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Response variability of marmoset parvocellular neurons
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This study concerns the properties of neurons carrying signals for colour vision in primates.

We investigated the variability of responses of individual parvocellular lateral geniculate

neurons of dichromatic and trichromatic marmosets to drifting sinusoidal luminance and

chromatic gratings. Response variability was quantified by the cycle-to-cycle variation in

Fourier components of the response. Averaged across the population, the variability at low

contrasts was greater than predicted by a Poisson process, and at high contrasts the responses

were approximately 40% more variable than responses at low contrasts. The contrast-dependent

increase in variability was nevertheless below that expected from the increase in firing rate.

Variability falls below the Poisson prediction at high contrast, and intrinsic variability of

the spike train decreases as contrast increases. Thus, while deeply modulated responses in

parvocellular cells have a larger absolute variability than weakly modulated ones, they have

a more favourable signal : noise ratio than predicted by a Poisson process. Similar results

were obtained from a small sample of magnocellular and koniocellular (‘blue-on’) neurons.

For parvocellular neurons with pronounced colour opponency, chromatic responses were,

on average, less variable (10–15%, p < 0.01) than luminance responses of equal magnitude.

Conversely, non-opponent parvocellular neurons showed the opposite tendency. This is

consistent with a supra-additive noise source prior to combination of cone signals. In summary,

though variability of parvocellular neurons is largely independent of the way in which they

combine cone signals, the noise characteristics of retinal circuitry may augment specialization

of parvocellular neurons to signal luminance or chromatic contrast.
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Trichromatic colour vision is a distinctive feature
(amongst mammals) of primate vision. The great
majority of diurnal primate species studied so far
express more than one spectral class of cone in
the medium-to-long wavelength range of the visible
spectrum (Jacobs, 1998; Tan & Li, 1999). Primate
red–green colour vision appears inextricably linked to
the presence of a cone-dominated fovea and a distinct
post-receptoral midget-parvocellular pathway. Knowledge
of how luminance and chromatic signals are transmitted
by the main afferent (parvocellular, magnocellular and
koniocellular) pathways is fundamental for an under-
standing of primate vision, and perhaps for understanding
parallel sensory pathways in general.

Parvocellular (PC) neurons in trichromatic primates
typically derive functional input from medium- (M) and
long-wavelength-sensitive (L) cone photoreceptors. These
receptors make differential contributions to the excitatory
(‘centre’) and inhibitory (‘surround’) components of the

receptive field. This leads most parvocellular neurones to
display red–green opponent response properties (Wiesel
& Hubel, 1966; Dreher et al. 1976; Derrington et al.
1984; Smith et al. 1992). Since the parvocellular neurones
show the smallest receptive fields at any visual field
position, this cell class is also considered to contribute
to high-acuity spatial vision at high image contrast
(Derrington & Lennie, 1984; Blessing et al. 2004). However,
the question as to whether parvocellular receptive fields
are specialized to signal chromatic or luminance variation
has not been resolved (Shapley & Perry, 1986; Rodieck,
1998; Reid & Shapley, 2002). Understanding the functional
specialization of parvocellular neurons is the main goal of
the present study.

Understanding the functional specialization of
parvocellular neurons requires a characterization of not
only sensitivity, but also response variability. Noise in the
phototransduction process sets a lower limit to response
variability. However, it is possible that there are differences
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in the details of spike generation associated with varying
degrees of chromatic opponency, much as there are
differences between parvocellular and magnocellular
neurons (Kremers et al. 2001). Moreover, the intraretinal
circuitry that underlies the combination of M and L cone
signals may result in differences in response variability
across parvocellular neurons with varying degrees of
opponency, even at constant response magnitude.

Previous studies of the functional specialization of
parvocellular neurons for chromatic signals have indicated
that noise is independent of signal size (Croner et al. 1993;
Kremers et al. 2001; Sun et al. 2004), or at least, assumed
that noise is independent of the chromatic composition of
the input (Kara et al. 2000; Reid & Shapley, 2002; Blessing
et al. 2004; Uzzell & Chichilnisky, 2004). However, these
assumptions have not been tested specifically. We therefore
undertook a detailed analysis of response variability and its
relation to red–green opponency in parvocellular neurons
of the marmoset lateral geniculate nucleus.

In the marmoset, a single genetic locus (on the X
chromosome) encodes for medium- to long-wavelength
photopigments (Hunt et al. 1993; Yeh et al. 1995; Blessing
et al. 2004). There are three alleles at this locus which
encode for pigments with absorption maxima close to 543,
556 and 563 nm. Consequently, all males are dichromats.
There are six female phenotypes: three dichromatic
phenotypes (homozygous for the M/L allele) and three
phenotypes with trichromatic potential (heterozygous for
the M/L allele). In the present study, we determined
the photopigment complement of trichromatic animals
prior to physiological measurements (Blessing et al. 2004),
thus allowing construction of stimuli which generate
defined levels of contrast in the M/L cones expressed by
each animal. Moreover, these well-characterized genetics
allowed us to compare the signal and noise characteristics
not only between dichromatic animals and animals with
the potential for trichromacy, but also between animals
with a narrow (7 nm), medium (13 nm) and wide (20 nm)
separation between their M/L photopigments.

Some of the current findings have been reported in
abstract form (Victor et al. 2005). Response amplitude for
some stimuli for a subset of the neurons was previously
described (Blessing et al. 2004; Buzás et al. 2006; Forte
et al. 2006).

Methods

We analysed extracellular recordings of neurons in the
lateral geniculate nucleus of the marmoset Callithrix
jacchus. The vast majority were PC neurones; for purposes
of comparison a small number of magnocellular (MC)
and koniocellular (KC) ‘blue-on’ neurons (KC-bon) was
also recorded. Procedures are approved by the Animal
Ethics Committee of the Victorian College of Optometry,
and conform to the American Society for Neuroscience

and Australian National Health and Medical Research
Council policies on the use of animals in neuroscience
research. Animals were anaesthetized with inhaled
isoflurane (Forthane, Abbott, Sydney, Australia, 1.5–2%)
and intramuscular ketamine (Ketalar, Parke-Davis,
Sydney, 30 mg kg−1) for surgery. A femoral vein and the
trachea were cannulated. Animals were artificially respired
with a 70% : 30% mixture of NO2 : Carbogen (5% CO2

in O2). A venous infusion of 40 μg kg−1 alcuronium
chloride (Alloferin, Roche, Sydney) in dextrose Ringer
solution (Baxter, Sydney) was infused at a rate of
1 ml h−1 to maintain muscular relaxation. Anaesthesia
was maintained during recording with a venous infusion
of sufentanil citrate (Sufenta-Forte; 4–8 μg kg−1 h−1).
Electroencephalogram (EEG) and electrocardiogram
signals were monitored to ensure adequate depth of
anaesthesia.

The EEG signal was subjected to Fourier analysis.
Dominance of low frequencies (1–5 Hz) in the EEG
recording, and absence of EEG changes under noxious
stimulus (tail pinch) were taken as the chief sign of an
adequate level of anaesthesia. Heart rate was likewise
unaffected by this noxious stimulus. We found that low
dose rates in the range cited above were always very
effective during the first 24 h of recording; thereafter
if drifts towards higher frequencies in the EEG record
became evident, they were counteracted by increasing the
rate of venous infusion.

The typical duration of a recording session was 48–72 h.
Additional details of the animal preparation, methods of
visual stimulation, and cell classification are described
elsewhere (Blessing et al. 2004). At the termination of the
recording session the animal was killed with an overdose
of pentobarbitone sodium (80–150 mg kg−1, i.v.).

Data consisted of response to drifting sinusoidal
gratings generated using a VSG Series Three video signal
generator (Cambridge Research Systems, Cambridge,
UK) and presented on a television monitor (Reference
Calibrator Plus, Barco, Kortrijk, Belgium) at a frame rate of
80 Hz and a mean luminance close to 25 cd m−2. Stimuli
were viewed through the natural pupil. Pupil diameter
varied between ∼2–4 mm, yielding retinal illuminance
between 78 and 315 Td. The reader should note that the
relatively small size of the marmoset eye (Troilo et al. 1993)
means that retinal flux will be about 4-fold higher than
for human at a given stimulus intensity. For PC neurons,
responses to red–green chromatic modulation (‘RG’)
and luminance modulation (‘LUM’) were recorded at 10
contrast levels, 0, 0.0156, 0.0312, 0.0625, 0.0937, 0.125,
0.25, 0.375, 0.5 and 1, where a contrast of 1 represents the
maximum deliverable contrast for the chromatic stimulus,
and the maximum deliverable Michelson contrast for the
luminance stimulus. For trichromats, the relative intensity
of the red and green guns of the monitor was set to
provide approximately equal-and-opposite contrast to
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Table 1. Cone contrasts for red–green (RG) and luminance (LUM) stimulus conditions

�7 �7 �13 �13 �20 �20

M (556) L (563) M (543) L (556) M (543) L (563)
RG 0.035 –0.072 0.1245 –0.1257 0. 1756 –0.1813
LUM 1.000 1.000 1.000 1.000 1.000 1.000

Michelson cone contrasts given by red–green (RG) or luminance (LUM) modulation are
shown for the M and L cone types in the �7, �13 or �20 phenotypes. Numbers in
parentheses show the λmax of the M or L cone pigment. Positive values for RG indicate
that modulation from red (phase 0 deg) to green (phase 180 deg) increases cone
excitation; negative values indicates the converse.

Table 2. Summary of parvocellular data sets analysed

Number of datasets
Number Number

Phenotype of animals Opponency of cells LUM RG LUM-high RG-high Total

d543 4 Non-opp 26 25 14 6 2 47
d556 2 Non-opp 15 13 14 8 8 43
d563 1 Non-opp 8 5 4 5 5 19
d543 + d556 + d563 7 Non-opp 49 43 32 19 15 109

�7 1 Non-opp 19 9 9 14 17 49

�13 3 Non-opp 34 29 30 25 22 106
Opponent 18 16 16 13 14 59

�13 3 All 52 45 46 38 36 165

�20 2 Non-opp 6 4 5 1 4 14
Opponent 30 27 26 21 20 94

�20 2 All 36 31 31 22 24 108

All 13 All 156 128 118 93 92 431

Dichromatic phenotypes are designated d543, d556, or d563 depending on the maximal absorption of the L/M
photopigment (543, 556 or 563 nm); trichromatic phenotypes are designated �7, �13 and �20 indicating narrow
(7 nm), medium (13 nm) and wide (20 nm) separation between their medium to long-wavelength photopigments.
Embolded lines are subtotals.

the M and L cones predicted by prior genetic analysis
(using PCR–restriction fragment length polymorphism)
of the cone opsin-encoding genes (for details see Blessing
et al. 2004). The cone contrasts delivered by these
stimuli are shown in Table 1. For dichromats the relative
intensity of the red and green guns was set at the ‘silent
substitution’ point for the single class of M/L cone
present. This strategy was chosen to give the best functional
equivalent of an isoluminant red–green stimulus across
the six phenotypes tested. For simplicity we assume that
M and L cones are present in equal proportions in the
retina of trichromatic female animals. Behavioural data
(Tovée et al. 1992) and limited anatomical data from the
marmoset fovea (Bowmaker et al. 2003) are consistent with
this assumption.

Data from MC and KC blue-on cells comprised
responses to the LUM stimulus, responses to an achromatic
contrast series presented at the same contrast levels as the
LUM stimulus and, for KC blue-on cells, responses to short
wavelength-sensitive (S) cone-isolating gratings (SWS).
The SWS grating delivered ∼0.66 Michelson contrast to
the S cone and less than 0.04 Michelson contrast to the

M/L class cones. See Blessing et al. (2004) and Forte et al.
(2006) for additional details related to colour calibration,
and genetic determination of cone complements.

The PC cells were classified as ‘opponent’ if the response
amplitude to chromatic modulation at maximal contrast
was greater than 10 impulses s−1, and was also greater than
the response amplitude when the M and L cones were
modulated in-phase at the equivalent cone contrast (for
example, ∼25% luminance contrast (0.1245 + 0.1257) for
the �13 phenotype). However, the reader should note that
the PC cells displayed a continuum of opponent properties,
so this classification is made for the purpose of analysis,
rather than implying the existence of discrete opponent
and non-opponent cell classes.

Stimulation protocol

For each neuron, the spatial frequency and orientation
yielding maximum (‘optimum’) response to a drifting
luminance modulated grating were first determined.
Data were collected under four conditions: luminance
modulation at low (< 0.02 cycles deg−1) spatial frequency
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(‘LUM’), low spatial frequency red–green chromatic
modulation (‘RG’), optimum spatial frequency and
orientation luminance modulation (‘LUM-high’), and
optimum spatial frequency and orientation red–green
chromatic modulation (‘RG-high’). Stimuli were normally
vignetted with a 4 deg circular aperture. A set of responses
to the 10 contrasts under one of these conditions will be
designated a ‘dataset’ (Table 2). The temporal frequency
of the stimulus was the same for all measurements on any
given neuron. For nearly all (143/156) PC neurons studied,
the temporal frequency was between 3.5 and 4.5 Hz (one
neuron was studied at 5 Hz, six at 6 Hz, two at 7 Hz,
and four at 8 Hz). Temporal frequency range for MC and
KC cells was similar (26 datasets at 4 Hz, 2 at 5 Hz, 1 at
5.5 Hz, 10 at 6 Hz, and 3 at 8 Hz). Spatial frequency tuning,
orientation tuning, and contrast sensitivity in subcortical
neurons show little dependence on temporal frequency in
this range (Frishman et al. 1987; Kremers et al. 2001; Forte
et al. 2006).

For PC cells each stimulus was presented in N trial = 3
blocks of ascending contrasts (approximately 3.5 s each,
containing N cycle = 13 complete periods of a 4 Hz stimulus
at one contrast). This typically provided a total of Ntrial ×
Ncycle = 39 recorded periods of responses to each stimulus.
Stimulation trials were interleaved with blank intervals
(during which the display was held at mean luminance). In
some (126/431) datasets, data were collected during these
blanks (N trial = 30), typically providing Ntrial × Ncycle =
390 periods of data. In others, data were collected during
blank periods only at the end of each contrast series,
providing Ntrial × Ncycle = 39 periods of data. In the latter
experiments the blank intervals between stimulation trials
were of shorter duration (approximately 0.5 s each). These
two experimental protocols yielded similar results, and the
data are therefore pooled. Data collection normally began
at least 125 ms following stimulus onset. We analysed each
data set for evidence of non-stationarity (Appendix 1),
but did not see any sign of contrast adaptation effects at
the beginning of the collection period. The stimulus and
non-stationarity analysis for MC and KC-bon cells were the
same as for PC cells with two exceptions. First, about half of
the datasets (19/42) comprised two contrast blocks where
each contrast condition was presented for 3–5 s. Second,
responses were only recorded at or near optimal spatial
frequency for the majority of these cells (34/36, 95%).

Data analysis

Measures of response and response variability. Our
primary response measures were the Fourier components
of the response from each stimulus cycle. We denote the
kth Fourier component of the response during cycle ncycle

of trial ntrial by zk(ntrial, ncycle). Thus,

zk(ntrial, ncycle) = bk

P

∑
t

e−2π i tk/P (1)

where the summation is over all spike times that occurred
on trial ntrial during stimulus cycle ncycle, and P is the
period (i.e. the duration of each stimulus cycle). Thus,
the summation in eqn (1) includes spikes that occur
at times t between (ncycle − 1)P and ncycle P . We chose
normalizing constants b0 = 1 so that the 0th Fourier
coefficient corresponds to the mean firing rate, and bk = 2
for k �= 0 so that the magnitude of the higher Fourier
coefficients zk(ntrial, ncycle) correspond to the amplitude
of the rate modulation at the frequency fk = k/P . This
analysis was carried out for k = 0 (the mean firing rate),
k = 1 (the fundamental response, at or close to 4 Hz),
k = 2, and k = 20 (close to the frame rate of the display,
80 Hz).

The mean Fourier response component at the harmonic
k, zk , is determined by the (vector) grand average of
zk(ntrial, ncycle) across all cycles and trials:

zk = 1

Ntrial Ncycle

Ntrial∑
ntrial=1

Ncycle∑
ncycle=1

zk(ntrial, ncycle) (2)

The variability V k of the kth Fourier component was
quantified by the variance of Zk(Ntrial Ncycle) across all trials
and cycles, as estimated by:

Vk = P

Ntrial Ncycle − 1

Ntrial∑
ntrial=1

Ncycle∑
ncycle=1

|zk(ntrial, ncycle) − zk |2

(3)

Note that we have included a factor of P, the stimulus
period, so that variances have units of (impulses2 s−1).
With this convention, the expected variance of the DC
component V 0 of a Poisson process is equal to the mean
firing rate, z0.

We examined each dataset (see Appendix I for details)
for evidence of a systematic change in responses across
trials of the same contrast, or evidence of adaptation within
trials. Of the 523 PC datasets screened, 92 were excluded
on the basis of a change in response amplitude across
trials, yielding the 431 datasets described above. A slightly
larger proportion of datasets was excluded for MC cells
(25 screened, 6 excluded) and KC-bon cells (42 screened,
19 excluded).

For each stimulus set, we compared variance at the
highest contrast with variance at the lowest contrast, using
an F-statistic with bk Ncycle(Ntrial − 1) degrees of freedom
in both the numerator and the denominator. We also used
a standard non-parametric method, the jackknife (Efron,
1982), to estimate confidence limits on the variance.
The jackknife estimates confidence limits (and bias) by
comparing the analysis of the full dataset with an analysis
of a dataset in which one sample has been deleted.
As expected from a non-parametric method, confidence
limits obtained by the jackknife varied more from contrast
to contrast within each dataset, but otherwise agreed with
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those obtained from the F-statistic. We also assessed the
shape of the distribution of response estimates around
their mean, by calculating a normalized ratio of the major
and minor axes of the best-fitting Gaussian:

Iellipse = dmax − dmin

dmax + dmin

(4)

where dmax and dmin are, respectively, the maximum
and minimum ellipse diameter. Estimates of I ellipse were
debiased, and confidence limits were obtained, via a

Figure 1. Analysis of the fundamental (first
harmonic) response of an opponent parvocellular
neuron in a?20 animal to red–green chromatic (RG)
and luminance (LUM) flicker
A and B, post-stimulus histograms and rasters of
responses to gratings at contrast of 0, 0.25 and 1.0.
C, fundamental Fourier component z1(ntrial, ncycle) of
responses to each stimulus cycle, for zero contrast (blue
or grey) and a contrast of 1.0 (red or black). Each point’s
position in the complex plane represents a value of
z1(ntrial, ncycle) (eqn (1)). The outer ellipse is the 1/e level
curve of the Gaussian with mean and variance that
match those of the data. The inner ellipse is a 95%
confidence region on the average response, determined
by the Hotelling T2 test (Anderson, 1958). D, amplitude
of mean first harmonic response

∣∣z1(C )
∣∣ (eqn (2)) as a

function of contrast C. Error bars represent 95%
confidence limits, as calculated by T 2

circ (Victor & Mast,
1991). E, variability of the first harmonic response,
plotted as

√
V1(C ), at each contrast C. Error bars

represent 95% confidence limits, as calculated by an F
statistic (see Appendix I).

jackknife based on individual periods. No substantial
deviation from circularity was found (I ellipse typically
< 0.1; see for example Fig. 1C). This circularity simplifies
the subsequent analysis. If the responses were distributed
asymmetrically, one could not characterize its spread
by a single parameter (i.e. the size of a best-fitting
circular Gaussian); one would instead have to use at
least three parameters – e.g. major axis, minor axis and
tilt.

The validity of these statistical tests requires that
response estimates from separate cycles can be regarded
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as independent. Responses to adjacent cycles may not
be completely independent (e.g. since a spike at the
end of one cycle has a refractory period that extends
into the next cycle). Therefore, we also repeated the
analysis by calculating Fourier components and their
variances from sets of four adjacent cycles, and obtained
substantially similar results. This correspondence (Victor
& Mast, 1991), and the consistency of confidence limits
based on parametric (F-statistics) and the jackknife,
supports the use of the parametric statistics below.

Empirical variance–mean relationship

For each harmonic k and each spatio-chromatic
stimulation condition (LUM, RG, LUM-high RG-high),
we sought an empirical relationship between the mean
Fourier amplitude |zk(C)| and its variability Vk(C), as
contrast C varied. The goal of the analysis was to provide
a way to interpolate the variance–mean relationship
and thereby ‘read off ’ the variance that corresponds to
an arbitrary response size, for each cell. Pilot analysis
indicated that this relationship was not always described by
simple functional relationships (e.g. Vk(C) proportional to
|zk(C)| or Vk(C) independent of |zk(C)|). Therefore, we
chose to use a variety of functional forms, each of which
was an instance of

v(z; a, b, c, γ ) = a + b|z|γ + c|z|2γ (5)

As described in Appendix I, we used a hierarchical
procedure in which we first sought fits in which one or
more of the terms of eqn (5) were omitted, or with γ = 1,
and the general form of eqn (5) was only used if simpler
functional forms failed. This approach avoids overfitting
to a four-parameter form if a simple one suffices, and also
avoids biasing an interpolation by underfitting, i.e. forcing
the data into a form that it does not fit.

Empirical contrast–response function

For each harmonic k and each spatio-chromatic
stimulation condition, we determined an empirical
relationship between the mean Fourier amplitude
|zk(C)| and the nominal stimulus contrast C. As with
the variance–mean relationship, our goal was not a
mechanistic model, but merely to provide a robust estimate
of the contrast C needed to evoke a particular response
amplitude |zk(C)|, from the measured set of responses (10
contrasts). We used a generalized Naka-Rushton (Naka &
Rushton, 1966) relationship

r(C ; a, b, γ, η) = a + b
Cγ

1 + (ηC)γ (6)

with one or more of the parameters a, b, γ and η held fixed
to avoid overfitting.

Results

Responses of 156 PC neurons in 13 marmosets were
studied, yielding 523 datasets (not all neurons were
studied under all four conditions). After elimination of
datasets that had statistical evidence of non-stationarity,
431 datasets were available for quantitative analysis (see
Table 2). The population included dichromats with all
three of the long-wavelength alleles (hereinafter, these
dichromatic (d) phenotypes are designated d543, d556
and d563), and trichromats with all three pairs of
the long-wavelength alleles (designated according to
the spectral separation (�) between the medium and
long-wavelength pigments: �7, �13 or �20). Note that
under the criteria we used, none of the 19 cells recorded
in the �7 animal were classified as cone-opponent.

Responses of 19 magnocellular neurons and 17
koniocellular (blue-on) neurons in 14 marmosets were
studied. Eleven of these animals were also in the group
described above. The goal of this analysis was to establish
whether the response amplitude and variance relationships
show substantial differences among afferent cell classes,
rather than to study details related to the chromatic
properties of the stimulus. Results for MC and KC-bon
cells were therefore pooled across stimulus conditions, and
across colour vision phenotypes.

Variance as a function of contrast

Figure 1 illustrates analysis of the fundamental response
component of an opponent parvocellular neuron,
elicited by sinusoidal red–green (RG) and luminance
(LUM) flicker. Conventional post-stimulus histograms
and rasters are shown in panels A and B for contrasts
of 0, 0.25 and 1.0. Panel C shows the cycle-by-cycle
measurements of the fundamental Fourier components
(e.g. as in Croner et al. 1993; Kremers et al. 2001) for
the highest contrast stimulus, and in the absence of
stimulation. This cloud of the cycle-by-cycle Fourier
components (Fig. 1C) is a graphical indication of the
variability of the fundamental Fourier component.
Note that each cloud is very nearly circular. Since there
were 39 cycles of C = 1.0 but 390 cycles of C = 0, there
appear to be more outliers in the latter case. However,
when response variability is quantified (eqn (3)), there
is no difference in variability of the fundamental
response between high-contrast stimulation and
low-contrast stimulation (radii of the circles in panel C).
Responses grew approximately linearly with chromatic
contrast (panel D, left). Responses to luminance contrast
(panel D, right) were somewhat smaller, and showed
mild evidence of saturation. There are small differences
in response amplitude for the zero contrast LUM and
zero contrast RG conditions, although these stimuli are
identical. This can be attributed to the fact that the RG and
LUM data collection were done in separate blocks, and
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the difference is within the limits set by our statistical tests
for response stationarity and independence (Appendix
1). There was no significant change in variability as a
function of contrast (Fig. 1E) for this cell.

Individual cells showed a substantial range of behaviour
(Fig. 2). As is evident from the confidence limits on

Figure 2. Scattergrams of variance at
C = 1.0 versus variance at C = 0 for the DC
response (f0), left column, and the
fundamental Fourier component (f1), right
column
Top row, all dichromat neurons. Second row,
non-opponent neurons from all trichromats.
Third row, opponent neurons from �13
trichromats. Fourth row, opponent neurons
from �20 trichromats. Variances plotted are V0

and V1, as defined by eqn (3). Error bars
represent 95% confidence limits on the
variance estimates for each neuron, as
calculated by F statistics (see Appendix 1).
While there is considerable scatter across the
population, the average tendency is that of
greater variance at the high contrast. Note that
C = 1 for a chromatic stimulus has a much
lower cone contrast than a C = 1 luminance
stimulus, depending on phenotype (Table 1).

the variance estimates, much of this diversity across the
population reflects true cell-to-cell differences, rather
than measurement error. The ratios of variance at high
versus low contrast for individual neurons were distributed
approximately in a Gaussian fashion, with a standard
deviation of a factor of 1.73 (f 0) and 1.58 (f 1). However,
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these distributions were not centred around 1, the
expectation for purely additive noise. Rather, there was
a modest tendency in the direction of increased variance
under high-contrast conditions. This is evident in Fig. 2,
where each ‘cloud’ of data points appears slightly displaced
above the 1 : 1 line. The average change in variance
between high contrast and low contrast conditions was
a factor of 1.40 (geometric mean; 95% confidence limits,
1.32–1.49) for f 0, and a factor of 1.38 (1.30–1.46) for f 1.
There was no significant difference between cell subgroups
(dichromats, non-opponent cells in trichromats, and
opponent cells in trichromats), or between stimulation
conditions (luminance versus chromatic, low spatial
frequency versus high spatial frequency).

We also examined the response variability at higher
harmonics. Behaviour at f 2 was similar to that at f 0 and
f 1: the variance at high contrast was greater than at low
contrast. On average, the variance increased by a factor
of 1.54 (1.46–1.63) across cells, and a standard deviation
of a factor of 1.55 for distribution of ratios in individual
cells. Behaviour at f 20 was different. As this frequency
(80 Hz) was equal to the CRT monitor frame frequency
in nearly all datasets, there was substantial luminance
flicker at this frequency even when no stimulus was
present. Consistently, in cells recorded at high visual field
eccentricities we often observed overt phase-locking to the
monitor frame rate at high LUM contrasts (Derrington &
Fuchs, 1979; Derrington & Lennie, 1984; Williams et al.
2004). This might be expected to reduce the variance for
the 80 Hz Fourier component. However, at this frequency
there was a somewhat greater increase in variance between
high and low contrast conditions: a factor of 1.83
(1.63–2.06) across all cell subgroups and conditions.
This increase was especially large in dichromats (3.52,
confidence limits 2.09–5.91) and non-opponent cells in
trichromats (4.95, confidence limits 1.79–13.68) during
stimulation with optimal spatial frequency luminance
gratings. These increases in variance are difficult to analyse;
they probably represent an interaction between driving
by the low-frequency applied contrast signal and the
high-frequency contrast signal of the raster display. We
do not consider them further.

Before presenting the details of response variability in
PC cells, we briefly describe some predictions of simple
statistical models for spike trains. Consider the responses
of a neuron to repeated presentations of a stimulus. The
response to each presentation of the stimulus is a spike
train, i.e. a sequence of events in time. Identical stimuli
do not necessarily produce identical spike trains: each
spike train shows some apparently random variation.
Nevertheless, given a sufficiently large number of trials, the
average number of spikes per unit time, a deterministic rate
function r(t), can be estimated (although the reader should
note that precise estimation of r(t) is not as straightforward
as it might seem: Kass et al. 2005). The deterministic rate

function r(t) characterizes the ‘average’ response, but does
not characterize response variability. In the present study,
we characterize response variability by comparing Fourier
components estimated from each stimulus presentation.
Since the Fourier sequence is a linear transformation
of the data, the mean value of Fourier estimates from
individual trials is the same as the value that would have
been estimated from all of the spikes accumulated across
trials. Accordingly, the mean value also converges on the
Fourier components of r(t). Consequently, the variability
of estimates of Fourier components on individual trials
about their mean can describe response variability – and
bypasses the need to estimate r(t) directly.

To interpret measures of variability in spike trains, we
use simple models of the processes which give rise to
spike trains, as reference points or ‘benchmarks’. In a
Poisson process, the occurrence of a spike at any given
time is independent of the occurrence of a spike at any
other time. The term ‘Poisson’ usually implies a homo-
geneous Poisson process, i.e. one for which the under-
lying rate function r(t) is constant. However, responses
to periodic modulation typically show periodic variation
in response rate. Thus, a better model in this case is a
modulated Poisson process: one in which the underlying
rate function r(t) is time-varying, but the occurrences
of spikes at different times are statistically independent
events.

The statistical properties of a Poisson process (homo-
geneous or modulated) are entirely determined by the
underlying rate function r(t). For a homogeneous Poisson
process, the spike count variance (V 0) is equal to the
mean spike rate (that is, the zero-order Fourier component
z0). For a modulated Poisson process, the equivalence of
spike count variance and mean (V 0 = z0) also holds, a
well-known fact that is a consequence of the time-rescaling
theorem (Brown et al. 2002). Furthermore, we show in
Appendix II that a Poisson model also yields a simple
relationship between variance and mean for non-zero
Fourier coefficients: Vk = 4z0 (for k > 0). This new result
enables a principled interpretation of the variance of
Fourier components.

The variance : mean ratio, known as the Fano factor
(Teich, 1989), can be used to determine whether a spike
train is more variable than Poisson (variance : mean > 1),
or less variable. For a linear neuron with a modulated
Poisson output, in which the mean firing rate z0 does not
change in the presence of sinusoidal stimulation, one anti-
cipates that the Fourier component variance will also not
change as a function of contrast, as has been observed
(Croner et al. 1993; Kremers et al. 2001; Sun et al. 2004).
However, for a Poisson neuron with a firing threshold,
the mean firing rate z0 will be contrast-dependent – and
thus, one anticipates an increase in response variance as
contrast increases, according to V0(C) = z0(C) for the
DC response, or Vk(C) = 4z0(C) for the kth Fourier
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component (Appendix II). The reader should note that
this analysis depends on the relationship between the
individual spike trains and r(t), but not the relationship
of r(t) to the stimulus – so it is equally applicable to linear
and non-linear models for the deterministic rate function
r(t).

A Poisson process is the most random (i.e. highest
entropy) statistical model consistent with a given under-
lying rate function r(t) (Rieke et al. 1997), and thus
serves as a useful null hypothesis and basis for comparison
with experimental data. Real neurons typically have a
refractory period of 1–2 ms, which means that spike events
become more regular or ‘clock-like’ when firing rates
are high. In this situation the variance is lower than
anticipated from a Poisson process (Fano factor < 1). Sub-
cortical visual neurons have been successfully modelled
using ‘integrate-and-fire’ dynamics (Knight, 1972; Reich
et al. 1998; Smith et al. 2000) – i.e. a spike can only
occur when a sufficient input signal has accumulated over
time. Integrate-and-fire dynamics also yield firing patterns
that are more clock-like than Poisson processes, and will
also have a reduced variance compared with Poisson
predictions.

A refractory period and integrate-and-fire dynamics
produce correlations that are largely negative (i.e. a spike
event reduces the probability of a subsequent spike event).
The opposite situation (positive correlations among spike
events) can also arise as a result of clustered or ‘bursting’
spike activity (Smith et al. 2000; Reinagel & Reid, 2002;
Krahe & Gabbiani, 2004). Such bursts can produce spike
trains with greater variability than Poisson processes – even
though these spike trains are less random than a Poisson
process with the same rate function r(t). The net result
of these opposing influences on response variability is
unknown, and this is the main question we address in
the following.

Figure 3 compares observed behaviour of PC cells to the
Poisson prediction. As noted above, the Poisson prediction
has a slope of 1 for V 0 and a slope of 4 for V 1 and V 2. On
the left, response variance for V 0, V 1 and V 2 is plotted as
a function of mean firing rate z0 when stimulus contrast
is 0. The measured variances tend to lie above the Poisson
prediction. The overall variance: mean ratio (V k/z0,
calculated as the slope of a regression line constrained to
pass through the origin) is 1.23 (1.18–1.27) for V 0, 5.14
(5.01–5.27) for V 1, and 5.05 (4.93–5.16) for V 2. These all
exceed the Poisson prediction by a Fano factor of about
1.25. On the right, variability is assessed at maximum
contrast (C = 1). Here, variances are less than the Poisson
prediction: the variance : mean ratios are 0.73 (0.69–0.78)
for V 0, 3.16 (3.00–3.32) for V 1 and 3.33 (3.17–3.48) for
V 2. In summary, at zero contrast, variability is greater
than Poisson expectations (a Fano factor of about 1.25),
while at high contrasts, variability is less than expected
from a Poisson process with the same number of spikes

(a Fano factor of about 0.75). The transition between
these behaviours occurs near an intermediate contrast
of C = 0.25 (not shown), where the regressions through
the origin have slopes that are indistinguishable from
the Poisson prediction. Analogous decreases in variability
(albeit at much lower spiking rates) were previously
demonstrated for non-midget ganglion cells recorded in
vitro (Berry et al. 1997; Uzzell & Chichilnisky, 2004).

As contrast increases, the mean firing rate of neurons
whose spontaneous firing rate is low will increase –
because increases in firing during the peak of the response
cannot be balanced by decreases in firing below zero.
Consequently, the range of mean firing rates seen at high
contrast (right column of Fig. 3) is greater than the range
seen at low contrasts (left column of Fig. 3). Interestingly,
the neurons whose mean firing rates are highest have a
response variability that is disproportionately small. This
can be seen by the positive intercept and more shallow
slope of the unconstrained regression line, compared with
the Poisson prediction.

In summary, responses to low contrast tend to be more
variable than predicted by a Poisson process. Responses to
high contrast (especially those that generate more spikes
because of rectification effects) tend to be less variable than
predicted by a Poisson process.

Variance as a function of response size

The foregoing analysis revealed how changing the inputs
to a parvocellular neuron (i.e. stimulus contrast) can
influence response variance. We now focus on how
response variance depends on response size, rather than
stimulus contrast. The goal of this analysis was to
reveal how intrinsic properties of parvocellular neurons
can influence response variance. Since the response
amplitudes covered different ranges for different stimulus
conditions, we proceeded as follows. For each neuron and
each harmonic k, we determined the range of response
amplitudes |zk | elicited by the full range of luminance
and chromatic contrast stimuli used. If these ranges over-
lapped, we chose the response size that was at the midpoint
of this overlap. We then used eqn (5) and its variants,
as described in Methods, to estimate the variance for
chromatic and luminance stimulation at that response size.
Thus, the neuron’s response variances were compared for
luminance and chromatic stimuli that elicited the same
response amplitude. This procedure also guaranteed that
the chosen response amplitude for both stimuli was in
the middle of the response range for that neuron. If the
luminance and chromatic response ranges did not over-
lap, no further analysis was performed on this neuron
for this harmonic. As described in Methods, this variance
was determined by reading out the empirical relationship
between variance V k and response amplitude |zk | at
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this overlap amplitude, eqn (5). The result is shown in
Fig. 4.

For nearly all cell types (parvocellular neurons in
dichromats, non-opponent neurons in all trichromats, and
opponent neurons in �13 trichromats), there was little
difference between response variance under RG and LUM
conditions. However, for most opponent neurons in �20
trichromats (Fig. 4, bottom row, right panel), the variance
in the f 1 response to RG stimulation was smaller than
the response to LUM stimulation. Across this population,
the variance ratio (i.e. the variance for RG divided by the
variance for LUM) was 0.89 (p < 0.01, two-tailed, paired
t test). The f 2 response (data not shown) showed the
same phenomenon (variance ratio of 0.90, p < 0.05). In
contrast (Fig. 4, bottom left), there was no difference in the
variance ratio for the DC (f 0) response (variance ratio 1.02,
p > 0.5). For high spatial frequency stimuli (LUM-high

Figure 3. Response variance V0, V1 and V2

for the DC response and the first two
harmonics as a function of the mean firing
rate z0

Left column, Contrast = 0; right column,
Contrast = 1. Data from all neurons, under all
spatial and chromatic conditions. Dashed line,
Poisson prediction (see text and Appendix II).
Continuous line, linear (observed) regression.

versus RG-high, data not shown), trends were in the same
direction, but were statistically insignificant (ratio of 1.06
at f 0, 0.94 at f 1, 0.98 at f 2, all p > 0.15). For opponent
neurons in �13 trichromats, there was no indication of
a lower variance under chromatic conditions; indeed, the
trend was in the opposite direction: variance ratios were
in the range 1.01–1.13 (p > 0.02), but there were fewer
than six neurons available for pair-wise comparisons.
Dichromats and non-opponent neurons in trichromats
also showed a weak trend in the direction of greater
variance under chromatic than luminance conditions:
pooled ratios 1.05 at f 0 (p > 0.05), 1.09 (p < 0.05) at f 1,
and 0.95 (p > 0.05) at f 2.

Figure 5 compares variances under RG and LUM
conditions across the entire range of response sizes. Here,
at intervals of 2 impulses s−1, we determined the variance
(from the empirical variance versus mean curves of eqn
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(5)) for each neuron, and averaged across the population.
For each criterion response, neurons were only included
if they attained that response under both luminance and
contrast conditions (but typically, for unequal contrasts).
In this way, the curves represent paired comparisons.
Average variances are only plotted for contrasts at which
at least six neurons contributed. As seen in Fig. 5, in �20

Figure 4. Comparison of response variance Vk at
constant response size under RG (abscissa) and
LUM (ordinate) conditions for the DC response
(f0), left column, and the fundamental Fourier
component (f1), right column
The response size chosen for comparison is the midpoint
of the range of overlap of the RG and LUM response
amplitudes. Top row, all dichromat neurons. Second
row, non-opponent neurons from all trichromats. Third
row, opponent neurons from �13 trichromats. Fourth
row: opponent neurons from �20 trichromats. For f1

responses in �20 trichromats, there is a larger variance
under LUM than RG conditions. There is a trend in the
opposite direction for the other cell types. Variances
plotted are V0 and V1, as defined by eqn (3) and
interpolated by eqn (5), at constant response size. Error
bars represent 95% confidence limits on the variance
estimates for each neuron, and include the uncertainty
of the variance estimates and the model error of the
empirical variance versus mean relationship, eqn (5).

animals the opponent neurons showed a larger variance
for LUM than RG across the entire response range for
f 1 (p < 0.025 for all but the largest response amplitude).
At the largest amplitude, an even larger difference is
present, but did not reach significance because fewer
cells were available to make the comparison. No such
difference was seen for f 0, or for the opponent neurons
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in �13 animals. In the dichromats and the non-opponent
neurons in trichromats, there was a weak trend in the
opposite direction (i.e. larger variance for RG than LUM)
at the larger response sizes; this trend was not statistically
significant.

The left column of Fig. 5 provides a second opportunity
to test the Poisson prediction that the spike count

Figure 5. Comparison of response variance Vk at as a function
of response size |zk| for RG and LUM conditions for the DC
response (f0), left column, and the fundamental Fourier
component (f1), right column
Top row, all dichromat neurons. Second row, non-opponent neurons
from all trichromats. Third row, opponent neurons from �13
trichromats. Fourth row, opponent neurons from �20 trichromats.
Variances plotted are V0 and V1, as defined by eqn (3) and
interpolated by eqn (5). For f1 responses in �20 trichromats, there is a
larger variance under LUM than RG conditions at all response sizes. For
f0, the Poisson prediction V0 = z0 is also shown. All variances are
somewhat greater than the Poisson prediction.

variability is equal to the mean spike count. It summarizes
the variability of the firing rate (f 0) as a function of the
size of the mean response (V 0). This analysis is distinct
from that of Fig. 3 in three ways. Firstly, it is based on a
smoothed variance : mean curve, interpolated by eqn (5),
rather than single data points. Secondly, it considers only
low and moderate response modulation depths (which can
be achieved either with luminance or chromatic stimuli).
Finally, the results are subdivided by cell subgroup. For
all subgroups of cells, the observed variance was greater
than the Poisson prediction, across all responses sizes
(p < 0.01 at most points). This result is consistent with the
analysis of the data shown in Fig. 3, despite the differences
in approach. Both analyses show an increase in variance
with response contrast, and supra-Poisson variance in
parvocellular cells at low contrast.

Dependence on cone contrast

Due to the nature of their inputs, non-opponent neurons
are expected to attain a criterion response size at lower cone
contrasts when cone signals reinforce (LUM) than when
cone signals are in antiphase (RG). Conversely, opponent
neurons are expected to attain a criterion response size at
lower cone contrasts when cone signals are in antiphase
(RG), than in the LUM condition. Thus, one possibility
is that the pattern of variance observed in Figs 4 and 5
is related to the differences in cone contrasts required to
attain equal responses under RG and LUM conditions.

To test this, we determined the cone contrasts which
produced the same response amplitude under RG and
LUM conditions. We proceeded as follows. First, we fitted
the observed contrast–response function to a generalized
Naka-Rushton (Naka & Rushton, 1966) relationship
(eqn (6)). Then, at the criterion response size |z1|,
we inverted this relationship (eqn (16)) to obtain the
corresponding stimulus contrast C. The stimulus contrast
C was converted to cone contrasts �M

M
and �L

L
(Table 1).

The two cone contrasts were then summarized by

cavg = 1

2

( |�M|
M

+ |�L|
L

)
The results are shown in Fig. 6. As expected from the
definition of opponency, for most opponent neurons
cavg(LUM) > cavg(RG) (Fig. 6A). Moreover, the opponent
neurons in the �20 animals are the only neurons for which
cavg(LUM) is more than twice as large as cavg(RG).

Figure 6B compares the variance ratio V1(RG)
V1(LUM)

to the

cone contrast ratio,
cavg(RG)

cavg(LUM)
. It demonstrates a tendency

towards higher variance under conditions of higher cone
contrast. However, even at a constant cone contrast ratio,
the �20 opponent neurons show a lower variance ratio

V1(RG)
V1(LUM)

than the �13 opponent neurons. These data
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suggest that for opponent neurons the lower response
variability for RG modulation is a result of the opponent
interaction between cone inputs rather than a higher
signal : noise ratio in the cone inputs prior to their
combination.

Responses of magnocellular and koniocellular
blue-on cells

To understand whether the principles we have established
are likely to apply to other cell groups in the subcortical

Figure 6. Dependence of response variance on core contrast
A, cone contrasts cavg = 1

2 ( |�M|
M + |�L|

L ) at the same criterion response
amplitude as shown in Fig. 4 for RG and LUM conditions. The straight
line corresponds to cavg(RG) = cavg(LUM). B, relationship of variance

ratio V1(RG)
V1(LUM) to cone contrast ratio cavg(RG)

cavg(LUM) . Opponent neurons in

�20 animals have a lower value of V1(RG)
V1(LUM) than opponent neurons in

�13 animals, even at the same cone contrast ratio. Note that
Contrast = 1 for a chromatic stimulus has a much lower cone contrast
than a Contrast = 1 luminance stimulus, depending on phenotype
(Table 1).

visual system, we analysed responses of 19 magnocellular
cells and 17 blue-on cells. As fewer cells were available, we
restricted our analysis to the basic relationship of response
amplitude and response variance, without regard to
chromatic conditions of stimulation, or the colour vision
phenotype of the animals. Histological reconstruction of
the recording location of 10 of the blue-on cells showed the
great majority (8/10, 80%) were located in koniocellular
layer K3 between the parvocellular and magnocellular
layers (Ding & Casagrande, 1997; White et al. 2001).
For simplicity in the following we therefore refer to this
population as koniocellular blue-on cells.

Figure 7A and B shows the response of an example
magnocellular neuron to drifting LUM gratings of
increasing contrast. Figure 7C and D shows similar data
from a blue-on koniocellular cell in response to drifting
SWS gratings. For the magnocellular cell, typical high
contrast gain and saturation at low contrast is present,
along with evident synchronization to the monitor refresh
(small vertical arrows, Fig. 7A). Synchronization to the
monitor refresh at high contrast was present in 17/19 of
the magnocellular cells, but was much less prevalent in
parvocellular and koniocellular cells. Both the MC and the

Figure 7. Analysis of the fundamental (first harmonic)
responses of a magnocellular (MC) cell to luminance
modulation, and of a koniocellular (KC) blue-on cell to
short-wavelength-sensitive (SWS) cone-isolating modulation
A and C, post-stimulus histograms and raster plots of responses to
gratings at contrast of 1.0. The upper panels in B and D show
amplitude of mean first harmonic response

∣∣z1(C )
∣∣ (eqn (2)) as a

function of contrast C . Error bars represent 95% confidence limits, as
calculated by T 2

circ (Victor & Mast, 1991). The lower panels show

variability of the first harmonic response, plotted as
√

V1(C ), at each
contrast C. Error bars represent 95% confidence limits, as calculated
by an F statistic (see Appendix 1).
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koniocellular blue-on cells show a weak trend towards an
increase in response variance as contrast increases.

Figure 8, analogous to Fig. 2, compares response
variance at C = 1 to response variance at C = 0 across
the population of koniocellular blue-on cells (Fig. 8A and
B) and magnocellular cells (Fig. 8C and D). As in the
parvocellular population, responses of magnocellular and
koniocellular blue-on cells to high contrasts tend to be
more variable than responses at low contrast. The response
variability for koniocellular blue-on and magnocellular
neurons overlaps with an envelope of the corresponding
data of parvocellular cells (shaded regions, Fig. 8), both
in overall size and in dependence on contrast. For the
population of 22 koniocellular blue-on cells, the variance
ratio had a geometric mean (and 95% confidence limits)
of 1.58 (1.13–2.19) at f 0 and 1.58 (1.19–2.09) at f 1. For
the population of 19 magnocellular cells, the variance
ratio had a geometric mean (and 95% confidence limits)
of 2.37 (1.47–3.84) at f 0 and 2.09 (1.25–3.50) at f 1.
(Confidence limits are large because of the relatively small
number of cells, and the variability within the sampled
population.)

Figure 9, analogous to Fig. 3, shows how response
variability V k of f 0, f 1 and f 2 depend on mean firing rate z0,
and compares this with the Poisson predictions of Vk = zk

(for k = 0), and Vk = 4z0 (for k > 0). The behaviour of the
magnocellular and koniocellular blue-on cells is broadly
compatible with that of parvocellular cells, but there are

Figure 8. Scattergrams of variance at C = 1.0
versus variance at C = 0 for the DC response (F0),
left column, and the fundamental Fourier
component (F1), right column
Responses of magnocellular (MC) cells are shown in A
and B. Responses of koniocellular (KC) blue-on cells are
shown in C and D. Variances plotted are V0 and V1, as
defined by eqn (3). Error bars represent 95% confidence
limits on the variance estimates for each neuron, as
calculated by F statistics (see Appendix 1). Values are
pooled across chromatic stimulation conditions for MC
and KC blue-on cells. The shaded area in each graph
shows an envelope of PC cell responses from Fig. 4A.
Outliers from the PC distribution were removed by
iterative (3x) enclosure with a convex hull and removal
of points at the hull vertices. Note that the majority of
points for both MC and KC blue-on cells show greater
variance at C = 1 than at C = 0, and thus lie within the
PC cell envelope.

differences in the details. In contrast to the parvocellular
data, the variance versus mean firing rate relationship for
C = 0 is sub-Poisson (slope less than Poisson prediction
at p < 0.05) for f 0 in magnocellular cells. The same is
true for f 1 and f 2 in both magnocellular and koniocellular
blue-on cells (left panels). At C = 1 (right panels), variance
is further reduced below Poisson expectations for f 0, f 1 and
f 2. This reduction is most obvious for magnocellular cells
(approximately 25% of the Poisson prediction) but is also
apparent for koniocellular blue-on cells (approximately
70% of the Poisson expectation). Some of the reduction
in variance seen in magnocellular cells may be related to
synchronization to the monitor refresh.

In summary, magnocellular and koniocellular blue-on
cells show on average lower variability than parvocellular
cells, and many show sub-Poisson variability at all stimulus
contrasts. However, the way that variance changes with
firing rate across contrasts is common to all cell classes:
all cells show a reduction in Fano factor as contrast
increases. Thus, responses become slightly more variable
with increasing contrast, yet they drop below the Poisson
prediction.

Discussion

Our approach made use of a parametric measure
of variability, namely, the variance of Fourier
components of the spike train elicited during sinusoidal
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stimulation. We recognize that non-parametric (e.g.
information-theoretical) methods, which use a more
varied stimulus set and avoid making an assumption
about the particular form of the response, might reveal
other aspects of spike train dynamics overlooked by
this approach (Berry et al. 1997; Strong et al. 1998;
Reinagel et al. 1999; Reinagel & Reid, 2000, 2002;
Uzzell & Chichilnisky, 2004). However, the disadvantage
of these non-parametric measures is that they require
substantially more data (per cell) to generate precise
estimates of variability, and the properties of large
populations of neurons have not yet been reported using
these methods.

The driven responses of parvocellular neurons to
sinusoidal stimuli are, to a good approximation, rectified
sinusoids (Croner et al. 1993; Yeh et al. 1995; Kremers et al.
1997, 2001; Blessing et al. 2004; Sun et al. 2004). However,

Figure 9. Response variance V0, V1 and V2 for
the DC response (F0) and the first two
harmonics (F1, F2) as a function of the DC
amplitude (mean firing rate) z0 in
magnocellular (MC) and koniocellular (KC)
blue-on cells
Left column, Contrast = 0; right column:
Contrast = 1. The shaded area in each graph shows
an envelope of PC cell responses from Fig. 5 for
each contrast and harmonic. Outliers from the PC
distribution were removed by iterative (3x)
enclosure with a convex hull and removal of points
at the hull vertices. Open symbols and thick
continous lines show KC blue-on cells and linear
regression line. Filled symbols and dotted lines
show MC cells and linear regression. Thin continous
lines show PC cell linear regressions from Fig. 5.
Data from all neurons, under all spatial and
chromatic conditions. Dashed line, Poisson
prediction (see text and Appendix II). Note that for
all populations the variance at high contrast falls
below the Poisson prediction.

to consider only the variability of the first harmonic
might overlook important detail, since noise sources such
as bursts, threshold fluctuations and integrate-and-fire
dynamics (Knight, 1972; Reinagel et al. 1999; Smith et al.
2000) might differentially affect the various harmonics.

With these considerations in mind, we adopted an
intermediate strategy: we used Fourier analysis, but we
examined the variability not just of the fundamental
component. This parameterization allowed for a much
more precise analysis than an information-theoretical
approach, without making overly simplistic assumptions
about the underlying dynamics. In particular, our analysis
allowed us to draw two new basic conclusions: overall
variability increases with contrast, but not as rapidly
as expected for a Poisson process, and variability of
parvocellular cells depends not only on response size but
also on chromatic composition of the stimulus.
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Response variability increases with contrast

Our first main finding is that response variability in
parvocellular neurons is only approximately independent
of contrast: variability is on average, approximately 40%
larger at high contrast than at low contrast. Similar trends
were seen in the magnocellular and koniocellular blue-on
populations: in both populations, variability at F0 and
F1 increased with contrast, and the ratio of variances
of responses at high and low contrast was consistent,
on average, with the 40% change seen in parvocellular
neurons. Previous authors (Croner et al. 1993; Kremers
et al. 2001; Sun et al. 2004) did not find any such
contrast dependence. Several factors could contribute
to these discrepancies. Croner et al. (1993) and Sun
et al. (2004) studied the macaque whereas Kremers et al.
(2001) studied marmosets; species difference is therefore
an unlikely possibility. Croner et al. (1993) examined
retinal ganglion cells, and additional variability is present
in the lateral geniculate (Kara et al. 2000). Moreover,
there is a diversity of behaviour within parvocellular cells
(Fig. 2), and for many cells, the increase in variance is
minimal or non-existent. However, the most parsimonious
explanation is apparent from our data and analysis: it
is difficult to measure variances reliably. This may seem
surprising, but it is a simple consequence of the fact
that variance depends on the shape of the distribution of
response amplitudes, not on its mean value. For example,
for the DC response, approximately 140 sweeps for each
condition are necessary to distinguish a variance ratio of
1.4 from a variance ratio of 1.0 for p < 0.05, two-tailed;
t test for modulated responses, approximately 70
sweeps are necessary (F0.025[138, 138] = 1.398). This
requirement was generally not fulfilled in the studies cited
above. Kara et al. (2000) did use a large enough number of
sweeps to be able to detect a 40% change reliably, but these
authors did not study systematically the effect of contrast
on response variability, nor did they quantify variability in
the response phase.

If a large number of trials is necessary to detect small
changes in variance, are these changes therefore too small
to be of relevance for the behaving organism? The answer
to this question lies in the fact that we analysed individual
cells, whereas the organism would have access to the
activity of an entire neuron population for each trial. For
example, one can estimate that a stimulus which subtends
1 deg2 in the marmoset fovea will cover the receptive field of
about 10 000 parvocellular neurons (Wilder et al. 1996). As
noted above, many trials are necessary to detect a relatively
small change in variance in a single cell. Had we been able to
analyse such a large population of neurons simultaneously,
the change in variance would have been evident from only
one or a few trials.

From the point of view of a behaving organism, and a
typical visual task for which the activity of a population
of neurons is relevant, a change in variance by a factor K

is anticipated to change, by a factor of
√

K , the number

of cells (or the observation interval) required to achieve
a criterion signal-to-noise ratio. For the variance ratios
we observed (1.4 for f 0, 1.38 for f 1 and 1.55 for f 2),
this amounts to about 20% increase in cell number (or
observation time). Such changes may well be relevant
for the primate visual system, where spatial resolution
and temporal resolution are critically important. Current
understanding of how population activity in the visual
system is used to perform spatially extensive tasks is poor.
Thus it is difficult to use our results to make specific
psychophysical predictions. Nevertheless, our results do
show how the performance of a real visual system
compares with that of a hypothetical system constituted
of ‘Poisson neurons’. We show that real patterns of firing
in principle would allow for a reduction in the number
of neurons, without loss of performance. The optic nerve
and lateral genuiculate nucleus (LGN) are considered a
‘bottleneck’ for visual signal transmission (Barlow, 1981).
Such increases in efficiency could thus, in principle, yield
an adaptive advantage for the behaving organism.

For a neuron that fires in a Poisson fashion, the ratio
of the variability of the spike count to the mean spike
count (the Fano factor, Teich, 1989) is expected to be
equal to 1. A corresponding result holds for the ratio
of the variability of a modulated response to the spike
count (Appendix II). In an otherwise linear neuron with
a low maintained discharge, sufficiently strong response
modulation must increase the mean firing rate, since
high firing rates at the peak of the response cannot be
balanced by a corresponding decrease in firing at the
troughs of the response. In such neurons, an increase
in response variability is expected for deeply modulated
responses. Thus, one possibility for the difference between
our findings and those of others is that our sample of
neurons had a lower background discharge, and thus,
greater proportional changes in the number of spikes as
contrast increased.

However, Fig. 3 shows that firing rate elevation does
not fully account for how response variability changes
with contrast. Indeed, for parvocellular cells, although
variance of the modulated response increases as mean
firing rate increases, nevertheless the proportionality of
variance to firing rate is ∼25% higher than the Poisson
expectation when contrasts and firing rates are low,
and ∼25% lower than the Poisson expectation when
contrasts and firing rates are high. That is, a neuron
with Poisson variance statistics would have shown an
even greater increase in variability with contrast than
we observed with parvocellular cells. The same broad
trend to sub-Poission variance at high contrast was
seen with magnocellular and koniocellular blue-on cells.
These populations showed overall slightly lower variance
than the parvocellular populations, in that nearly all
magnocellular and koniocellular neurons had a variance
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versus f 0 relationship that was below the regression line
for parvocellular neurons (Fig. 9). Consistently, steady
discharges of parvocellular cells show higher variability
than steady discharges of magnocellular and koniocellular
blue-on cells (Troy & Lee, 1994).

For modest contrasts and response amplitudes,
parvocellular neurons’ DC (f 0) component is more
variable than the Poisson prediction (Figs 3 and 5), with
V 0/z0 in the range 1.2–1.4. This supra-Poisson variability
may be due to bursting (Sheth et al. 1996; Berry et al.
1997), but we did not analyse these aspects of timing here.
Excess variability related to state changes (such as changes
between burst and tonic mode firing; Ramcharan et al.
2000; Krahe & Gabbiani, 2004) is not likely to contribute,
since we had explicitly excluded datasets with statistical
evidence of response variability over long timescales of
seconds to minutes.

The reduction in response variability at high
modulation depths implies more than merely a loss
of bursting. This is because a loss of bursting can
decrease variability to that expected from Poisson
behaviour (Fano factor 1), but cannot account for
variability that is lower than Poisson (Fano factor < 1).
Qualitatively, the sub-Poisson variability suggests that
integrate-and-fire dynamics (Knight, 1972; Smith et al.
2000) begin to dominate in this range. Additionally,
synaptic convergence may allow stimulus-driven activity,
rather than spontaneous activity, to be selectively encoded
in the retinal ganglion cell spike train (Demb et al. 2004).
In other words, activity driven by a stimulus is more
likely to be correlated in time than is activity resulting
from spontaneous (quasi-random) activity in presynaptic
neurones. Other authors accounted for the decrease in
variability with increasing firing rate in retina (Kara et al.
2000; Uzzell & Chichilnisky, 2004) and LGN (Kara et al.
2000) on the basis of increasing influence of the absolute
and relative refractory period (Berry et al. 1997; Berry
& Meister, 1998). As firing rate increases, the Poisson
approximation becomes progressively poorer, since it
predicts that a progressively larger fraction of spikes will
occur during the absolute or relative refractory period.
This phenomenon could account for the sub-Poisson
growth in variability that we observe with increasing
contrast. However, absolute and relative refractory
periods do not account for the manner in which spike
train variability depends on position in the stimulus
cycle (Reich et al. 1998), either in the retina or the
LGN; integrate-and-fire (or integrate-and-fire-or-burst)
dynamics appear to be required (Reich et al. 1998; Smith
et al. 2000; Pillow et al. 2005). Integrate-and-fire or similar
dynamics would also be expected to make response timing
more reliable when the input varies more rapidly, or more
deeply, in time (Mainen & Sejnowski, 1995; Buracas et al.
1998; Mechler et al. 1998; Reich et al. 1998; Kara et al.
2000).

Response variability and chromatic composition:
possible mechanisms

Our second main finding was at constant response
size, �20 chromatically opponent neurons had smaller
variability for chromatic stimulation than for luminance
stimulation. Since this comparison was made at constant
response size, it is difficult to attribute it to threshold or
spike generation dynamics in the parvocellular neuron,
since cone-specific signals have already combined. The
�13 cells did not show this difference, and non-opponent
parvocellular neurons showed a trend in the opposite
direction. Thus, it is also difficult to attribute this finding
to an overall difference in sensitivity between classes
of parvocellular neurons (e.g. Kilavik et al. 2003), or
to the possibility that the retina is somehow generally
noisier under chromatic stimulation conditions than
under luminance conditions.

To achieve a criterion response size, larger cone contrasts
will be required for stimuli whose chromatic composition
is suboptimal. For example, a strongly chromatically
opponent neuron will require a greater contrast to achieve
a criterion response size for luminance stimuli, than for
opponent stimuli (Fig. 6A). Moreover, �20 opponent
neurons typically required a smaller RG : LUM cone
contrast ratio for a criterion response than �13 opponent
neurons, and non-opponent neurons required larger
RG : LUM cone contrast ratios to achieve a criterion
response to chromatic stimuli than to luminance stimuli.

Thus, the above findings are consistent with the notion
that under conditions of constant response size, variability
is larger when cone contrasts are higher. Consequently,
supra-additive noise prior to cone signal combination
could account for the basic pattern of our results. Cone
noise arises both from spontaneous isomerizations (Rieke
& Baylor, 2000) and post-transduction processes (Rieke &
Baylor, 2000; Holcman & Korenbrot, 2005). While there
is evidence that cone noise indeed increases as luminance
increases, this increase is extremely gentle (Fig. 1 of Rieke
& Baylor, 2000 shows at 4 Hz there is less than a factor of 2
between darkness and response saturation), and not likely
to contribute significantly for cone contrasts of 0.1–0.5,
the range in which variance comparisons were made in
the present study.

Supra-additive noise sources in processes that are
post-receptoral but prior to cone signal combination (i.e.
the bipolar cell and its synaptic connections) are therefore
a likely main contributor to our findings, given evidence
for substantial amplification at this stage (Burkhardt &
Fahey, 1998; Burkhardt et al. 2004). However, a direct
assessment of this hypothesis would require recordings
from bipolar cells with minimal recording noise, and
this is a difficult technical challenge. Figure 6B suggests
that even at equivalent cone contrast ratios, neurons
in �20 trichromats have lower noise under chromatic
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conditions. This could be a sign of additional specialization
for processing of chromatic signals in the cone-opponent
pathway.

Functional relevance

Retinal noise is often limiting for detection tasks, both
of luminance (Hecht et al. 1942; Donner, 1992) and of
contrast (Hornstein et al. 1999). It is well-recognized that,
given the statistics of natural scenes, a segregation of
information into chromatic and luminance channels leads
to a more efficient transmission strategy than one based
on the ‘raw’ cone signals (Buchsbaum & Gottschalk, 1983;
Ruderman et al. 1998). The present results suggest that
this retinal recombination of signals has a benefit, distinct
from the coding efficiencies gained by de-correlation
(Atick & Redlich, 1990). We show that deeply modulated
responses have a larger absolute variability than weakly
modulated ones, but a more favourable signal : noise ratio.
Furthermore, the improvement in signal : noise ratio is
greater than expected from naı̈ve (i.e. Poisson) spiking
models. Thus, the recombination of signals to generate
a sparse code (Olshausen & Field, 2004) in which some
neurons are deeply modulated and most are quiescent may
enhance signal : noise ratio, as well as energy efficiency.

It is difficult to make a fully satisfying assessment of the
net benefit conferred by the lower variance of chromatic
compared with luminance signals in opponent PC cells.
This would require a detailed understanding of the spatial,
temporal and chromatic characteristics of the retinal image
under natural viewing conditions, and knowledge of the
ultimate benefits to the organism of correct (or incorrect)
decisions driven by luminance or chromatic information.
Nevertheless, the overall size of the variance effects can be
estimated. Figures 2 and 3 show that the variance when
responses are large is 1.5- to 2-fold less than would be
predicted from variance when responses are small. This
amounts to a 25–40% improvement in equivalent spatial
or temporal resolution. There is an additional reduction in
variance of approximately 10% associated with chromatic
stimulation of opponent PC cells (Fig. 4), which adds an
additional 5% benefit. Although neither of these effects
has large magnitude, their combined effect will work
to improve the sensitivity of chromatic signals in the
parvocellular pathway.

Appendix I

Data analysis details

All calculations were carried out in Matlab 7.0. The mini-
mizations of eqns (A7) and (A9) are generically non-linear,
and were carried out by via a Nelder-Mead simplex
algorithm (Press et al. 1988), as implemented in Matlab’s
fminsearch.

Screening responses for trial-to-trial variation
and adaptation

Data were collected in trials lasting 3.5 s, with typically
three trials of each contrast, separated by several minutes.
We screened datasets for variation during the course of
a trial, or, as trials progressed during the experiment, to
exclude datasets with manifest variability due to faulty
triggering or adaptation to light or contrast. Adaptation to
light or contrast is considered ‘spurious’ in the sense that
such adaptation would not result in variability in responses
to separate ‘glances’ at the stimulus, sufficiently separated
in time (Shapley & Victor, 1978; Ohzawa et al. 1982;
Ohzawa et al. 1985). We used an ANOVA-like approach
(modified to recognize the complex-valued nature of the
Fourier components) to carry out this screening.

To identify trial-to-trial variation, we calculated the
mean Fourier components within each trial by pooling
across cycles, That is, we calculated zk(ntrial, •) (here and
below, the • indicates pooling over the argument that
it replaces) from the cycle-by-cycle Fourier components
zk(ntrial, ncycle) (eqn (1)) by

zk(ntrial, •) = 1

Ncycle

Ncycle∑
ncycle=1

zk(ntrial, ncycle) (A1)

where zk(ntrial, ncycle) is the Fourier component estimated
from a single cycle. The variance of responses averaged
within each trial, V trial

k , is

V trial
k = P

Ntrial − 1

Ntrial∑
ntrial=1

|zk(ntrial, •) − zk |2 (A2)

If there were no systematic changes from trial to trial, then
V trial

k = Vk/Ncycle, since Ncycle individual Fourier estimates
(eqn (A1)) are averaged for each within-trial estimate. If
systematic changes from trial to trial were present, there
would be excess variance described by V trial

k (eqn (A2)).
In this case, the ratio of the trial-to-trial variance to the
variance not explained by trial-to-trial variation would be
large. To test, this, we compared the variance ratio

F trial
k = (Ncycle − 1)

× Ncycle

NtrialV trial
k

(Ncycle Ntrial − 1)Vk − (Ntrial − 1)NcycleV trial
k

(A3)

with the F distribution expected for bk(Ntrial − 1) degrees
of freedom in the numerator, and bk Ntrial(Ncycle − 1)
degrees of freedom in the denominator (80 tests: Fourier
components 0, 1, 2 and 20 at each of 10 contrasts).

To detect systematic excess variation within trials, we
calculated the mean Fourier components of corresponding
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cycles (across trials)

zk(•, ncycle) = 1

Ntrial

Ntrial∑
ntrial=1

zk(ntrial, ncycle) (A4)

and their variance V cycle
k :

V cycle
k = P

Ncycle − 1

Ncycle∑
ncycle=1

|zk(•, ncycle) − zk |2 (A5)

If there were no systematic changes across cycles, then

V cycle
k = Vk/Ntrial, since Ntrial individual Fourier estimates

(eqn (A4)) are averaged for each within-trial estimate.
If systematic variation from cycle to cycle within trials
(e.g. adaptation) were present, there would be excess

variance described by V cycle
k (eqn (A2)). For example, if

adaptation were present, the response to the first cycle
of each trial might always be larger than the response
to the last cycle of each trial. In this case, the ratio of
the cycle-to-cycle variance to variance not explained by
cycle-to-cycle variation would be large. To test, this, we
calculated the F ratio

F cycle
k = (Ntrial − 1)

×Ntrial

NcycleV cycle
k

(Ncycle Ntrial − 1)Vk − (Ncycle − 1)NtrialV
cycle

k

(A6)

which has bk(Ncycle − 1) degrees of freedom in the
numerator, and bk Ncycle(Ntrial − 1) degrees of freedom in
the denominator.

We discarded datasets for which, at any harmonic k,
three or more contrasts out of the set of 10 contrasts
resulted in values of F cycle

k or F trial
k above the p = 0.05

level of the corresponding F distribution. These datasets
corresponded to those in which inspection of the rasters
revealed an apparent change in mean firing rate during the
course of the experiment. Strictly speaking, these statistical
tests assume that mean firing rates are Gaussian distributed
(k = 0) and that complex-valued Fourier coefficients are
distributed in a circularly symmetric Gaussian fashion
about their mean (k > 0). This cannot be rigorously correct
(since Fourier components are constrained by the fact that
there can only be an integer number of spikes per cycle),
but our purpose was simply to screen the data for evidence
of non-stationarity.

Fitting an empirical variance–mean relationship:
details

The following hierarchical strategy was used to fit eqn (5).
All datasets were fitted to eqn (5) with the following sets
of constraints: (i) a = c = 0, γ = 1, b = 1 (i.e. variance
equals mean, in units of spike count – this is Poisson

behaviour for the 0th harmonic); (ii) b = c = 0, γ = 1, a
free to vary (i.e. variance independent of mean, as reported
by Croner et al. (1993)); and (iii) a = c = 0, γ = 1, b free
to vary (i.e. variance proportional to mean). If none of
these 0-parameter or 1-parameter fits were consistent with
the data at p < 0.2 via χ 2 (see below), then the following
2-parameter fits were considered: (iv) a = c = 0, b and γ

free to vary (but γ restricted to [–10,10]), and (v) c = 0,
γ = 1, a and b free to vary. If neither of these 2-parameter
fits were consistent with the data at p < 0.2, then the
following 3-parameter fits were considered: (vi) c = 0, a,
b and γ free to vary (but γ restricted to [–10,10]), and
(vii) γ = 1, a, b and c free to vary. We used the ‘liberal’
cut-off of p < 0.2 at each stage to avoid overfitting but
simultaneously ensure that we did not overlook a better
fit with a slightly more complex model. Following these
sequential fits, the model with the highest p value was
chosen. This corresponds to choosing the model with the
lowest reduced χ 2.

Fits to forms derived from eqn (5) were carried out as
follows. Since both the Fourier amplitude at the contrast C,
|zk(C)|, and its variance, V k(C), were quantities estimated
from the data rather than independent variables, we did
not fit eqn (5) by a regression. Instead, we minimized

R2 =
∑

C

( |zk(C)| − zk,fit(C)

σk(C)

)2

+
(

log Vk(C) − log v(zk,fit(C); a, b, c, γ )

λk(C)

)2

(A7)

where σk(C) is the standard error of measurement
of |zk(C)| and λk(C) is the standard error of
measurement of log Vk(C). That is, the minimization
procedure sought to fit the observed (mean Fourier
amplitude, variance) pairs (|zk(C)|, Vk(C)) with pairs
(|zk,fit(C)|, V (zk,fit(C); a, b, c, γ )) consistent with
eqn (5), but had freedom to adjust the measured mean
Fourier amplitude to a fitted value. Deviations of the
fitted value zk,fit(C) for the Fourier amplitude away from
the measured value |zk(C)|, and deviations of the fitted
value of the variance V (zk,fit(C); a, b, c, γ ) from its
measured value V k(C), were both weighted by amounts
inversely proportional to the uncertainty of the measured
values. The 95% confidence intervals for mean Fourier
amplitudes were estimated as follows: for the mean firing
rate z0(C), we used t tests based on the measurement
from each cycle (Ntrial Ncycle − 1 degrees of freedom).
For Fourier amplitudes at non-zero frequencies |zk(C)|,
we used the T 2

circ statistic (Victor & Mast, 1991). For
variances, fitting was performed following logarithmic
transformation. 95% confidence intervals were estimated
from an F distribution with bk(Ntrial Ncycle − 1) degrees of
freedom in the numerator, and infinite degrees of freedom
in the denominator (since this describes the expected
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distribution of spectral estimates for Gaussian data). The
quantities σk(C) and λk(C) were determined by matching
a Gaussian distribution to the estimated confidence
intervals for |zk(C)| and log Vk(C), respectively. The
main assumptions in the above analysis are that data from
each response cycle are independent, that measurement
errors and modelling errors are independent, and that
there are a sufficient number of response cycles so that
Gaussian asymptotics apply. With these assumptions,
random variation of |zk(C)| and log Vk(C) around
values modelled by eqn (5) implies that the mean total
transformed squared error R2 (eqn (13)) is distributed
approximately like χ 2, with the number of degrees of
freedom equal to the number of contrasts N C minus the
number of fitted parameters (0, 1, 2 or 3) in eqn (5). This
is because there are 2N C summands in eqn (13), but the
number of fitted parameters includes each zk,fit(C) (N C

parameters), as well as those of the fitted functional form
(eqn (5)).

We also tested the hypothesis that neither the mean
Fourier amplitude nor their variances depended on
stimulus contrast, by minimizing

R2 =
∑

C

( |zk(C)| − zk,fit

σk(C)

)2

+
(

log Vk(C) − log vk,fit

λk(C)

)2

(A8)

as a function of contrast-independent values zk,fit and vk,fit.
Under the null hypothesis of random variation of |zk(C)|
and log Vk(C) about their respective contrast-independent
values, R2 is distributed approximately likeχ 2, with 2NC −
2 degrees of freedom.

Based on the fit that had the highest p value (from the χ 2

distribution for R2, for the appropriate number of degrees
of freedom), one of the models described by eqn (5),
or the contrast-independent value vk,fit, was chosen as a
description for the relationship that could be used to ‘read
off’ the variance v(|z|) of Fourier coefficient whose mean
is |z|. The squared error associated with ‘reading off’ the

Figure 10
Distribution of probability (p) values from the empirical variance–mean
relationship fits described in Appendix I.

value of the variance for a particular Fourier amplitude
|z| was taken as the sum of two components: the squared
error in estimating the variances themselves (calculated
from bk NC (Ntrial Ncycle − 1) samples, estimated as above),
and the squared modelling error per data point, R2/NC .

As confirmation of the validity of the above assumptions
and curve-fitting procedures, the distribution of p values
for values of χ 2 obtained from these fits was approximately
uniform in [0,1]. The distribution is shown in Fig. 10.
The mean of the distribution is 0.51, very close to the
ideal mean of 0.5 anticipated from a uniform distribution.
There was a slight (∼10%) excess of low p values for fits
to the first harmonic, suggesting that there was a small
systematic portion of the variance versus mean relationship
that was not captured by any of the functional forms
considered. There was a similar excess of high p values
(near 1.0), suggesting that a small number of datasets
were overfitted. In contrast, the p value distribution grossly
deviated from uniformity if we used a linear, rather than
logarithmic, transformation of the variance Vk(C), or if
we used a logarithmic, rather than linear, transformation
of the amplitude |zk(C)| (not shown).

Fitting an empirical contrast-response function:
details

Datasets were fitted to eqn (6) by minimizing

R2 =
∑

C

( |zk(C)| − r(C ; a, b, γ, η)

σk(C)

)2

(A9)

where, as in eqn (A7), σk(C) is the standard error
of measurement of |zk(C)|, obtained via T 2

circ (Victor
& Mast, 1991). The following sets of constraints were
used to avoid overfitting: (i) a = η = 0, γ = 1 (linear
relationship); (ii) η = 1, γ = 1 (linear relationship with
offset); (iii) a = η = 0 (power–law relationship); (iv) η = 0
(power–law relationship with offset); (v) a = 0, γ = 1
(Naka-Rushton law, with semisaturation 1/η); (vi) γ = 1
(Naka-Rushton law with offset), and a = 0 (Naka-Rushton
law with arbitrary power). If none of these 1-, 2- or
3-parameter fits were consistent with the data at p = 0.2,
then the full 4-parameter form (eqn (6)) was fitted to the
data. The fit with the lowest reduced χ 2 was retained. From
this fit, an estimated contrast that produced a criterion
response rcriterion could be estimated by inverting (eqn (6)):

C(rcriterion) =
(

b

rcriterion − a
− ηγ

)−1/γ

(A10)

Had we only considered linear fits, some datasets,
especially for the fits to the variance V 0, would have
been overfitted (excess of datasets with p values near 1),
while the population as a whole would have been under-
fitted (average p value of 0.22). With the above procedure,
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overfitting of the V 0 was reduced by including
V k = constant and underfitting was reduced by allowing
for additional functional forms. The end result, as shown
in Fig. 10, was a reasonably flat distribution of p values
for the goodness of fit, with a mean p value of 0.51. The
discontinuity at p = 0.2 is a result of the cut-point of our
stepwise procedure.

Appendix II

Variability of Fourier components of a periodically
modulated Poisson process

Here we show that for an inhomogeneous Poisson process
whose expected event rate varies periodically with period
P, the variances of all Fourier components are proportional
to the cycle-averaged mean firing rate.

Following eqn (1), we can write an estimate of a Fourier
component at the kth harmonic from a single period
beginning at time T as

zk(T ) = bk

P

T +P∫
T

e−2π i tk/P R(t) dt (A11)

Here, bk is a normalization factor (b0 = 1, bk = 2 for k �=
0), and R(t), the spike train, is a sum of delta-functions,
one at the time of each spike:

R(t) =
∑

j

δ(t − t j ) (A12)

We want to calculate the variance of zk(T ), which is related
to our measure of variability V k (eqn (3)) by

Vk = P
〈|zk(T ) − 〈zk(T )〉|2

〉
(A13)

〈〉 denotes the expected value over all cycles, or over all
starting times T .

Since

zk(T )−〈zk(T )〉= bk

P

T +P∫
T

exp

(
i

2π tk

P

)
(R(t) − 〈R(t)〉)dt

(A14)

it follows that

|z(T ) − 〈zk(T )〉|2

= b2
k

P2

T +P∫
T

exp

(
i

2π tk

P

)
(R(t) − 〈R(t)〉)dt

×
T +P∫
T

exp

(
− i

2π t ′k
P

) (
R(t ′) − 〈

R(t ′)
〉)

dt ′

(A15)

and therefore that

|zk(T ) − 〈zk(T )〉|2

= b2
k

P2

T +P∫
T

T +P∫
T

exp

(
i

2π(t − t ′)k
P

)
(R(t) − 〈R(t)〉)

× (
R(t ′) − 〈

R(t ′)
〉)

dtdt ′ (A16)

For a Poisson process, the variance is equal to the mean
event rate, and events at distinct times are independent.
That is,〈

(R(t) − 〈R(t)〉) (
R(t ′) − 〈

R(t ′)
〉)〉 = 〈R(t)〉 δ(t − t ′)

(A17)

Taking an ensemble average of eqn (A16) and
substituting eqn (A17) yields〈∣∣zk(T ) − 〈zk(T )〉∣∣2〉
= b2

k

P2

T +P∫
T

T +P∫
T

exp

(
i

2π(t − t ′)k
P

)
×〈(R(t) − 〈R(t)〉)(R(t ′) − 〈R(t ′)〉)〉dtdt ′

= b2
k

P2

T +P∫
T

T +P∫
T

exp

(
i

2π(t − t ′)k
P

)
〈R(t)〉 δ(t − t ′)dtdt ′

= b2
k

P2

T +P∫
T

〈R(t)〉 dt (A18)

Since the expected value of the cycle-averaged firing rate is

〈z0(T )〉 = 1

P

T +P∫
T

〈R(t)〉 dt (A19)

eqns (A13) and (A18) yield

Vk = P
〈|zk(T ) − 〈zk(T )〉|2

〉
= b2

k

P

T +P∫
T

〈R(t)〉 dt = b2
k 〈z0(T )〉 (A20)

References

Anderson T (1958). An Introduction to Multivariate Statistical
Analysis Wiley, New York.

Atick JJ & Redlich AN (1990). Towards a theory of early visual
processing. Neural Comput 2, 308–320.

Barlow HB (1981). Critical limiting factors in the design of the
eye and visual cortex. Proc R Soc Lond B Biol Sci 212, 1–34.

C© 2007 The Authors. Journal compilation C© 2007 The Physiological Society



50 J. D. Victor and others J Physiol 579.1

Berry MJ & Meister M (1998). Refractoriness and neural
precision. J Neurosci 18, 2200–2211.

Berry MJ, Warland DK & Meister M (1997). The structure and
precision of retinal spike trains. Proc Natl Acad Sci U S A 94,
5411–5416.

Blessing EM, Solomon SG, Hashemi-Nezhad M, Morris BJ &
Martin PR (2004). Chromatic and spatial properties of
parvocellular cells in the lateral geniculate nucleus of the
marmoset (Callithrix jacchus). J Physiol 557, 229–245.

Bowmaker JK, Parry JWL & Mollon JD (2003). The
arrangement of L and M cones in human and a primate
retina. In Normal and Defective Colour Vision, ed. Mollon JD,
Pokorny J & Knoblauch K. Oxford University Press, Oxford.

Brown EN, Barbieri R, Ventura V, Kass RE & Frank LM (2002).
The time-rescaling theorem and its application to neural
spike train data analysis. Neural Comput 14, 325–346.

Buchsbaum G & Gottschalk A (1983). Trichromacy, opponent
colours coding and optimum colour information
transmission in the retina. Proc R Soc Lond B Biol Sci 220,
89–113.

Buracas GT, Zador AM, DeWeese MR & Albright TD (1998).
Efficient discrimination of temporal patterns by
motion-sensitive neurons in primate visual cortex. Neuron
20, 959–969.

Burkhardt DA & Fahey PK (1998). Contrast enhancement and
distributed encoding by bipolar cells in the retina.
J Neurophysiol 80, 1070–1081.

Burkhardt DA, Fahey PK & Sikora MA (2004). Retinal bipolar
cells: contrast encoding for sinusoidal modulation and steps
of luminance contrast. Visual Neurosci 21, 883–893.

Buzás P, Blessing EM, Szmajda BA & Martin PR (2006).
Specificity of M and L cone inputs to receptive fields in the
parvocellular pathway: random wiring with functional bias.
J Neurosci 26, 11148–11161.

Croner LJ, Purpura K & Kaplan E (1993). Response variability
in retinal ganglion cells of primates. Proc Natl Acad Sci U S A
90, 8128–8130.

Demb JB, Sterling P & Freed MA (2004). How retinal ganglion
cells prevent synaptic noise from reaching the spike output.
J Neurophysiol 92, 2510–2519.

Derrington AM & Fuchs AF (1979). Spatial and temporal
properties of X and Y cells in the cat lateral geniculate
nucleus. J Physiol 293, 347–364.

Derrington AM, Krauskopf J & Lennie P (1984). Chromatic
mechanisms in lateral geniculate nucleus of macaque.
J Physiol 357, 241–265.

Derrington AM & Lennie P (1984). Spatial and temporal
contrast sensitivities of neurones in lateral geniculate nucleus
of macaque. J Physiol 357, 219–240.

Ding Y & Casagrande VA (1997). The distribution and
morphology of LGN K pathway axons within the layers and
CO blobs of owl monkey V1. Visual Neurosci 14, 691–704.

Donner K (1992). Noise and the absolute thresholds of cone
and rod vision. Vision Res 32, 853–866.

Dreher B, Fukada Y & Rodieck RW (1976). Identification,
classification and anatomical segregation of cells with X-like
and Y-like properties in the lateral geniculate nucleus of
Old-World primates. J Physiol 258, 433–452.

Efron B (1982). The Jackknife, the Bootstrap, and Other
Resampling Plans. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Forte J, Blessing EM, Buzás P & Martin PR (2006).
Contribution of chromatic aberrations to color signals in the
primate visual system. J Vision 6, 97–105.

Frishman LJ, Freeman AW, Troy JB, Schweitzer-Tong DE &
Enroth-Cugell C (1987). Spatiotemporal frequency responses
of cat retinal ganglion cells. J General Physiol 89, 599–628.

Hecht S, Shlaer S & Pirenne MH (1942). Energy, quanta, and
vision. J General Physiol 25, 819–840.

Holcman D & Korenbrot JI (2005). The limit of photoreceptor
sensitivity: molecular mechanisms of dark noise in retinal
cones. J Gen Physiol 125, 641–660.

Hornstein EP, Pope DR & Cohn TE (1999). Noise and its
effects on photoreceptor temporal contrast sensitivity at low
light levels. J Opt Soc Am A 16, 705–717.

Hunt DM, Williams AJ, Bowmaker JK & Mollon JD (1993).
Structure and evolution of the polymorphic photopigment
gene of the marmoset. Vision Res 33, 147–154.

Jacobs GH (1998). Photopigments and seeing – lessons from
natural experiments. Invest Ophthalmol Vis Sci 39,
2205–2216.

Kara P, Reinagel P & Reid RC (2000). Low response variability
in simultaneously recorded retinal, thalamic, and cortical
neurons. Neuron 27, 635–646.

Kass RE, Ventura V & Brown EN (2005). Statistical issues in the
analysis of neuronal data. J Neurophysiol 94, 8–25.

Kilavik BE, Silveira LC & Kremers J (2003). Centre and
surround responses of marmoset lateral geniculate neurones
at different temporal frequencies. J Physiol 546, 903–919.

Knight BW (1972). Dynamics of encoding in a population of
neurons. J Gen Physiol 59, 734–766.

Krahe R & Gabbiani F (2004). Burst firing in sensory systems.
Nat Rev Neurosci 5, 13–23.

Kremers J, Silveira LC & Kilavik BE (2001). Influence of
contrast on the responses of marmoset lateral geniculate cells
to drifting gratings. J Neurophysiol 85, 235–246.

Kremers J, Weiss S & Zrenner E (1997). Temporal properties of
marmoset lateral geniculate cells. Vision Res 37, 2649–2660.

Mainen ZF & Sejnowski TJ (1995). Reliability of spike timing in
neocortical neurons. Science 268, 1503–1506.

Mechler F, Victor JD, Purpura KP & Shapley R (1998). Robust
temporal coding of contrast by V1 neurons for transient but
not for steady-state stimuli. J Neurosci 18, 6583–6598.

Naka K-I & Rushton WH (1966). S-potentials from colour
units in the retina of fish (Cyprinidae). J Physiol 185,
536–555.

Ohzawa I, Sclar G & Freeman RD (1982). Contrast gain control
in the cat visual cortex. Nature 298, 266–268.

Ohzawa I, Sclar G & Freeman RD (1985). Contrast gain control
in the cat’s visual system. J Neurophysiol 54, 651–667.

Olshausen BA & Field DJ (2004). Sparse coding of sensory
inputs. Curr Opin Neurobiol 14, 481–487.

Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP & Chichilnisky
EJ (2005). Prediction and decoding of retinal ganglion cell
responses with a probabilistic spiking model. J Neurosci 25,
11003–11013.

Press WH, Flannery B, Teukolsky S & Vatterling W (1988).
Numerical Recipes in C: The Art of Scientific Computing .
Cambridge University Press, Cambridge, New York.

Ramcharan EJ, Gnadt JW & Sherman SM (2000). Burst and
tonic firing in thalamic cells of unanesthetized, behaving
monkeys. Visual Neurosci 17, 55–62.

C© 2007 The Authors. Journal compilation C© 2007 The Physiological Society



J Physiol 579.1 Response variability of parvocellular neurons 51

Reich DS, Victor JD & Knight BW (1998). The power ratio and
the interval map: spiking models and extracellular
recordings. J Neurosci 18, 10090–10104.

Reid RC & Shapley RM (2002). Space and time maps of cone
photoreceptor signals in macaque lateral geniculate nucleus.
J Neurosci 22, 6158–6175.

Reinagel P, Godwin D, Sherman SM & Koch C (1999).
Encoding of visual information by LGN bursts.
J Neurophysiol 81, 2558–2569.

Reinagel P & Reid RC (2000). Temporal coding of visual
information in the thalamus. J Neurosci 20, 5392–5400.

Reinagel P & Reid RC (2002). Precise firing events are
conserved across neurons. J Neurosci 22, 6837–6841.

Rieke F & Baylor DA (2000). Origin and functional impact of
dark noise in retinal cones. Neuron 26, 181–186.

Rieke F, Warland D, de Ruyter van Steveninck R & Bialek W
(1997). Spikes: Exploring the Neural Code. MIT Press,
Cambridge, MA.

Rodieck RW (1998). The First Steps in Seeing . Sinauer,
Sunderland.

Ruderman DL, Cronin TW & Chiao C-C (1998). Statistics of
cone responses to natural images: implications for visual
coding. J Opt Soc Am A 15, 2036–2045.

Shapley R & Perry VH (1986). Cat and monkey retinal ganglion
cells and their visual functional roles. Trends Neurosci 9,
229–235.

Shapley RM & Victor JD (1978). The effect of contrast on the
transfer properties of cat retinal ganglion cells. J Physiol 285,
275–298.

Sheth BR, Sharma J, Chencha I, Rao S & Sur M (1996).
Orientation maps of subjective contours in visual cortex.
Science 274, 2110–2115.

Smith GD, Cox CL, Sherman SM & Rinzel J (2000). Fourier
analysis of sinusoidally driven thalamocortical relay neurons
and a minimal integrate-and-fire-or-burst model.
J Neurophysiol 83, 588–610.

Smith VC, Lee BB, Pokorny J, Martin PR & Valberg A (1992).
Responses of macaque ganglion cells to the relative phase of
heterochromatically modulated lights. J Physiol 458,
191–221.

Strong SP, de Ruyter van Steveninck RR, Bialek W & Koberle R
(1998). On the application of information theory to neural
spike trains. Pac Symp Biocomput 621–632.

Sun H, Ruttiger L & Lee BB (2004). The spatiotemporal
precision of ganglion cell signals: a comparison of
physiological and psychophysical performance with moving
gratings. Vision Res 44, 19–33.

Tan Y & Li W-S (1999). Trichromatic vision in prosimians.
Nature 402, 36.

Teich MC (1989). Fractal character of the auditory neural spike
train. IEEE Trans Biomed Eng 36, 150–160.

Tovée MJ, Bowmaker JK & Mollon JD (1992). The relationship
between cone pigments and behavioural sensitivity in a New
World monkey (Callithrix jacchus jacchus). Vision Res 32,
867–878.

Troilo D, Howland HC & Judge SJ (1993). Visual optics and
retinal cone topography in the common marmoset
(Callithrix jacchus). Vision Res 33, 1301–1310.

Troy JB & Lee BB (1994). Steady discharges of macaque retinal
ganglion cells. Visual Neurosci 11, 111–118.

Uzzell VJ & Chichilnisky EJ (2004). Precision of spike trains in
primate retinal ganglion cells. J Neurophysiol 92, 780–789.

Victor JD, Blessing EM, Martin PR, Forte J & Buzás P (2005).
Response variability of marmoset parvocellular neurons.
Society for Neuroscience Program 743.1.

Victor JD & Mast J (1991). A new statistic for steady-state
evoked potentials. Electroencephalogr Clin Neurophysiol 78,
378–388.

White AJR, Solomon SG & Martin PR (2001). Spatial properties
of koniocellular cells in the lateral geniculate nucleus of the
marmoset Callithrix jacchus. J Physiol 533, 519–535.

Wiesel TN & Hubel D (1966). Spatial and chromatic
interactions in the lateral geniculate body of the rhesus
monkey. J Neurophysiol 29, 1115–1156.

Wilder HD, Grünert U, Lee BB & Martin PR (1996).
Topography of ganglion cells and photoreceptors in the
retina of a New World monkey: the marmoset Callithrix
jacchus. Visual Neurosci 13, 335–352.

Williams PE, Mechler F, Gordon J, Shapley R & Hawken MJ
(2004). Entrainment to video displays in primary visual
cortex of macaque and humans. J Neurosci 24, 8278–8288.

Yeh T, Lee BB & Kremers J (1995). Temporal response of
ganglion cells of the macaque retina to cone-specific
modulation. J Opt Soc Am A 12, 456–464.

Acknowledgements

We thank Ana Lara and Dean Matin for technical assistance; Will

Dobbie and Kumiko Percival for assistance with data analysis;

and Russ Hamer, Barry Lee, and Rob Smith for helpful comments

and suggestions. Supported by the Australian National Health

and Medical Research Council (NHMRC) research project

grant 253621 and Australian Research Council (ARC) grant

DP0451481. J.V. was supported in part by NIH RO1 EY9314.

J.D.F. was supported in part by an ARC postdoctoral research

fellowship.

Author’s present address

P. Buzás: Institute of Physiology, University of Pécs, Pécs H-7643,
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