and/or chemical chaperones
(Zhou et al. 1999; Anderson et al. 2006).

Quality control

To deal with problems beyond this probably non-specific
aggregation, potassium channels incorporate very specific
quality control systems. One such mechanism involves
RXR motifs first identified in the KATP channel (Zerangue
et al. 1999) and later shown to be functional also in
Kir2.1, the major cardiomyocyte inward rectifier (Ma et al.
2001), as well as in hERG (Kupershmidt et al. 2002)
and other channels (Chang et al. 1999; Margeta-Mitrovic
et al. 2000; Standley et al. 2000). These motifs are hidden
in properly folded and assembled channels but promote
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retention in the ER when they are exposed on the channel
surface. RXR motifs are also present in many voltage-gated
(Kv) channels, although, with the exception of hERG
(Kupershmidt et al. 2002), their functions there have yet
to be established. Other motifs, such as dilysine repeats
(Harter & Wieland, 1998; Zerangue et al. 2001) also serve
to inhibit trafficking out of the ER. The mechanisms by
which these motifs prevent export from the endoplasmic
reticulum have yet to be established, but some intriguing
clues exist.

RXR motifs bind 14-3-3 proteins (Yuan et al. 2003),
a family of molecules with diverse functions, thought
to promote surface expression of membrane proteins
(Shikano et al. 2006). While at first glance this seems
inconsistent with a retention role for the RXR motifs,
Yuan et al. (2003) have shown that the affinity of
the 14-3-3 proteins for the RXR motifs is dramatically
higher for tetrameric rather than monomeric constructs.
Thus, one possibility is that 14-3-3 proteins promote
the export of properly assembled channels. Interestingly,
COPI, a component involved in recycling from the Golgi
to the ER (Aoe et al. 1998; Nufer & Hauri, 2003),
competed with 14-3-3 for RXR perhaps indicating that
misassembled channels, with lower 14-3-3 affinity, are
returned to the ER by COPI (Yuan et al. 2003). C-terminal
dilysine repeats, which also function as ER retention
signals (Cosson & Letourneur, 1994), have been shown
to bind COPI (Mellman & Warren, 2000; Shikano &
Li, 2003) and binding of COPI to a dibasic motif in
the twin-pore KCNK3 potassium channel is inhibited by
14-3-3β (O’Kelly et al. 2002). In this case, the competition
is indirect; 14-3-3 binding to an adjacent ‘release site’
drives dissociation of the COP protein from the channel
(O’Kelly et al. 2002). Another ER retention signal, KDEL
(Zerangue et al. 1999), binds to the KDEL receptor in the
transport vesicles, and this also targets proteins for
Golgi-to-ER recycling (Zhou et al. 2002; Cabrera et al.
2003).

Forward trafficking signals – On to the Golgi

In addition to ER retention/recycling signals, potassium
channels harbour forward trafficking signals that promote
export from the ER. This is again via ER-to-Golgi
transport, a complex and GTP-dependent process,
involving COPI and COPII, additional Sec proteins, as
well as a pair of Rab proteins and SarI (Lee et al. 2004;
Murshid & Presley, 2004). COPII concentrates cargo in the
transitional ER and COPI is recruited to the newly formed
transport vesicles from where it retrieves recycling, escaped
ER- and misfolded proteins back to the ER. Transport is
conducted along microtubules and is dependent on the
dynein motor (Presley et al. 1997).

Forward trafficking signals in potassium channels are
quite diverse. FYCENE serves such a function in Kir2.1

(Ma et al. 2001; Stockklausner et al. 2001), Kv1.4 harbours
a VXXSL signal, and Kv1.5 harbours a similar but less
effective VXXSN (Zhu et al. 2003; Li et al. 2000). The cyclic
nucleotide-binding domains of hERG, ERG3 and HCN2
may also act as forward-trafficking signals (Akhavan et al.
2005) and the Kv1.4 pore appears to harbour a pore-based
forward trafficking determinant (Watanabe et al. 2004).
The evidence for the latter, though, is consistent also with
the absence of a retention motif in Kv1.4 that is pre-
sent in Kv1.1. It has been suggested that these forward
trafficking motifs may interact directly or indirectly with
COPII (Ma & January, 2002). Certainly dileucine motifs,
which are ubiquitously present in potassium channels
and which function as forward trafficking motifs in
other membrane proteins, bind to COPII (Nufer et al.
2002). Of course, the diversity in export signals in the
various channels implies that a complex scenario is
probably operating, leading to differential regulation of
channel trafficking. Whether all forward trafficking signals
function by promoting ER-to-Golgi transport remains
to be established. Also, of course, forward trafficking
signals are not the sole promoters of exit from the
ER.

Chaperones like Hsp70/Hsc70, Hsp90 and calnexin
have been shown to facilitate ER exit of hERG (Ficker
et al. 2003; Gong et al. 2006) and Kv1.2 (Manganas &
Trimmer, 2004). Very probably, these do so not via an active
forward trafficking role but rather by promoting proper
folding/assembly of the channels, although, in the case of
Hsp70/Hsc70, there may be a role in facilitating vesicular
trafficking and membrane fusion as well (Zinsmaier
& Bronk, 2001; Clay & Kuzirian, 2002). β-subunits,
KChIPs, KChAP and other accessory proteins also bind
to their target channels in this locale, promoting forward
trafficking via chaperone-like activities (Shi et al. 1996;
Wible et al. 1998; Pongs et al. 1999; Kuryshev et al. 2000;
Bahring et al. 2001). This is in addition to their roles, in
the cases of KChIPs and the β-subunits, as modifiers of
channel kinetics (Wible et al. 1998; An et al. 2000; Hanlon
& Wallace, 2002; Nerbonne & Guo, 2002; Aimond et al.
2005).

Interestingly, KChIP was recently reported to traffic
from the ER to Golgi in vesicles lacking COPII (Hasdemir
et al. 2005). Sar1 activity, essential for most ER-to-Golgi
traffic (Yoshihisa et al. 1993; Kuge et al. 1994; Gurkan
et al. 2006) was not required. That promotion of Kv4.2
expression by the neuron-specific KChIP3 is modulated
by GRKs and calcineurin (Ruiz-Gomez et al. 2007)
strongly suggests that KChIPs also function downstream of
ER-to-Golgi transport and as more than mere chaperones.
It will be very interesting to learn what pathway(s) are
employed for this trafficking, how it is regulated and
whether other channels are transported similarly. Figure 1
summarizes some of the major features of ER-to-Golgi
trafficking.
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Through the Golgi and on to the sarcolemma

The sorting and targeting of cardiac potassium channels
has barely been explored. Nevertheless, it is highly likely
that this sorting, like that of other newly synthesized
secretory and plasma membrane proteins, begins in
the Golgi apparatus (Gu et al. 2001). Glycosylation is
completed in the Golgi apparatus, a step important for
the surface expression of channels such as EagI (Napp
et al. 2005), KATP (Conti et al. 2002), Kv1.4 (Watanabe
et al. 2004) and other Kv1-type channels (Khanna et al.
2001; Folco et al. 2004), although the degree to which
cardiac potassium channels are sensitive to interference
with glycosylation is variable. While the stability of
glycosylation-defective hERG channels at the membrane is
reduced, glycosylation is not required for hERG expression
in heterologous cells (Gong et al. 2002).

Basic sorting to the sarcolemma or to intracellular
organelles certainly occurs in the Golgi (specifically, the
trans-Golgi network) (Gu et al. 2001), but it is likely that
targeting to specific sarcolemma subdomains is effected
mainly downstream of this organelle (Cereijido et al. 2003;
Mogelsvang & Howell, 2006). We know that Kir2.1 and
other inward rectifiers require an intact N-terminal signal

Figure 1. ER to Golgi trafficking of cardiac potassium channels
Following synthesis on the rough ER, channels which make their way to the transitional ER are recruited into
COPII-coated vesicles. They then traffic along microtubules to the cis-Golgi in a dynein-dependent manner. At the
cis-Golgi, properly assembled channels are sent on through the organelle. KChIP, accompanied by Kv4.2, is shown
trafficking to the Golgi in vesicles lacking COPII. Misassembled channels or those with ‘ER-retention motifs’ are
illustrated returning from Golgi apparatus in COPI-coated vesicles. Also illustrated are agglomerated misfolded
channels being degraded by a proteasome after translocation out of the ER.

for exit from the Golgi when expressed in heterologous
cells (Stockklausner & Klocker, 2003), but whether this is
a bona fide sorting event is unclear.

In neurons, the targeting of potassium channels is highly
specific. Kv4.2, for example, is generally targeted to the
distal regions of dendrites, whereas in myelinated neurons,
Kv1 channels localize to juxtaparanodal regions (reviewed
in Trimmer & Rhodes (2004)). Known to involve various
motor proteins, the actin and microtubule cytoskeletons,
scaffolding proteins and accessory subunits, just how these
various components work together to achieve directed
targeting is very poorly understood (reviewed in Lai &
January (2006). Similarly, while specific targeting clearly
occurs in cardiac myocytes (see below), we have little
insight into the mechanism(s) by which this is effected.
Nevertheless, some progress has been made in identifying
proteins that enhance forward trafficking and targeting of
cardiac potassium channels.

Involvement of MAGUK proteins

The membrane-associated guanylate kinase (MAGUK)
protein CASK has been implicated in the targeting of Kir2
channels (Leonoudakis et al. 2004) in heart and brain,
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where it forms complexes with other PDZ proteins, i.e.
SAP97, Veli-1, Veli-3 and Mint1. Expression of a dominant
negative CASK mutant disrupts basolateral targeting of
these channels in polarized epithelial cells (Leonoudakis
et al. 2004); Kir2.2 localizes non-specifically to both
the basolateral and the apical membrane, instead. While
CASK may indeed be intimately involved in directing
potassium channels to their ultimate destinations in the
cell, MAGUKs are more generally thought to serve as
scaffolding proteins that anchor proteins at their targeted
locations (Carnegie & Scott, 2003) rather than targeting
the channels, per se. Given that MAGUK complexes
associate with motor proteins (Hanada et al. 2000; Naisbitt
et al. 2000; Wu et al. 2002), though, the importance of
proteins like CASK and SAP97 in intracellular trafficking
may be greater than thought.

SAP97 has been implicated in the trafficking of other
potassium channels, as well. In heterologous expression
systems, Kv1.5 has been reported to interact with SAP97
(Murata et al. 2001; Godreau et al. 2002; Godreau et al.
2003) and to localize to lipid rafts (Martens et al.
2000; Martens et al. 2001) where it forms a tripartite
complex with caveolin-3 and SAP97 (Folco et al. 2004).
However, in rat and canine cardiac myocytes no evidence
of lipid raft localization or of Kv1.5 binding to either
SAP97 (Eldstrom et al. 2003) or caveolin-3 could be
found (Eldstrom et al. 2006). The interaction of Kv1.5
in heterologous cells may be an artifact of transient
overexpression (Mathur et al. 2006), although, if so,
the artifact is an interesting one, occurring only in
transiently transfected cells and not in stable lines.
Nevertheless, SAP97 overexpression increases the levels of
Kv1.5 at the cell surface. The mechanism by which this
occurs has yet to be elucidated.

Other Kv channels have also been shown to interact with
SAP97 (Tiffany et al. 2000) and to do so directly with the
closely related PSD95 (Kim et al. 1995; Imamura et al.
2002), although the latter is not expressed in heart (Seeber
et al. 2000). Unlike its effect on Kv1.5 though, SAP97
co-expression down-regulates these other Kv channels
(Tiffany et al. 2000). While conceivably also an artifact of
overexpression, it is certainly possible that SAP97 plays a
role in regulating the forward trafficking of these channels
as well.

Cytoskeletal players

SAP97 has been shown to bind myosin VI (Wu et al.
2002), a molecular motor implicated in secretion,
endoyctosis and submembrane vesicular trafficking along
the actin cytoskeleton (Lister et al. 2004). Myosins, tracking
along the actin cytoskeleton, are involved mainly in
trafficking near the cell surface and it has been long
known that disruption of the actin cytoskeleton can
have profound effects on potassium channel functional

expression (Calaghan et al. 2004). Such disruption
dramatically increases the expression of Kv1.5 (Maruoka
et al. 2000; Cukovic et al. 2001; Mason et al. 2002) and
Kv4.2 (Wang et al. 2004) in both heterologous cells and
cardiomyocytes. Similarly, disruption of the microtubule
cytoskeleton increases Kv1.5 surface expression (Choi et al.
2005), although microtubule disruption did not affect
Kv2.1 expression in heterologous cells (Martens et al.
2000). Long-range vesicular transport generally involves
the microtubule cytoskeleton and the kinesin and dynein
motors (Karcher et al. 2002).

Kinesins, which track along the microtubule
cytoskeleton, have recently been directly implicated
in the trafficking of Kv4.2. The neuron-specific kinesin
isoform Kif17 was shown to interact with Kv4.2 in brain
lysates and dissociated cortical neurons (Chu et al. 2006);
expression of a dominant negative Kif17 construct in
the neurons blocked surface expression of the channel.
Deletion of a previously identified dileucine targeting
domain from the channel, though, did not prevent
Kv4.2 trafficking but, rather than being restricted to
the dendritic tree, these channels were mistargeted and
appeared widely throughout the neurons. While Kif17 is
not expressed in heart (Setou et al. 2000), it is reasonable
to expect that another kinesin isoform is involved in Kv4.2
transport in cardiomyocytes.

Plasma membrane insertion

Whatever the route by which a channel makes its way
to the cell surface, it must insert into the sarcolemma
once there. Membrane insertion appears to be a conserved
process and while the specifics for most channels are
unknown, the process is essentially certain to involve
SNARE-mediated fusion of exocytotic vesicles with the
sarcolemma (Hong, 2005; Jahn & Scheller, 2006). SNAREs
are thought to deform membranes, disturbing the
hydrophobic–hydrophilic boundary and directly causing
fusion (Jahn & Scheller, 2006). Indeed, the exocytotic
fusion SNARE proteins SNAP25 and Syntaxin 1A have
been implicated in Kv1.1 and Kv2.1 plasma membrane
integration (Fili et al. 2001; Ji et al. 2002; MacDonald et al.
2002; Michaelevski et al. 2002; Leung et al. 2003).

Localization, surface retention, recycling
and degradation

Potassium channels don’t merely traffic non-specifically to
the sarcolemma. Instead, individual channel types localize
to specific cell surface domains. ERG1 localizes to the
transverse tubular network in rat atrial and ventricular
myocytes whereas KCNQ1 (KvLQT1) is found in the
peripheral sarcolemma and in T-tubules (Rasmussen et al.
2004). Kv4.2, Kir2.1 and TASK-1 are also localized at
least in part to T-tubules (Takeuchi et al. 2000; Clark
et al. 2001; Jones et al. 2002) and Kv1.5 is highly
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enriched at the intercalated disk of rat and canine atrial
and ventricular myocytes (Mays et al. 1995; Eldstrom
et al. 2006), as, in part, is Kv4.2 (Barry et al. 1995)
and Nav1.5 (Maier et al. 2002; Kucera et al. 2002). In
ventricular myocytes, Kv1.5 is found also in proximity to
the Z-lines (Eldstrom et al. 2006). Even in heterologous
systems, potassium channels sometimes segregate into
distinct cell surface microdomains (O’Connell & Tamkun,
2005). These distinct localizations may result from specific
trafficking (see above) or from specialized anchoring in the
cell membrane.

A number of candidates exist for mediators of
specific targeting/retention of cardiac potassium channel
isoforms. In addition to SAP97, caveolin and syntaxin 1A
(see above), actin-binding proteins like α-actinin-2 and
filamin have been at least circumstantially implicated in
channel targeting and anchoring. α-Actinin-2, a molecule
that links to the actin cytoskeleton, has been shown to
directly bind Kv1.5 (Maruoka et al. 2000; Cukovic et al.
2001). Given that α-actinin-2 antisense RNA increases
Kv1.5 surface expression (Maruoka et al. 2000) and the
involvement of the actin cytoskeleton in early endosomal
trafficking (Jeng & Welch, 2001), it is quite possible

Figure 2. Potassium channel dynamics near the cell surface
Interactions of several cardiac potassium channels with components of the trafficking machinery near the
sarcolemma are illustrated. Early endosomes travel through the cortical actin cytoskeleton and are pictured as
either recycled to the sarcolemma or transferred to the dynein motor for further internalization. Anterograde
trafficking of Kv4.2 is illustrated as involving kinesin based on the known interaction of Kv4.2 with Kif17 in
neurons. The involvement of clathrin-coated pits in potassium channel endocytosis is hypothesized on the basis
of the ubiquitous presence of dileucine motifs in the channels and the known interaction of Kir2.1 with clathrin.
Kv1.5 and Kv2.1 are illustrated in the process of internalization: Kv1.2 in response to tyrosine phosphorylation and
Kv1.5 on the basis of the known role for dynamin in its internalization. Other interactions are as described in the
text of this review.

that actinin is involved in Kv1.5 endocytosis and/or in
maintaining pools of Kv1.5 in vesicles just below the
cell surface. Filamin, another molecule that binds the
actin cytoskeleton, has been shown to interact with Kv4.2
(Petrecca et al. 2000). Kv4.2 expression is increased by
filamin overexpression, suggesting that filamin’s role may
well be to anchor the channel at the membrane. Yet
another actin-binding protein, cortactin, interacts with
Kv1.2 (Hattan et al. 2002). Kv1.2 channels defective for
cortactin binding express much more poorly in HEK293
cells than do their wild-type equivalents, suggesting a role
in channel stabilization at the surface for this protein, as
well.

Interestingly, the interaction of Kv1.2 with cortactin
can be modulated by tyrosine phosphorylation; activation
of the M1 muscarinic acetylcholine receptor dramatically
attenuates the interaction of cortactin with the channel
(Hattan et al. 2002). Implicating this attenuation with
Kv1.2 endocytosis, Nesti et al. (2004) have demonstrated
that phosphorylation of a specific Kv1.2 N-terminal
tyrosine residue results in rapid internalization of that
channel. Incubation of the cells with a dynamin-inhibitory
peptide blocked this internalization, confirming the role
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of endocytosis in this down-regulation of Kv1.2 functional
expression.

Dynamin has been recently implicated also in the
regulation of Kv1.5 expression (Choi et al. 2005).
Dynamin catalyses the scission of endocytic vesicles
from the plasma membrane (McClure & Robinson,
1996). It is important for clathrin-dependent and most
clathrin-independent endocytosis (Takai et al. 2005) and,
perhaps, in modulating actin dynamics at the cell surface
(reviewed in Schafer, 2004). Suggesting that ongoing
endocytosis is important for the maintenance of normal
Kv1.5 expression, Kv1.5 currents are increased in
heterologous cells treated with dynamin inhibitory
peptide. Immunocytochemistry/confocal microscopy
showed that Kv1.5 localized to early endosomes as
well as to the cell surface and that dynamin inhibition
dramatically reduced the number of these Kv1.5-positive
endosomes. A proline-rich SH3 binding domain was
found to be essential for internalization of this channel,
perhaps implicating tyrosine phosphorylation in Kv1.5
endocytosis, as well.

Once internalized, a channel must eventually be either
recycled to the membrane or degraded. In the same
study that implicated the SH3 binding domain in Kv1.5
endocytosis, the dynein motor was shown also to
profoundly affect Kv1.5 surface expression. Similar to its
effects on the ClC-2 chloride channel (Dhani et al. 2003),
dynein inhibition increased Kv1.5 surface expression as
assayed both physically and electrophysiologically (Choi
et al. 2005). These increases in Kv1.5 functional expression
matched those obtained with the dynamin-inhibitory
peptide. Dynein is a molecular motor required for
retrograde trafficking of cargo along the microtubule
cytoskeleton. Very probably, interference with this
retrograde trafficking prevented the trafficking of newly
formed endosomes and these endosomes, unable to
internalize further, either reintegrated into the sarcolemma
or interfered with the further endocytosis of the channel,
thus increasing Kv1.5 net surface expression.

Fates unknown

Beyond the apparent role of dynein in modulation of
Kv1.5 surface expression, little is known about the fate
of cardiac potassium channels following internalization.
Probably many recycle to the sarcolemma and others
are targeted for degradation, perhaps with ubiquitination
playing an important role in the determination of a
channel’s fate (Lin et al. 2005; Chapman et al. 2005; Kato
et al. 2005). Future work with Rab proteins, etc., will be
necessary to identify the compartments to which various
potassium channels segregate, not only after endocytosis,
but throughout the trafficking process. A summary of our
present knowledge concerning near-cell surface trafficking
of cardiac potassium channels is presented in Fig. 2.

Still more questions

Many questions remain about potassium channel
trafficking in the heart. Are pathways shared by most
potassium channels or are different pathways utilized
for each? Is Hsc70 involved in channel endocytosis as
well as forward trafficking? What other molecules are
involved in trafficking and targeting? How is trafficking
regulated? By what mechanisms do drugs that promote
or inhibit potassium channel trafficking (Cordes et al.
2005; Kuryshev et al. 2005; Anderson et al. 2006; Gong
et al. 2006; Rajamani et al. 2006; Sun et al. 2006) operate?
The study of cardiac ion channel trafficking is a young
and growing field. Undoubtedly the processes are complex
and intertwined. Much is to be gained both intellectually
and clinically in deciphering the trafficking of these
channels.
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