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A brain–computer interface (BCI) can be defined as any system that can track the person’s

intent which is embedded in his/her brain activity and, from it alone, translate the intention

into commands of a computer. Among the brain signal monitoring systems best suited for

this challenging task, electroencephalography (EEG) and magnetoencephalography (MEG) are

the most realistic, since both are non-invasive, EEG is portable and MEG could provide more

specific information that could be later exploited also through EEG signals. The first two

BCI steps require set up of the appropriate experimental protocol while recording the brain

signal and then to extract interesting features from the recorded cerebral activity. To provide

information useful in these BCI stages, our aim is to provide an overview of a new procedure

we recently developed, named functional source separation (FSS). As it comes from the blind

source separation algorithms, it exploits the most valuable information provided by the electro-

physiological techniques, i.e. the waveform signal properties, remaining blind to the biophysical

nature of the signal sources. FSS returns the single trial source activity, estimates the time

course of a neuronal pool along different experimental states on the basis of a specific functional

requirement in a specific time period, and uses the simulated annealing as the optimization

procedure allowing the exploit of functional constraints non-differentiable. Moreover, a minor

section is included, devoted to information acquired by MEG in stroke patients, to guide BCI

applications aiming at sustaining motor behaviour in these patients. Relevant BCI features –

spatial and time-frequency properties – are in fact altered by a stroke in the regions devoted to

hand control. Moreover, a method to investigate the relationship between sensory and motor

hand cortical network activities is described, providing information useful to develop BCI feed-

back control systems. This review provides a description of the FSS technique, a promising tool

for the BCI community for online electrophysiological feature extraction, and offers interesting

information to develop BCI applications to sustain hand control in stroke patients.
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A brain computer interface (BCI) can be defined as
any system that can track the person’s intent which is
embedded in his/her brain activity and, from it alone,
translate the intention into commands of a computer
(Fig. 1). Thus a BCI creates a link between two adaptive
systems. One of these systems is the neural network
within the brain, generating signals during the processing
of individual intention of an action. This network
uses sensory evaluation of action outcomes to adapt
and optimize these signals. The second system is the

computer, reached by the brain signals provided by
the monitoring system. The BCI decoding algorithm
must adapt to these signals and their adaptation and
optimization to implement the translation of intention
into action. Since the two systems are linked, neither is
truly independent. Among the brain signal monitoring
systems best suited for this challenging task, electro-
encephalography (EEG) has the two properties that
are essential for most realistic BCIs: non-invasiveness
and portability. Magnetoencephalography (MEG) has the
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same non-invasiveness as EEG and, although it is not
portable, it allows selective focus on specific aspects that
could be later exploited by EEG. Invasive BCIs, where
the brain signal comes from implanted electrodes (e.g.
subdural, epidural or intracortical electrocorticogram,
ECoG), are, in fact, at their origin since the suitability
of the recorded signal is lost over a few months (Maynard
et al. 1997; Navarro et al. 2005) and the electrodes have to
be removed, although long technological strides have been
made on implantable electrodes.

The first BCI applications were developed to help
people with total loss of any control on voluntary
musculature (including respiratory and oculomotor –
a situation defined as ‘locked in’) in communicating
with the environment and other people. In addition,
applications could be developed to relieve the suffering
of extremely diseased people, induced by pathologies
leaving unaffected a minimal amount of neuromuscular
connections sustaining patients’ communication abilities
(such as amyotrophic lateral sclerosis in its final
stages, cerebrovascular accidents, brain and spinal cord
traumas, severe muscular dystrophies, Parkinson’s disease,
severe forms of multiple sclerosis). Moreover, efforts in
developing BCI provide information that is also useful for
different applications, including the control of prosthetic
limbs (Prochazka et al. 1997; Lauer et al. 2000a; Craelius,
2002; Popovic, 2003) and neuroprostheses (Stein et al.
1992; Lauer et al. 2000b; Popovic & Sinkjaer, 2000), or
other hybrib bionic systems (HBSs), like exo-skeletons and
tele-operated platforms.

Figure 1. BCI definition
Schematic representation of a BCI. The features that could be improved by the information provided in the present
review are indicated in bold.

For BCI to be effective in real-world applications, many
challenges must be addressed and overcome (Moore,
2003). The required cognitive load must be minimized
through optimization of the cerebral activity extraction. In
fact, while most BCI systems are tested in quiet laboratory
environments, where users are able to concentrate on
the task at hand with minimal distractions, BCI users
in the real world have to deal with much more complex
situations, including emotional responses, interactions
with other people, and safety considerations. Every BCI has
its own operational protocol which defines the procedures
for switching on and off, the continuity or discontinuity
of the communication, whether the relevant signal is
generated consciously by the subject or in response to a
stimulus triggered by the BCI (event-related), the exact
sequence of interactions between the subject and the BCI,
and the type of feedback provided to the subject. In real
life the subject must be able to choose the message and to
carry out the switching on and off procedures.

Feature extraction

The feature extraction stage processes the cerebral data
and extracts relevant features to feed the translation
algorithm (Fig. 1). The cerebral data are acquired by
some monitoring system, using appropriate experimental
protocol designs. Data are then AD converted, using
the sampling rate suitable to the cerebral signal being
processed, at least twice the expected highest relevant
frequency component in the signal of interest. The
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digitized signal must be analysed further to extract
information that is relevant to the mental task under
investigation. Before the signals are used, however, often
some unwanted artifacts need to be removed. Without
exaggeration, thousands of different features have already
been used in BCIs, being divided into three general
domains: time domain, frequency domain, and joint
time–frequency domain. The features are also likely to be
location specific.

Mandatory for feature extraction success, the
experimental protocol must be designed to suit the
application and the environment in which the BCI will
be used. This includes choice of mental task, stimulus
parameters (e.g. visual scenery timing and constraints), a
minimization of unwanted stimuli and distractions that
may affect the properties of the signals to be monitored,
at list in the first phase of initial algorithm training.

Feature extraction in patients

When developing BCI applications devoted to patients
affected by different pathologies, it is mandatory to
consider that the cerebral processing is hugely distorted
by diseases. For instance, in the case of stroke patients,
a relevant phenomenon is that different areas start to
replace the function previously played by the damaged
areas (plastic modifications characterized by unusual
recruitments: Rossini et al. 1998, 2001; Oliviero et al. 2004;
Tecchio et al. 2006d). In the case of peripheral damage,
maladaptive (Flor et al. 2006) or adaptive (Tecchio et al.
2000a, 2002, 2006d) cerebral reorganizations can occur
(Rossini et al. 1994b; Tecchio et al. 2005a, 2006c).

Translation algorithms

The relevant extracted features must be transformed
into commands directed to the device which has to
execute the subject’s intentions. This algorithm can be
based on linear (e.g. standard statistical methods) or
non-linear (e.g. neural networks) techniques. Examples of
artificial intelligence methods used are linear discriminant
analysis, artificial neural networks, genetic algorithms,
kernel-based learning methods (support vector machines,
kernel Fisher discriminant), Bayesian networks, and
hidden Markov models. In order to be really efficient, an
algorithm should adapt to the human subject in at least
three phases: (1) initial training of the algorithm, in which
BCI adapts off-line to the physiological characteristics
of the subject; (2) adaptation by periodic on-line
adjustments; (3) mutual adaptation and reinforcement,
where the subject’s control of the physiological signals
used to control the BCI, and the translation algorithm’s
ability to decode these signals reaches a stable state and an
optimization of low error rate is reached.

Learning

Although BCIs provide alternate communication channels
that bypass traditional neuromuscular channels, learning
to operate a BCI successfully is similar to learning tasks
that involve muscular control. Just as walking or speaking
requires training and practice, the operation of a BCI
is an acquired skill that involves many of the same
learning mechanisms. Successful use of BCIs requires that
the user maintains his/her capability to learn developing
new abilities in controlling not the usual neuromuscular
channels, but the EEG pattern that is recognized as relevant
by the BCI. Throughout the repeated execution of any
task, the brain undergoes plastic adaptation that may be
relatively short lived or more persistent. From a system
point of view, this plasticity is in essence a transfer function
change on the human subject side that inevitably affects
the overall behaviour of the BCI and requires adaptation
on the machine side as well.

Feedback

The BCI requires the subject learning both during the
relevant signal production and translation maintenance.
The most important element of such learning is the
presence of feedback. During the learning process, either
while walking, speaking, or using a BCI, the subject makes
adjustments based on the outcomes produced by their own
efforts in order to eventually hone their skills appropriately.
The incoming signal produced by the outcomes is known
as feedback, and it is crucial to the learning process
(Graimann et al. 2006). As mentioned above, most BCIs
feedback to the subject the outputs on a computer monitor.
The use of this visual information as feedback presents
problems for fast applications. Treisman & Kanwisher
(1998) concluded that it takes at least 100 ms after stimulus
presentation for sensory perception and nearly another
100 ms for the information to become conscious. This
relatively long delay to process conscious information
complicates the use of visual feedback as the only one in
real-time BCIs, e.g. a system devoted to move an arm in
a dynamic and complex situation. Among a number of
possible solutions that may be tried in the future to reduce
the problems related to perceptual delays, the use of haptic
feedback and electrotactile sensations seems to be the most
compelling (Graimann et al. 2006).

Throughput and latency

Two important numerical parameters that allow
the selection of appropriate interfaces for driving
specific applications are the throughput and latency.
(1) Throughput (also called bitrate, bandwidth, or
information transfer rate) is the rate at which a computer
or network sends or receives data. It is a good measure
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of the channel capacity of a communication link – the
throughput unit used in the connections to the internet is
how many bits they pass per second (bit s−1). (2) Latency
is a time delay between the moment something begins,
and the moment its effect begins. Up to now, even the
best average information transfer rates for experienced
subjects and well-tuned BCI systems are relatively low, in
the region of 24 bits min−1 (roughly three characters per
minute, Wolpaw et al. 2002). This is too slow for natural
interactive communication, so, to effectively use BCIs as
an alternative to conventional interfaces, it is necessary
to research ways of optimizing selection techniques
and incorporating prediction mechanisms to speed up
communication.

Signal-to-noise ratio

Like any other communication channel, the BCI system
performance heavily depends on the signal-to-noise ratio
(SNR). Feature extraction success depends on the SNR,
specifically estimated as the ratio between the occurrence
of the wanted (by the subject using the BCI) cerebral
signal modulation and the ongoing variation of the same
signal in a certain time period. This ratio will affect the
translation algorithm efficiency, defined as the ratio
between the desired and the produced output. For
instance, in a BCI based on sensorimotor cortex mu
rhythms, the biological noise includes the alpha activity
from other brain areas (e.g. the visual cortex). It is worth
noting the importance that BCI systems identify and
eliminate signals generated outside the central nervous
system, like the electromyography (EMG) from scalp and
face muscles and electroculogram (EOG). A further and
difficult step is the discrimination of signal from noise if
they have similar topography, amplitude and frequency
content. For instance, the EOG is more problematic than
EMG for those BCI systems operating on the basis of slow
cortical potentials (SCP; Birbaumer et al. 1999) because
of their frequency overlap; similarly beta-dependent BCI
systems are more sensitive to EMG artifacts (Goncharova
et al. 2003).

Brain signal monitoring systems

EEG and MEG (Niedermeyer & Lopes da Silva, 1997; Del
Gratta et al. 2001) are non-invasive techniques that detect
electrophysiological signals with the temporal resolution
of a millisecond or better. For both techniques, the origin of
the signal is mainly the effect of the postsynaptic currents
associated with synchronous neuronal firing in the brain.
EEG detects the electrical potential difference measured
from the scalp, i.e. it is a reference-dependent measure.
It requires the contact between the recording electrodes
and the scalp. MEG detects magnetic fields at the cranial

surface, giving an absolute measure at each point. The
MEG recording system is brought near the head and the
sensors are not in contact with the scalp. EEG is equally
sensitive to cerebral sources orientated both radially and
tangentially to the head surface, whereas MEG is almost
selectively sensitive to the latter. Moreover, EEG signal
is distorted in space and time by the passage through
the conductivity discontinuities of cerebrospinal fluid,
meninxes, skull and scalp, while MEG signal is transparent
to these discontinuities in the first approximation of
spherical head. ECoG (Gastaut, 1952; Keene et al. 2000;
Allison et al. 1991) is the invasive recording of cortical
potentials from electrodes placed intracortically or in deep
brain regions. With cortical implanted electrodes it allows
the mapping of cortical functions; often this investigation
is performed intraoperatively, with adjunctive difficulties
due to anaesthetics. In humans, ECoG can be used only in
pathological conditions requiring neuro-surgery or deep
brain stimulation (DBS).

Functional magnetic resonance imaging (fMRI) detects
changes in the concentration of deoxyhaemoglobin,
dependent on a complex interplay among blood flow,
blood volume and cerebral oxygen consumption (Heeger
et al. 2000; Heeger & Ress, 2002). When neurons increase
their activity with respect to a baseline level, a modulation
of the deoxyhaemoglobin concentration is induced,
generating the so-called blood oxygen level-dependent
(BOLD) contrast (Rees et al. 2000). BOLD dynamics are
characterized by an initial transient small decrease below
baseline due to initial oxygen consumption (negative dip),
followed by a large increase above baseline, due to an over-
supply of oxygenated blood only partially compensated
for by an increase in the deoxygenated venous blood
volume. The BOLD signal could reflect both the firing
of local neuronal assemblies and also the amount of their
synchronized input, even if insufficient to evoke an action
potential spike, as well as fluctuations in firing synchrony,
which can increase or decrease without affecting the
net firing rate (Rees et al. 2000; Heeger et al. 2000). A
comparison among different techniques is schematized in
Table 1.

This review will focus on cerebral processing features
pivotal for feature extraction step in BCI applications
aiming at improving hand control. It is formed by two
sections. The first will be devoted to the new procedures
developed by our group, which can be applied to
non-invasive electrophysiological signals (EEG, MEG) to
extract the relevant signal useful for BCI feature extraction.
In particular, the proposed methods allow identificagtion
of specific neuronal pool activity on the basis of proper
functional requirements, produce an on-line description
of the time course of these neuronal groups – useful to
increase throughput and to reduce latency – and select
only cerebral physiological activity of interest. Moreover,
artifactual signals in phase with the phenomenon of
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Table 1. Spatio-temporal characteristics of different brain signal monitoring systems

Spatial Temporal
Technique resolution resolution Advantages Disadvantages

EEG Poor Optimal Non-invasive Not an imaging technique
(< 1 ms) Portable

Very low cost
Sleep and operation monitoring

ECoG 1 mm Optimal Low cost Invasive
(< 1 ms) Sleep and operation monitoring Not an imaging technique

MEG 5 mm Optimal Non-invasive Very expensive
(< 1 ms) Excellent signal frequency–temporal Limited resolution

characteristics for deep structures

fMRI 3 mm Low Excellent resolution Expensive
(about 1 s) Non-invasive Limited to activation studies

interest or much stronger (> 103) could be removed –
producing a SNR increase. The second section will be
devoted to organizational changes in the cortical areas
devoted to hand control, induced by unilateral stroke
within the middle cerebral artery territory, i.e. useful for
BCI feature extraction in stroke patients, and to a brief
description of the sensorimotor feedback network devoted
to the hand control, i.e. useful exploiting of BCI sensory
feedback.

Section 1. Functional source separation (FSS)

To ultimately discover and translate the subject’s
intentions, a BCI starts from cerebral activity as depicted
by some brain signal monitoring system. In the case of
EEG and MEG, the sensed signal is a linear mixture of
source activities. This corresponds to the basic model of the
blind source separation (BSS) technique. These algorithms
estimate complete source time courses on the basis of
the statistical properties of the generated signal, without
taking into account the physical nature of the generating
phenomenon. Thus, BSS procedures use only information
contained in the waveform of original signals, a very
convenient property for electrophysiological techniques
(EEG and MEG), which provide the most informative
time–frequency signal from the intact human brain.

In the last decade the BSS techniques, in particular
independent component analysis (ICA) algorithms, have
been successfully applied to EEG and MEG data to estimate
signal of interest (Makeig et al. 1996, 2002, 2004; Vigario
et al. 1997; Tang et al. 2005; for a comprehensive review on
BSS see: Hyvärinen et al. 2001; Cichocki & Amari, 2002).
The aim of such techniques is to extract in a ‘blind’ fashion
(i.e. without making specific assumptions) meaningful
signals that have been mixed linearly, without knowing the
original signals or the mixing coefficients. There appears
to be something magical about BSS; we are estimating the
original source signals without knowing the parameters
of mixing and/or characteristics of the sources. In fact,
without some a priori knowledge, it is not possible to

uniquely estimate them. However, one can usually estimate
them up to certain indeterminacies. In mathematical terms
these indeterminacies and ambiguities can be expressed
as arbitrary scaling, permutation and delay of estimated
source signals. These indeterminacies preserve, however,
the waveforms of the original sources. Although these
indeterminacies seem to be rather severe limitations, in a
great number of applications, like the electrophysiological
ones, these limitations are not essential, since the most
relevant information about the source signals is contained
in their waveforms and not in their amplitudes or in the
order in which they are arranged in the output of the
system. In particular, the ICA assumption is that a set of
statistically independent sources s have been mixed linearly
in the recorded data x by means of a mixing matrix A. The
aim is to recover both s and A starting from the observation
of the linear mixture x = As without making any particular
assumption other than statistical independence of the
sources.

Based on the observation that when we deal with
real-world signals we are never completely ‘blind’, in that
we know (in a more or less detailed and quantitative
way) some of their characteristic features, a new approach,
called functional source separation (FSS), has been
recently proposed by our group (Barbati et al. 2006;
Porcaro et al. 2007). The aim of FSS is to enhance
the separation of relevant signals by exploiting some a
priori knowledge without renouncing the advantages of
using only information contained in original signal wave-
forms. A modified (with respect to standard ICA) contrast
function is defined: F = J + λR, where J is the statistical
index normally used in ICA, while R accounts for the prior
information of the sources. According to the weighting
parameter λ it is possible to adjust the relative weight of
these two aspects. Moreover, since prior information on
the sources may also be described by a non-differentiable
function, the new contrast function F is optimized by
means of simulated annealing. This does not require the
use of derivatives, and performs global optimization, while
gradient-based algorithms usually employed in ICA only
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guarantee local optimization. To separate contributions
representing different sources, the proposed procedure
could be applied in two different ways: by using an
orthogonal extraction scheme (as happens in the basic ICA
model); after having estimated the first source, the second
one is searched in the orthogonal space with respect to the
first, and so on until the last source is estimated – with a
stop rule that can be defined according to the data in hand.
Since relevant components could not always be reasonably
assumed independent/uncorrelated, in the FSS procedure
the orthogonalization step could be also completely
skipped, producing a non-orthogonal extraction scheme.
In this condition, the order of extraction is not significant,
because the procedure is applied each time to the original
data. Different constraints are applied each time to produce
different sources.

The provided sources are suitable to describe ongoing
activity time courses, which allow, for example, single trial
analysis, instead of describing the activations by averaging
all sensors channels and only in specific instants, as is
usually done in the standard procedures. Moreover, even if
a source is extracted by exploiting a functional constraint
related to a specific time portion of the experiment, the
corresponding estimated signal could be studied all along
the length of the whole session.

Functional constraints. The described optimization
procedure exploits a wide variety of constraints, which
express the functional properties, specific to the sources
to be estimated (Fig. 2). The BCI applications we are
interested in are devoted to the upper limb movements,

Figure 2. FSS functional constraints
Representation of the quantities maximized by the
functional constraint to obtain the FS in our different
applications. A, FS responsiveness following the
contralateral median nerve stimulation. The grey area
indicates the time interval around 20 ms where the
responsiveness is maximized (corresponding separated
source S1a); B, as in A, with the grey area indicating the
time interval around 30 ms where the responsiveness is
maximized (obtaining S1b); C, cortico-muscular
coherence. The grey area indicates the frequency
interval around 20 Hz where the cortico-muscular
coherence is maximized (obtaining M1); D, FS
responsiveness following the thumb stimulation. The
grey area indicates the time window from 20 to 40 ms
where the responsiveness is maximized (FST); E, evoked
activity following the little finger stimulation. The grey
area indicates the time window from 20 to 40 ms where
the responsiveness is maximized (FSL); F, PSD of the FS
in the Stimulus\No-stimulus condition. The grey area
indicates the frequency interval from 20 to 70 Hz where
the spectral difference between Stimulus and
No-stimulus conditions is maximized (obtaining V1).
Note that the y axes do not have measurable units, as
FSs do not have a physical unit dimension, before
retro-projection on the original signal space.

in particular to the sensorimotor control of the hand. The
MEG displays an optimal capability to identify cerebral
regions devoted to the hand sensory representation,
describing the physiological somatotopic organization
(Hari et al. 1984; Tecchio et al. 1997; Wikstrom et al.
1997; Pizzella et al. 1999; Zappasodi et al. 2006) and
its distortion as a consequence of central (Rossini et al.
2001; Oliviero et al. 2004; Tecchio et al. 2005a, 2006c,d)
and peripheral damage (Tecchio et al. 2002). Moreover,
MEG can provide a description of the peripheral–central
connectivity of the neural network devoted to the hand
(Tecchio et al. 2000b, 2005b).

Primary sensory hand areas. In the case of the primary
sensory areas, it is often adequate to exploit the cortical area
responsiveness to the stimuli of the corresponding sensory
channel at appropriate times. In our FSS applications,
we obtained the hand representation areas, in particular
the cortical region devoted to the districts innervated by
the median nerve and those representing the thumb and
little finger of both the hands.

We identified in the primary cortex devoted to the
districts innervated by the median nerve two functional
sources (FSs) related to the sensory flow induced by
median nerve stimulation. The first one – named S1a –
describes the activity related to the well-known marker of
the stimulus arrival in the primary sensory cortex (Hari &
Kaukoranta, 1985; Allison et al. 1991). This is known to
be mainly generated by excitatory postsynaptic potentials
impinging on broadman area (BA) 3b pyramidal cells. As
it is maximally recruited at around 20 ms from the stimuli
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at the wrist, the functional constraint taking into account
the ‘reactivity’ to the stimuli to identify S1a was defined as:

RS1a =
t20+�2t20∑
t20−�1t20

|EA(t)| −
15∑
10

|EA(t)| (1)

with the evoked activity (EA) computed by averaging
source (FS is S1a) signal epochs triggered on the median
nerve stimulus at the wrist (t = 0); t20 is the time point
with the maximum magnetic field power on the maximal
original MEG channel around 20 ms (searched in the
[16–24] ms window) after the stimulus arrival: �1t20

(�2t20) is the time point corresponding to a field amplitude
of 50% of the maximal power – by definition in t20 – before
(after) t20; the baseline (no response) was computed in the
time interval from 10 to 15 ms. As only one component is
extracted at each time, it is possible to avoid the amplitude
indeterminacy inherent to the general ICA method. Once
the source which optimizes the contrast function F has
been obtained, the estimated solution is multiplied by
the Euclidean norm of its weight vector aS1a (aS1a such
as aS1a = aS1a âS1a , with |âS1a| = 1), allowing amplitude
comparisons among sources in a fixed position.

We considered a second cerebral source named S1b,
i.e. the source maximally activated in the sensory
areas at around 30 ms from nerve stimulation. While
invasive recordings using ECoG in human (Allison et al.
1991) showed BA 1 at the crown of the postcentral
gyrus contributing to this wave of somatosensory-evoked
potentials, this radial component is poorly detectable
by MEG. The component around 30 ms as recorded by
MEG is mainly generated by BA 3b inhibitory and BA 4
excitatory networks (Wikstrom et al. 1996; Kawamura
et al. 1996; Huang et al. 2000; Tecchio et al. 2005a). The
functional constraint to obtain S1b was defined as:

RS1b =
t30+�2t30∑
t30−�1t30

|EA(t)| −
15∑
10

|EA(t)| (2)

EA was computed as in eqn (1) with FS of S1b; t30

corresponded to the maximum magnetic field power
on the maximal channel around 30 ms (searched in the
[26–36] ms window) after the stimulus arrival; �1t30 and
�2t30 were as in eqn (1), with t30 instead of t20; the baseline
was defined as in eqn (1). Again, the estimated solution was
multiplied by the Euclidean norm of its weight vector aS1b

(aS1b such as aS1b = aS1bâS1b, with |âS1b| = 1).

Primary sensory finger areas. To identify neural networks
devoted to individual finger central representation, the
‘reactivity’ to the stimuli was taken into account in the
whole period including the two early components. It was
defined as follows: the evoked activity (EA) was computed
separately for the two sensorial stimulations by averaging
signal epochs centred on the corresponding stimulus (EAL,

little finger; EAT, thumb). The reactivity coefficient (Rstim)
was then computed as:

Rfinger =
40∑

t=20

|EAfinger(t)| −
−10∑

t=−30

|EAfinger(t)| (3)

with finger = thumb (T), little finger (L) and t = 0
corresponding to the stimulus arrival. The time interval
ranging from 20 to 40 ms includes the maximum activation
(Allison et al. 1980; Tecchio et al. 1997) and the base-
line (no response) was computed in the prestimulus time
interval (−30 to −10 ms). To estimate the time behaviour
of the neural networks devoted to the thumb (FST) and
little finger (FSL) cortical representations during different
activation states, each functional source was extracted
using data along the entire recording period, alternating
these two fingers and median nerve separate stimulation.

As already mentioned, the orthogonality constraint was
removed and the two finger sources were searched for
starting from the original data. In fact, in the specific
and restricted cortical region of interest, neural networks
are spatially highly interconnected and superimposed and
temporal overlap of finger sources activation could be
reasonably hypothesized.

Primary visual sustained induced activity. In the visual
cortex, to observe the cerebral activity induced by a
sustained stimulus, the robust and temporally induced
power increase of gamma activity was exploited, by the
spectral power band relative variation during the whole
period of sustained stimulus and the period of stimulus
absence. The following ad hoc functional constraint R was:

RV 1 =

∑
γ

PSDStimulus − ∑
γ

PSDNo-stimulus∑
γ

PSDNo−stimulus

(4)

by computing the PSD (power spectrum density) area
difference of the source (FS) between stimulus (from
0 to 4.5 s of each trial, t = 0 corresponding to the
stimulus onset) and No-stimulus (from −4.5 to 0 s of
each trial) in the γ (gamma, 20–70 Hz) frequency band
and normalizing this difference with respect to the gamma
activity level at No-stimulus (Barbati et al. 2007).

Primary motor hand area. To identify the source in the
primary motor area devoted to the control of the hand
movements – named M1, the coupling of cortical and
muscular rhythmic oscillations in the beta band was taken
into account. In fact, it has been demonstrated that the
component of the synchronized cortical activity, coupled
to synchronous rhythmic motor-unit firing – assessed by
surface EMG – within this band, characterizes aspects
of cortical control on voluntary movement (Conway
et al. 1995; Gross et al. 2000; Kilner et al. 2000), and
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is generated in the primary motor cortex (Brown et al.
1998; Brown, 2000; Gerloff et al. 2006a). A component of
the synchronized cortical activity has been demonstrated
coupled to synchronous rhythmic motor-unit firing
assessed by EMG surface recordings both in animals
and humans (Piper, 1907, 1912; Baker et al. 1997). In
monkeys, for example, pyramidal neurons of the primary
motor cortex show bursts of oscillations in the beta band
during a precision grip task, coupled with the rectified
EMG of the active muscles (Murthy & Fetz, 1992). MEG
has provided the first direct extra-cephalic measurement
of such cortical–muscular oscillation coupling (Conway
et al. 1995). This technique has shown systematic
cortico-muscular coherence related to the patterns of
motor output and sensory input, both in healthy subjects
(Gross et al. 2000; Brown & Marsden, 2001; Kristeva-Feige
et al. 2002; Tecchio et al. 2006a) and in patients with
motor disorders (Brown et al. 1998, 1999; Volkmann et al.
1996; Timmermann et al. 2003; Kristeva et al. 2004). The
corresponding functional constraint to obtain the M1
source was:

RM1 =
ωmax+�2ωmax∑
ωmax−�1ωmax

Coh(ω) (5)

where Coh is a function of frequency ω, obtained for
each ω as the amplitude of the cross-spectrum between
the M1 source signal and the rectified EMG, normalized
by the root mean square of the power spectral densities
of these two signals; �1ωmax (�2ωmax) is the frequency
point corresponding to a coherence amplitude of 50% of
the maximal value between [13.5–33] Hz – called ωmax –
before (after) ωmax. As for S1a and S1b, M1 was obtained by
multiplying it by the Euclidean norm of its weight vector
aM1 (aM1 such as aM1 = aM1âM1, with |âM1| = 1).

The FSS algorithm is flexible allowing exploit of different
constraints, also not differentiable as simulated annealing
is the optimization procedure. The functional constraint
could be defined suitably for the experimental conditions
in use. In our examples, the static visual stimuli induce
a power increase in the gamma band sustained along
the stimuli duration, a response more evident than the
visual evoked field. This latter point can be exploited
in the functional constraint if flashing lights or pattern
reversal are used as visual stimuli. For the primary
motor area identification, the motor task we used was an
isometric contraction for periods of about 20 s, inducing
a significant synchronization between primary motor
and electromyographic activities in the beta band and
the constraint was chosen accordingly (maximization of
MEG–EMG coherence). For this area identification the
motor-related fields or potentials would be the suitable
functional constraint if the motor task were the abrupt
repetitions of a body district movement.

FS evaluation. The estimated FSs in all cases contained
practically all the required signal features, demonstrating
the ability to describe the dynamics of different primary
cortical network responsiveness, primary visual sustained
activity or primary motor synchronization phenomena
(Fig. 3).

Although the FSS constraints allow identification of
sources only on the basis of their function behaviour,
the generated field distribution could be obtained by
retro-projecting the source activity in the sensor space and
could be used as the input for inverse-problem solution
algorithms. The sources were in all cases positioned in
agreement with well-established anatomical knowledge
(Fig. 4 left).

FS functional behaviour. The sources extracted requiring
a characteristic functional property in a specific time
period, are obtained along the whole experimental session,
including all the planned experimental conditions (Barbati
et al. 2006; Porcaro et al. 2007; Tecchio et al. 2007a; Barbati
et al. 2007). To give an example, we observed all the FSs in
the hand sensorimotor area (S1a, S1b, FST, FSL, M1; Fig. 4)
during the stimulation of the median nerve. We observed
that FST showed a higher responsiveness to the median
nerve stimulation with respect to the thumb stimulation
itself (Barbati et al. 2006), in agreement with the physio-
logy of the hand innervation. In fact, it is well known that
in stimulating a nerve directly, all the proprioceptive and
the superficial perception fibres of innervated districts are
recruited; therefore, the cerebral source representing the
thumb – innervated by the median nerve – is expected to be
more reactive to the stimulation of this nerve with respect
to the cutaneous stimulation obtained by ring electrodes.
Moreover, median nerve stimulation over the motor
threshold induces a partial stimulation of the ulnar nerve
(innervating the little finger) and consequently of the little
finger proprioceptive and superficial perception fibres (FSL

in Fig. 4; Barbati et al. 2006). Another interesting property,
emerging in the FS behaviour without being required by
the functional constraint, was that M1 reacted to galvanic
median nerve stimulation more at around 30 ms than
at 20 ms (Fig. 4; Porcaro et al. 2007). This last property
sustains a contribution from precentral neuronal pools in
originating M30 component (BA 4; Kawamura et al. 1996;
Tecchio et al. 1997, 2005b; Huang et al. 2000).

We give these examples to show the FS potential to
be obtained exploiting a specific functional requirement
in a specific time period and to be afterwards used to
describe the behaviour of the neuronal pool identified with
the specific functional property, in different experimental
stages. In relationship with BCI, this property could be
exploited in two main ways. The weight vector obtained
in one session can be used in successive recordings.
In this regard, our experience (authors’ unpublished
data) indicated that a suitable description is obtained if
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Fig. 3. FS discrepancy
A, evoked activity during median nerve stimulation. In one representative subject, the two most representative
parietal channels are superimposed in the time window [−10, 80] ms, after averaging on median nerve stimuli,
t = 0 being the stimulus arrival at wrist (vertical continous line). The time points corresponding to M20 and
M30 components are indicated (vertical dashed lines). Left: original data. Centre: retro-projected data with
only the S1a source (top, MEG˙recS1a) and with only the S1b source (bottom, MEG˙recS1b). Right: original data
minus MEG˙recS1a (top) and original data minus MEG˙recS1b (bottom). The grey area indicates the time interval
(�2t20 + �1t20 + 1 top, �2t30 + �1t30 + 1, bottom) where the functional constraint, i.e. the FS responsiveness, is
maximized. Note that both S1a and S1b well explain the generated field at their respective latencies. B, PSD in the
Stimulus\No-stimulus condition. Left: PSD of one representative MEG sensor signal in the occipital region displayed
in the frequency window [0, 80] Hz. Centre: retro-projected channel with the estimated FS (MEG˙rec). Right: PSD
of the original MEG data minus MEG˙rec channel. The grey area indicates the frequency interval [20, 70] Hz)
where the functional constraint, i.e. the band power difference between Stimulus and No-stimulus conditions,
is maximized. C, cortico-muscular coherence during voluntary contraction. The two channels most coherent
with electromyographic activity are chosen. Their coherences with the rectified EMG in the frequency window
[0, 45] Hz. The confidence limit is indicated (0.015, horizontal dashed line). Left: original data. Centre:
retro-projected channels with only M1 (MEG recM1). The two channels display the same coherence with the
EMG signal, as all the channels obtained by retro-projecting only one FS display the same time evolution, unless
a multiplicative factor and the coherence is independent from the signals amplitude. Right: original MEG data
minus MEG recM1 channels. The grey area indicates the frequency interval (�2ωmax + �1ωmax + 1) where the
FS–muscular coherence (dimensionless) is calculated.
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similar conditions occur (weight vectors extracted from
similar experimental sessions in different days display
correlations higher than 0.91); it would be of high
interest to confirm these preliminary positive findings in
FS components extracted from a controlled laboratory
setting, later applied to a noisy real-world environment,
where competing processes should be expected. The
second opportunity is to use the weight vector to isolate
the activity from a specific neuronal pool, in this way
being more sensitive to volitional modulations of the
activity from those areas. For example, the selection of the
activity from primary visual areas by the above described
functional constraint, could allow more sensitivity to
volitional visual imagery.

ICA artifact removal. Muscle contraction on the cephalic
district as well as eye movements produce electromagnetic
signals which can be recorded from scalp electrodes
with amplitudes that can easily overwhelm the brain
generated signals, particularly on frontal, temporal and
occipital regions (McFarland et al. 1997; Anderer et al.
1999; Croft & Barry, 2000; Goncharova et al. 2003).
More importantly, the EMG signal from frontal muscles
can imitate the frequency of the mu and beta rolandic
rhythms and the electro-oculographic (EOG) signal and
blinking can resemble the fronto-central theta rhythms.
Although FSS could in principle be successful even in the
presence of disturbance signals, if they are uncorrelated
with the required functional characteristics expressed in
the functional constraint, on some occasions, artifactual

Figure 4. FS positions and behaviour
Left, position in one representative subject of
extracted sources representing the thumb
cortical network (FST), the median nerve
connected sensory areas (S1a, S1b), the
primary motor area (M1) and the little finger
cortical network (FSL) in the left hemisphere
projected on a representative axial section.
Right, dynamics of FSL, S1a, S1b, M1 and FST

activities during contralateral median nerve
stimulation, shown after averaging the source
signal timed on the stimulus onset (t = 0,
vertical dashed line) in the [−10, 50] ms time
window. Note that S1a responsiveness is
maximal around 20 ms, S1b around 30 ms, and
M1 responded more at 30 ms than at 20 ms
(see text). Note that the y axes do not have
measurable units, as FSs do not have a physical
unit dimension, before retro-projection on the
original signal space.

activities could be as higher as 10–100 times stronger than
the signal of interest or be in phase with it (Goncharova
et al. 2003). In these cases, it could be very helpful to
previously identify and discard these artifacts. ICA was
proven to be an efficient procedure to remove artifactual
activity avoiding trails exclusion (Vigario et al. 1997; Ziehe
et al. 2000, 2001; Cao et al. 2000; Delorme & Makeig, 2004).
We introduced a suitable strengthening and simplification
of ICA preprocessing data analyses, through an auto-
matic detection system of artifactual components (ICs),
based on statistical and spectral ICs characteristics (Barbati
et al. 2004). Moreover, the procedure allows recovery of
part of the non-artifactual signals possibly lost by the
blind mechanism, via a control cycle on the difference
between original data and those reconstructed using only
ICs automatically retained. This step, after automatic
pruning, seems to be a suitable way to render negligible
the risk of loose non-artifactual activity when applying
BSS methods to real data. An emblematic case of artifacts
50–100 times larger than the signal of interest comes
from MEG fetal recordings, where the cerebral activity of
the fetus is largely overwhelmed by the magnetic signal
generated by mother heartbeat and partly by the fetal
one. In this case, we developed an ad hoc functional
selection procedure of ICs, removing the maternal and fetal
cardiac activities, so disclosing the fetal auditory responses
to the external sound stimulation (Porcaro et al. 2006;
Fig. 5).

As we saw above, researchers in the BCI field have
attempted to set up experimental protocols and analysis
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procedures to increase throughputs and decrease latencies
(Xu et al. 2004; Lee et al. 2006). Up to now, BSS algorithms
have been applied in BCI to enhance the feature extraction
in motor imagery (Makeig et al. 2000; Qin et al. 2004; Hung
et al. 2005), visually induced (Lee et al. 2006) and cognitive
(Culpepper & Keller, 2003; Xu et al. 2004; Serby et al. 2005)

Figure 5. ICA artifact removal
A, PSD of two channels overlapped before (continous blue line) and after (dotted line) artifacts rejection. The left
channel is chosen as it is much sensitive to cardiac artifact, and the right one to ocular artifact. B, effects of the
ad hoc IC artifact removal and IC functional selection procedure. All MEG sensors overlying the fetus head are
superimposed. Column 1: signal during a 2 s time period; column 2: signal average on the external sounds (dotted
vertical line); column 3: spatial magnetic field distribution at the latency of the main component (continous vertical
bar). a, original MEG filtered signals: maternal and fetal cardiac peaks are evident in the trace. b, retro-projection
of all ICs but those describing the maternal cardiac activity. c, retro-projection of all ICs but those describing the
maternal and fetal cardiac activity; average in c2 still shows a poor quality of morphology, as auditory response
latency and amplitude are not identifiable. d, retro projection of only the ICs describing the auditory response,
according to the ad hoc procedure. Latency and amplitude of the auditory response are now clearly identifiable
(d2). In this case, the field distribution (d3) shows a dipolar-like shape, indicating a good positioning of the system
with respect to the fetus head.

tasks. The BSS community is also strongly involved in
developing online procedures (Serby et al. 2005; Piccione
et al. 2006). Since FSS returns the single trial time courses
of the source of interest without requiring the selection
between several components, it could be an even more
promising tool.
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FSS comparison with other source identification methods.
The main difference between FSS and the other
source identification methods, ranging from inverse
problem-solving algorithms (single and multiple dipoles:
Scherg & Berg, 1991; Multiple Signal Classification
(MUSIC): Mosher et al. 1992; recursively applied and
projected-MUSIC (RAP-MUSIC): Mosher & Leahy, 1999;
minimum norm estimates: Hämäläinen & Ilmoniemi,
1994; Low resolution brain electromagnetic tomography
(LORETA): Pascual-Marqui et al. 1995) to spatial filtering
like beam forming (for example synthetic aperture
magnetometry, (SAM): Vrba & Robinson, 2001), is that
no information about the physical relationship between
cerebral source generators and generated field distribution
is taken into account. Separated FSs provide the source
activities in time and the spatial distribution of the field
they generate, from which appropriate modelling can
to be used to solve the inverse problem to know the
source position. The solution of the inverse problem
theoretically provides in one go both the source position
and its time evolution. Unfortunately, on one side it is
hill posed and adjunctive information is to be added,
chosen properly time by time. On the other side the
solution is based on the relationship, described by the
Maxwell equations, between the current distribution and
that of the generated field. This relation depends on
physical properties, i.e. the shape of conductor volume
(the head), the distribution and cytoarchitecture of the
cerebral regions (place of the currents generating the
field), the geometrical characteristics and conducibility
values of the extra-cerebral tissues (cerebrospinal fluid,
meninxs, skull, scalp) none of which are known with
precision. As a consequence, the inverse problem solution
is based on information less accurate provided by the
electrophysiological techniques, while FSS algorithms
do solve the source identification problem using the
most accurate information, i.e. the statistical temporal
frequency properties of the signal. As we said before, once
the source has been identified, to know its position the
proper inverse problem solution can be calculated. In many
cases, the scientific interest is in the morphological and
temporal characteristics of the signal and its modulation
in the different experimental conditions, and the inverse
problem solving step is not necessary. Whenever the
source position is of specific interest, the advantage is in
applying localization algorithms having isolated the field
distribution generated by the specific source only.

Section 2. Hand sensorimotor organization and its
changes in stroke patients

Many years of research in functional imaging has
documented that the ultimate factor sustaining recovery
is, in parallel with the ‘awakening’ of neurons in the
perilesional zone of ischaemic penumbra (Heiss & Graf,
1994), the neural ability to change the properties of the

activation induced by inputs from peripheral receptors
and/or other brain areas. This ability is called cerebral
plasticity (for review see Calautti et al. 2003; Rossini
et al. 2003; Hummel & Cohen, 2005). When setting
up BCI feature extraction, these cerebral reorganizations
should be taken into account, especially in the electro-
physiological counterpart, since EEG and MEG are the
brain signal monitoring systems best suited for most
realistic BCIs. In particular, MEG is especially suitable
in poststroke studies, because the morbid tissue near

the cerebral generators has minimal effects on the scalp
distribution of the magnetic field (Huang et al. 1990;
Maclin et al. 1994). BCI feature extraction is based on
two main steps: spatial identification of the interesting
signal sources and the time–frequency characterization of
this signal. To guide BCI applications, it is expected that
the activity from the areas positively contributing to the
clinical recovery are the most appropriate and informative.
In patients affected by a monolateral ischaemic lesion in the
middle cerebral artery territory inducing a sensorimotor
impairment of the upper limb, a diverse contribution to
the clinical recovery by several area reorganizations in the
affected (ipsi-lesional ILH) and the unaffected hemisphere
(contra-lesional CLH) is going to be recognized. The
activation of CLH non-primary motor areas was reported
to decrease proportionally with the improvement of motor
performance (Calautti & Baron, 2003; Schaechter, 2004)
and CLH SM1 activations were commonly considered
as a marker of poor recovery (Loubinoux et al. 2003;
Calautti et al. 2003). Conversely, increasing findings
support a positive role of non-primary ILH areas in
patients recovering incompletely (Johansen-Berg et al.
2002; Loubinoux et al. 2003; Fridman et al. 2004; Gerloff
et al. 2006b). Moreover, a similar hypothesis was suggested
for the recruitment of ILH areas excessively asymmetrical
from homologous in the CLH (Pineiro et al. 2001; Calautti
et al. 2003; Thickbroom et al. 2004). On the basis of
the symmetrical organization of primary hand areas,
demonstrated by different techniques in healthy subjects
(Rossini et al. 1994b; Puce et al. 1995; Hallet, 1996; Tecchio
et al. 1997; Wikstrom et al. 1997), the comparison of the
ILH to the CLH in mono-hemispheric stroke patients
allows a sensitive procedure to identify reorganization
phenomena in the damaged cerebral regions. On this basis,
an ad hoc procedure was previously introduced, for the
identification of excessive interhemispheric asymmetries
of primary sensory hand areas (Tecchio et al. 1997,
2000b, 2005b). In these studies, a galvanic median nerve
stimulation was used, a protocol especially suitable in
patients because it equals the input to the two hemi-
spheres. It seems, for this reason, more appropriate in
order to detect interhemispheric recruitment asymmetries
of homologous areas, with respect to active motor
tasks (Kotani et al. 2004) where the functional demand
to control the paretic and non-paretic hand cannot
be equalled. In patients in stabilized conditions (more
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than 1 year from symptoms onset), primary sensory
cortical hand areas topographical modifications and
responsiveness amplitudes were observed (Rossini et al.
1998, 27 patients; Rossini et al. 2001, 17 patients), with
brain areas outside the normal boundaries and usually not
reached by a dense sensory input from the opposite hand
acting as somatosensory hand centres. These mechanisms
were linked with the hand sensorimotor recovery (Rossini
et al. 1998, 2001; Tecchio et al. 2006d; Altamura et al. 2007).
A deeper knowledge of brain mechanisms sustaining
recovery in stroke patients who do not achieve a normal
neurological function by standard procedures, is of utmost
importance, since this group could best benefit from
adjunctive rehabilitative-stimulating interventions, like
BCI-mediated procedures.

Once spatial properties of interesting signal sources
have been identified, BCI will exploit their time–frequency
characteristics. When studying rest activity in post-
acute and chronic phase, perilesional delta activity was
commonly observed (Butz et al. 2004, 23 patients).
Moreover, frequency-selective alterations related to
specific dysfunctions were found: global clinical status
was mostly impaired in patients with increased total and
slow band activity powers, whereas hand functionality
was mostly disrupted in patients with a reduction of
high-frequency rhythms (Tecchio et al. 2006c, 56 patients;
Tecchio et al. 2006c, 32 patients).

While all the above mentioned studies are most suitable
to characterize recruitment changes in patients, the
organization of the movement control remains the ability
the BCI tools should help to recover. Motor imagery is
a protocol design also suitable for patients with more
severe movement impairment. It is clearly indicated by the
literature that the brain activity subtending motor imagery
is modified in patients (Sharma et al. 2006). In healthy
subjects, movement imagery can focus specific facilitation
on the prime-mover muscle for the mentally simulated
movement (Rossi et al. 1998a) and mental simulation
affects spinal motoneuronal excitability as well, although
it has been proved that the main effect takes place at
cortical level (Rossini et al. 1999). Reviews considering
motor imagery in healthy subjects and in patients with
stroke – which may disrupt the motor imagery network
– suggested the encouraging effect of motor imagery
training on motor recovery after stroke (Lotze & Cohen,
2006; Sharma et al. 2006). While in healthy volunteers,
robust activation of the non-primary motor structures,
but only weak and inconsistent activation of M1 occurs
during motor imagery, in patients with stroke, the cortical
activation patterns are proved to involve M1 in both the
affected and unaffected hemispheres (Cicinelli et al. 2006).
These results indicate that if an appropriate methodology is
implemented, motor imagery may provide a valuable tool
to access the motor network for BCI feature extraction in
stroke patients.

As mentioned above, the computer-mediated visual
feedback presents problems for fast applications, while
the haptic feedback and electro-tactile sensations
present more realistic timing. All studies devoted to the
organization of the sensory and proprioceptive inflow
underline that a successful motor control relies on
the continuous and reciprocal exchange of information
between activities of motor areas involved in the task
program execution and those elaborating proprioceptive
sensory information (Terao et al. 1999; Scott, 2004). As
a matter of fact, subjects with complete deprivation of
proprioceptive feedback (such as in some cases of peri-
pheral neuropathy) can move their limbs using visual feed-
back (e.g. by looking at the limb), but their movements
are typically sluggish, coarse, require substantial mental
concentration and attention, and corrections are therefore
delayed and often cause other mistakes (Sainburg et al.
1998; Gordon et al. 1995).

Short-term influences on motor cortical organization
have been demonstrated by modification of sensory input
both in animal experiments and in healthy humans by
using several types of technology for functional brain
imaging (Brazil-Neto et al. 1992; Rossini et al. 1994a;
Sadato et al. 1995; Kristeva-Feige et al. 1996). Mechanisms
of rapid anaesthesia-related perturbation with changes
occurring at multiple levels of sensory system somatotopy
were proven (Nicolelis et al. 1993), underlying the intimate
relationship between primary sensory and motor regions.
Experimental findings speak in favour of a significant role
played by the tonic sensory flow from the skin receptors
and from the phalangeal joint receptors in energizing
the corticospinal tracts governing muscles (Johansson &
Westling, 1987; Rossini et al. 1996a, b; Rossi et al. 1998b).
For BCI applications, such evidence indicates the need to
substitute with compensating feedback mechanisms the
absence of the physiological one, to obtain a satisfactory
movement control.

To optimize knowledge on proprioceptive information
properties in the region dedicated to hand control, we
investigated the primary sensory and motor cortices inter-
actions, obtaining a simultaneous assessment of sensory
cortex activity modulation due to movement and of motor
cortex activity modulation due to sensory stimulation
(Tecchio et al. 2006b; Fig. 6). The introduced protocol
is repeatable and suitable for patients, thus it is suitable
to investigate patients eligible for BCI applications. In
fact, primary sensory cortical excitability is indexed by
the most repeatable and subject attention-independent
components of brain response to the median nerve
stimulation at the wrist (Hari & Kaukoranta, 1985; Allison
et al. 1991). A relative high-frequency nerve stimulation
(around 2 Hz) was used to reduce the recording time. The
primary motor cortex contribution to movement control
is indexed by cortico-muscular coherence (Brown et al.
1998) requiring a motor task both as simple and common
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Figure 6. Sensorimotor feedback
A, experimental protocol: Top from left:
(1) subject position during recordings from
scalp positions overlying the peri-rolandic area
contra-lateral to the moved-stimulated hand:
(2) non-magnetic device, i.e. the water
sphygmomanometer, to control the level of
contraction: (3) showing the thumb position
during isometric contraction, with electrodes
recording OP EMG signal, as well as the median
nerve stimulation at wrist. Bottom from top:
(1) trigger indicating tone beep for
starting/stopping isometric contraction:
(2) trigger indicating sensory stimuli to the
median nerve at wrist: (3) electromyographic
signal, where relax and contraction periods are
clearly noticeable, as well as the sensory stimuli
artifact: (4) off-line generated signal code
differentiating the 4 experimental conditions:
relax (R), sensory (S), motor (M), sensory-motor
(SM). B, FS PSD and intersource coherence. PSD
of the S1 and M1 cerebral sources (top) and
S1–M1 coherence (bottom) in the four
experimental conditions in a representative
subject. Note: higher S1 representation in the
alpha band and higher M1 beta and gamma
band representation; lower S1–M1 coherence
in all condition with respect to rest in the three
frequency bands and values above significance
threshold in motor condition (dashed–dotted
line). Note that the y axes of S1 and M1 PSDs
do not have measurable units, as FSs do not
have a physical unit dimension. The S1–M1
coherence is a dimensionless quantity.
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as possible, thus most suitable in patients with upper
limb impairments. In fact, the experimental contraction is
preserved to extremely severe movement impairments, e.g.
in diseases affecting the hand motor control, like stroke
and Parkinson’s disease or hand dystonia. As described
in Section 1, the ad hoc FSS was developed to extract S1
and M1 source activities (Porcaro et al. 2007), allowing
characterization of the spectral properties, the functional
involvement of S1 and M1 and their coupling in the above
described sensorimotor tasks (Fig. 6). It could be very
useful to reveal alterations in pathological conditions and
setting up feedback control systems for BCI use.

Conclusions

Our review presents innovative methods expected to
enhance BCI feature extraction from EEG or MEG signals,
for applications devoted to improve hand control. In
particular, the provided experimental set-up and analysis
tools could be used to ameliorate a BCI system. In
fact, they increase the signal-to-noise ratio by removing
non-cerebral artifacts even when they are many times
(10–100) larger than the signal of interest. Moreover, they
offer a procedure to extract exclusively the sources of
interest, obtaining their time course along with the whole
experimental session on the basis of appropriate functional
requirements taking place in specific time periods. Since
the FSS procedure is suitable for single trial analysis, it
is promising for online developments – increasing BCI
throughput and reducing latency. For applications in
patients, information about the recruitments of unusual
areas to control the hand were provided, useful for
both protocol design definition and interesting signal
extraction. Finally, information about primary sensory
and motor area relationship was introduced, as a first step
to use the haptic feedback and electrotactile sensations
which have been indicated as the most compelling for
BCI applications aiming at improving hand movement
control.
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