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An appropriate model of recent human evolution is not only
important to understand our own history, but it is necessary to
disentangle the effects of demography and selection on genome
diversity. Although most genetic data support the view that our
species originated recently in Africa, it is still unclear if it completely
replaced former members of the Homo genus, or if some inter-
breeding occurred during its range expansion. Several scenarios of
modern human evolution have been proposed on the basis of
molecular and paleontological data, but their likelihood has never
been statistically assessed. Using DNA data from 50 nuclear loci
sequenced in African, Asian and Native American samples, we
show here by extensive simulations that a simple African replace-
ment model with exponential growth has a higher probability
(78%) as compared with alternative multiregional evolution or
assimilation scenarios. A Bayesian analysis of the data under this
best supported model points to an origin of our species �141
thousand years ago (Kya), an exit out-of-Africa �51 Kya, and a
recent colonization of the Americas �10.5 Kya. We also find that
the African replacement model explains not only the shallow
ancestry of mtDNA or Y-chromosomes but also the occurrence of
deep lineages at some autosomal loci, which has been formerly
interpreted as a sign of interbreeding with Homo erectus.

Bayesian analysis � DNA nuclear data � multiregional hypothesis �
out of Africa hypothesis

Recent international efforts have produced a large amount of
genetic data (1) to identify loci involved in complex diseases

or genomic regions with unusual patterns of polymorphism that
could be indicative of recent selective events (2). However,
because past demographic events are likely to have greatly
affected current patterns of genetic diversity, genetic data are
difficult to interpret without a general demographic model that
can explain neutral variability (3). A global scenario of human
evolution is also important to understand our origins and how
and when human populations have colonized the globe, a
question that has fascinated physical and molecular anthropol-
ogists over the past decades (4).

Many general scenarios of human evolution have been pro-
posed based on paleontological, archeological, or genetic data
(5, 6), and their fit to various aspects of our genetic diversity has
been investigated (3, 7–9). The current debate over recent
human evolution can be simplified by considering the alternative
scenarios shown in Fig. 1 (5). The African replacement scenarios
(Fig. 1 A), which posit a single and recent African origin for all
modern humans, are mainly supported by mitochondrial DNA
(mtDNA) and Y-chromosome polymorphisms (4), by the cur-
rent lack of Neanderthal mtDNA genes in modern humans (10),
and by gradients of nuclear genetic diversity from Africa toward
the Americas (4, 11). Recent examination of nuclear DNA has,
however, revealed some polymorphism patterns that were
judged incompatible with a pure African replacement scenario
(7, 12–17). For instance, the presence of very old lineages in

Africa and Asia raised claims for some degree of interbreeding
between modern and archaic Homo forms (13, 14, 16, 17). Such
interbreeding can occur under assimilation scenarios (Fig. 1B),
where modern humans migrating out of Africa would have
hybridized with local Homo erectus and incorporated old lineages
(15, 18) or under multiregional scenarios (Fig. 1C), where
migrants would have been continuously exchanged between
Africa and Asia, leading to a synchronized emergence of modern
anatomy. Note that these simple scenarios are somewhat arbi-
trary and that human evolution has certainly been more com-
plex, but they certainly incorporate key debated features of
human evolution, such as population expansions within conti-
nents, intercontinental migrations, and potential hybridization
with archaic forms.

Previous approaches to understand human evolution using
genetic data have not attempted to compare directly alternative
scenarios within a global statistical framework, and the posterior
probability of the models presented above has never been
evaluated. In principle, alternative models can be directly com-
pared if their likelihood can be computed. Even though these
likelihoods can now be computed for relatively simple scenarios
involving a few parameters (19), the likelihood function of
complex demographic scenarios may be very difficult, or even
impossible, to solve analytically (20). In this article, we overcome
this problem by taking an approximate Bayesian computation
(ABC) approach (21) to compare models and estimate the
parameters of interest. The ABC approach is a convenient way
of dealing with such situations because it is possible to compare
the probability of obtaining the observed data (or summary
statistics computed from them) under alternative scenarios,
marginal to (i.e., irrespective of) the parameter values. Complex
models can thus be compared even though they depend on many
parameters, the true values of which are very uncertain.

Results
We first evaluated the posterior probabilities of different models
within each class of the three scenarios considered here, which
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are the African replacement, multiregional evolution, and as-
similation scenarios (see Fig. 1 and Materials and Methods for
further information on the models). Under the African replace-
ment and assimilation scenarios, models with exponential
growth [African replacement with exponential population growth
(AFREG) and assimilation with exponential population growth
(ASEG)] were found to have the largest posterior probabilities
(0.958 for AFREG and 0.909 for ASEG, Fig. 1 A and B),
suggesting that both the emergence of modern humans in Africa
and their spread into other continents are better modeled as a
gradual rather than an instantaneous process. Among the mul-
tiregional evolution (MRE) models, the MRE with bottleneck

and instantaneous population growth (MREBIG) model (Fig.
1C) is slightly favored, with a posterior probability of 0.461 over
MRE with two population sizes in Africa/Asia (MRE2S)
(0.422). The MREBIG model implements a bottleneck in Africa
with an instantaneous recovery, a recent population growth in
Asia, and it allows for different migration rates between Africa
and Asia at different periods.

We then compared the best model of each scenario. We find
that AFREG has the highest posterior probability (PAFREG �
0.781), followed by the best MRE (PMREBIG � 0.218) and ASEG
(PASEG � 0.001) models (Fig. 1). Neutral nuclear sequence data
thus give strong support to a recent African origin of modern
humans without interbreeding with archaic Homo forms, at least
in Asia. To study the power of our model choice procedure in the
context of human evolution, we simulated 1,000 random data
sets under the best model for African replacement (AFREG),
assimilation (ASEG), and multiregional (MREBIG) models and
each time estimated the posterior probability of the three
models. We find that the AFREG and MREBIG models are
correctly recovered (have the highest posterior probability) in
79.3% and 80.1% of the cases, respectively, but the ASEG model
is correctly identified in only 50.3% of the cases [supporting
information (SI) Fig. 3] and, thus, seems to be the model most
difficult to identify. Assuming that the three models have the same
prior probability, we can compute the probability that AFREG is
the correct model given our observation that PAFREG � 0.78 as
Pr(PAFREG � 0.78�AFREG)/[Pr(PAFREG � 0.78�AFREG) �
Pr(PAFREG � 0.78�ASEG) � Pr(PAFREG � 0.78�MREBIG)] �
0.817 (see SI Fig. 4). Similarly, we obtain Pr(ASEG�PAFREG �
0.78) � 0.147 and Pr(MREBIG�PAFREG � 0.78) � 0.036.
Because the ASEG model is generally difficult to identify (SI Fig.
3), a large posterior probability of the AFREG model is rela-
tively likely under this scenario but not under the MREBIG
model, which explains the low probability of �4% for the
MREBIG model.

We then estimated the parameters of the overall best African
replacement model (AFREG, Table 1 and SI Fig. 5) under an
ABC framework based from 5 million simulations. Under this
model, we find that an archaic African population of �12,800
effective individuals gave rise to modern humans �141 thousand
years ago (Kya) after a bottleneck involving �600 effective
individuals. The Out-of-Africa migration, initially involving only
�450 effective individuals would have occurred some 51 Kya,
and the Americas would have been colonized only �10.5 Kya by
�450 individuals.

Discussion
The demographic and time estimates (Table 1) are in overall
good agreement with those obtained previously from fossil or

Fig. 1. Alternative scenarios of human evolution. (A) African replacement
models: AFRIG, African replacement with instantaneous population growth;
AFREG, African replacement with exponential population growth. (B) Assim-
ilation models: ASIG, assimilation with instantaneous population growth;
ASEG, assimilation with exponential population growth. (C) Multiregional
evolution (MRE) models: MRE1S, MRE with constant population size in Africa/
Asia; MRE2S, MRE with two population sizes in Africa/Asia; MREBIG, MRE with
bottleneck and instantaneous population growth; MREBEG, MRE with bot-
tleneck and exponential population growth. For all models, the dark grays
represent modern human populations, and lighter grays represent archaic
populations. AF, Africa; AS, Asia; AM, Americas. A more detailed description
of these models is provided in Materials and Methods and in SI Fig. 3. The
posterior probability of different models within each major scenario is given
below each model. The posterior probabilities of the best model selected
under each scenario are reported within boxes.

Table 1. Demographic and historical parameters estimated under the favored AFREG model

Parameters† Median‡ 95% HPD§

Speciation time for modern human, yr (TMH) 141,455 103,535–185,642
Exit out of Africa, yr (TAS) 51,102 40,135–70,937
Colonization of the Americas, yr (TAM) 10,280 7,647–15,945
Size of archaic African population (NA-AF) 12,772 6,604–20,211
Bottleneck size during speciation (NbMH) 600 76–1,620
Bottleneck size when leaving Africa (NbAS) 462 64–1,224
Bottleneck size when leaving Asia (NbAM) 452 71–1,280
Current African population size (NAF) 206,920 23,535–801,895
Current Asian population size (NAS) 20,262 1,938–62,726
Current American population size (NAM) 5,606 757–13,740

The estimates were calibrated by assuming a human-chimpanzee divergence of 6 million years and a
generation time of 25 years.
†Population sizes are given in effective number of diploid individuals.
‡Median value of the marginal posterior density.
§The 95% highest posterior density interval.
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genetic data. The date for the emergence of modern humans is
indeed well consistent with paleontological record suggesting
dates of 130–200 Kya (5, 22), and with previous genetic estimates
(120–160 Kya) (23). The size of the archaic modern human
population is also close to recent estimates of the ancestral size
for modern humans of �12,500 individuals (3, 7). The size and
timing of the exit out of Africa are in excellent agreement with
recent molecular and archeological studies suggesting that this
migration resulted in a limited number of lineages having left
Africa only �55–65 Kya (6, 11, 24). Finally, the estimates for the
current effective continental population sizes show a net de-
crease from Africa to America compatible with a series of spatial
expansions and founder effects during the colonization of the
world (4, 11).

Our estimated date for the colonization of the Americas (10.3
Kya) is more recent than usually considered, but the upper limit
of the 95% highest posterior density includes the dates of the
oldest archaeological sites of �14 Kya (25). This young settle-
ment time could result in part from the sole sampling of Central
and South American individuals. It is indeed known from the
study of mtDNA and the Y chromosome that some rare alleles
(haplogroups) were found only in North America (26). There-
fore, the inclusion of northern Native Americans could lead to
increased genetic diversity and colonization time estimates. This
result nevertheless suggests a late, postglacial maximum coloni-
zation of the Americas, which is in better agreement with the
estimates of �14 Kya based on the Y chromosome (27) than on
those of �30 Kya based on mtDNA control region (28). The
estimated founder population size for America is about six times
larger than that recently proposed by Hey (29), who suggested
that �80 effective individuals would have colonized the Amer-
icas, but a moderate bottleneck for the settlement of the New
World agrees with recent results from nuclear loci (30) and with
previous mtDNA studies (28). Differences in sampling design
and marker choice between studies could explain this discrep-
ancy: Although our study is based on a homogeneous set of 50
nuclear loci genotyped in the same individuals, the former study
(29) used a mixture of fewer autosomal, X-linked, and unipa-
rentally inherited markers assessed on a very heterogeneous set
of individuals and sample sizes.

Even though the ASEG model is clearly not supported by our
analysis, it is interesting to see that the archaic contribution to
the current Asian gene pool estimated under this model is
extremely small (median: 0.007; 95% highest posterior density:
6.3 � 10�5 � 0.023, SI Table 2). It shows that the observed data
are only compatible with minute or virtually no admixture with
previous members of the Homo genus, at odds with recent
studies of nuclear diversity suggesting a substantial contribution
of archaic genes to the modern gene pool (7, 15), but in keeping

with analyses of mitochondrial DNA (31–33). Despite its con-
vergence to the AFREG model, which assumes no admixture,
the ASEG model has a much lower posterior probability,
probably because the prior for the admixture proportion was
chosen to be uniform between 0 and 1, to include potentially high
levels of admixture (15). Note that an ASEG model with a
narrower or a negative exponential prior for an archaic contri-
bution would certainly be better supported. In contrast to the
ASEG model, the MRE model most compatible with our data
set (MREBIG), however, does not show any convergence toward
an African replacement model, or toward previous implemen-
tations of a multiregional model (e.g., refs. 8 and 34), where a
large archaic African population would send more migrants to
Asia than the reverse. The median estimates of the MREBIG
model (SI Table 2) rather suggest small archaic population sizes
in both continents (�600 effective individuals) and recent
migration rates between continents being very small but still
larger than between the two archaic populations.

Because the occurrence of deep lineages in modern humans
has sometimes been taken as evidence against replacement
models (e.g., refs. 13 and 16), we have computed the empirical
distribution of the times to the most recent common ancestors
(TMRCAs) for the best model under each of the three scenarios
(Fig. 2 A and SI Table 3). We see that the multiregional model
has the narrowest and shortest distribution because of the small
estimated archaic population size that promotes coalescent
events as soon as archaic Asian lineages are brought back
(looking backward in time) to Africa �800 Kya in our model. On
the other hand, very old TMRCAs exceeding several millions of
years can be readily obtained under the African replacement
models (in agreement with previous expectations, see, e.g., ref.
35), because the larger ancestral size in Africa prevents a rapid
coalescence of the lineages that passed through the speciation
bottleneck. When computing continent-specific TMRCAs under
the overall best African replacement model (AFREG) (Fig. 2B
and SI Table 4), we see that very ancient TMRCAs are not
restricted to African samples but that they are also found for
Asian and Amerindian samples. Our results therefore question
the hypothesis that very old TMRCAs should be taken as
evidence for interbreeding events between modern humans and
individuals of other Homo species (13). Unexpectedly, we find
that �10% of autosomal loci should have TMRCAs younger
than 140 Kya. This is at odds with a recent review reporting no
TMRCA younger than 600 Ky among 27 autosomal genes (13),
even though we cannot exclude the possibility that loci with little
or no variation are underrepresented in the published literature.
However, in keeping with these results, we note that 4 of our 50
loci (8%) are entirely monomorphic in the three samples and,
therefore, indicative of a shallow ancestry.

Fig. 2. Empirical TMRCA distribution obtained by simulation under different models. Parameter values were set to the median of the estimated marginal
posterior distributions. Each distribution combines a mirrored estimated density surface in gray with a standard boxplot representation. Boxplots display the
median of the distribution as a white dot, the interquartile range (IQR, 25–75%) as a thick line, and the region of �1.5 IQR as a thin line ending with vertical
whiskers. To facilitate the comparison among models, all distributions (apart those from MREBIG model) were cut after the 99th percentile (full distributions
are available in SI Tables 6, 7, and 8). (A) Autosomal loci. (B) Autosomal loci under the best model (AFREG), where only the samples of each of the three regions
are considered. (C) mtDNA and Y-chromosome. For these markers, simulations were performed by using estimates of effective sizes four times smaller than those
obtained for autosomal loci to reflect the smaller population sizes of these uniparentally inherited markers.

17616 � www.pnas.org�cgi�doi�10.1073�pnas.0708280104 Fagundes et al.

http://www.pnas.org/cgi/content/full/0708280104/DC1
http://www.pnas.org/cgi/content/full/0708280104/DC1
http://www.pnas.org/cgi/content/full/0708280104/DC1
http://www.pnas.org/cgi/content/full/0708280104/DC1
http://www.pnas.org/cgi/content/full/0708280104/DC1


Although our models were fitted to autosomal DNA, they
should also be able to explain the observed features of mtDNA
and Y-chromosome polymorphism, such as their more recent
TMRCAs or very negative Tajima’s D values. We have therefore
simulated TMRCAs and Tajima’s D values for these uniparen-
tally inherited loci using effective sizes four times smaller than
for nuclear loci. We find (Fig. 2C and SI Table 5) that the African
replacement and assimilation models are fully compatible with
TMRCAs �250 Kya such as those found with mtDNA or
Y-chromosome data (e.g., ref. 4), whereas TMRCAs are found
mostly �400 Kya for the best multiregional model, which seems
therefore fully incompatible with these uniparentally inherited
markers. Indeed, the very large TMRCAs obtained for the
MREBIG model occur because, most of the time, Asian and
African lineages do not coalesce after the initial exit out of
Africa. Tajima’s D distributions for autosomal markers are quite
similar under the three best models (SI Fig. 6) and show more
negative values for African than for non-African populations, in
keeping with previous reports (7, 13, 36, 37). On the other hand,
simulated uniparentally inherited loci show positive Tajima’s D
values for Africa under the MREBIG model, at odds with most
reports (e.g., ref. 38) and with the AFREG and the ASEG
models.

Our model choice framework relies on massive computer
simulations and makes it now possible to estimate the posterior
probability of relatively realistic (but still debated) models of
human evolution. The ability to assign probabilities to various
competing scenarios without need to estimate parameters seems
much more satisfying than previous approaches based on good-
ness-of-fit statistics (e.g., refs. 7–9). However, this probabilistic
approach still does not guarantee that the best supported
scenario is the correct one, which could be an untested model.
Although we considered a variety of alternative scenarios, we did
not specifically attempt to design models of human evolution that
would maximize the fit between observed and simulated data.
However, these very simple models capture the basic differences
between proposed alternative scenarios of human evolution (see,
e.g., ref. 5). More elaborate models incorporating intraconti-
nental population subdivisions, long-distance dispersal, or spa-
tially explicit information (8) could be implemented, and the
current model choice framework could be used to evaluate their
respective merits, which would be impossible under a likelihood
framework. An additional improvement would be to account for
the spatial and population structure of the sampling. We have
indeed performed here all simulations assuming random mating,
whereas sampled individuals from different continents were
each drawn from different subpopulations. The coalescent pro-
cess in a structured population is similar to the coalescent in an
unsubdivided population if one samples a single gene by sub-
population (39). Because we sampled two genes per subpopu-
lation, we may have underestimated the frequency of recent
coalescent events within subpopulations, which could, for in-
stance, lead to some underestimation of divergence time be-
tween continents, potentially explaining the recent colonization
time we find for the Americas. The choice of summary statistics
may have an influence on our results, and we used only statistics
that do not require information on the gametic phase (haplotypic
information). It is likely that additional information could lead
to a better discrimination among models. The analysis of larger
data sets, such as genome-wide resequencing data (e.g., ref. 40)
or STR data on population samples from various continents (41)
would be helpful to confirm our results, and it could also lead to
increased power for our model choice procedure. However,
these much larger data sets would require much more computer
power than that used in our study, which already exceeded 10
CPU-months of computations on a Linux cluster.

In conclusion, although our best supported model (AFREG)
certainly does not represent the exact history of modern humans,

we show here that it is much better supported by a random set
of neutral loci than any other models involving interbreeding
with other Homo species. Although we cannot exclude that any
interbreeding ever occurred between modern and archaic hu-
mans or that any favorably selected H. erectus genes could have
spread into modern humans (see, e.g., ref. 18), our results suggest
that this archaic contribution, if present, should be very small.
Our results therefore confirm that our modern gene pool has a
recent and predominant African origin, and they offer a neutral
demographic scenario that could be used to detect ancient
admixture for specific gene regions. Moreover, the best African
replacement model explains key features of other data sets, such
as recent TMRCAs for mtDNA or Y-chromosome loci, as well
as occasional deep lineages of nuclear loci, previously thought to
be indicative of balancing selection or interbreeding with H.
erectus or Neanderthals (7, 13). The demographic parameters of
this model should prove useful to improve our ability to detect
loci involved in complex diseases or in past adaptive events by
providing better null distributions of various statistics used in
genome scans or linkage disequilibrium mapping studies.

Materials and Methods
Samples, Loci, and Laboratory Methods. We sequenced 50 indepen-
dent autosomal noncoding loci of �500 bp each, providing a
total of �25,000 bp for each individual (see SI Table 6). These
loci have been studied in human and chimpanzee populations
(42–44). Additionally, each locus is short enough so that it can
be considered as a nonrecombining segment. Because these data
have been generated through DNA sequencing, they are not
likely to be affected by ascertainment bias.

To complement a first data set consisting of 10 African, and
8 Asian individuals previously analyzed (43), we sequenced here
12 Native American individuals, each affiliated to a different
tribe. This sampling scheme is similar to that used for Africa and
Asia (43) (see also SI Text).

We performed PCR amplification using primers and condi-
tions described in ref. 43, except for five loci for which we
designed new primers whose sequence is available in SI Text.
Sequencing was performed in a MegaBACE1000 system (GE
Healthcare, Chalfont St. Giles, U.K.). Individual reads were
assembled in the PhredPhrap package (45), together with a
reference containing the known variants for each locus. Assem-
blies were visually inspected by using Consed (46), and all
possible heterozygous sites have been rechecked sequencing a
new PCR product. Mutation rates at all loci were estimated after
gametic phase estimation and comparison with chimpanzee
sequences, as explained in SI Table 6.

Tested Evolutionary Scenarios. We modeled three different sets of
scenarios constructed to capture most of the current debate
concerning modern human evolution (see, e.g., refs 5 and 47 for
a general account on different models of human evolution).
Because there is still some uncertainty on the exact details of past
human demography (48), we chose to evaluate several alterna-
tive models within each class of scenarios. For example, previous
attempts of fitting molecular data to the African replacement
scenario have used different demographic growth models (in-
stantaneous, exponential, linear, or logistic) (3, 7–9, 23), but it
is still unclear whether one of these models has better properties
than others.

A general representation of the models contrasted in this
study is shown in Fig. 1, and a detailed schematic representation
is shown in SI Fig. 7, where we list the parameters of all models.
The African replacement models (SI Fig. 7A) are simulated with
instantaneous (AFRIG) or exponential (AFREG) growth after
bottlenecks. Looking forward in time, both models start with an
ancestral (archaic) population in Africa that passes through a
bottleneck and gives rise to a population of modern humans.
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After the bottleneck, the population is allowed to grow to its
current size, either instantaneously or exponentially, depending
on the model. After this event, a migration occurs from Africa
to Asia and, finally, from Asia to the Americas. In both cases,
after a few generations, the founding population is allowed to
expand to its current size.

Multiregional evolution generally refers to a class of models in
which the transition toward modern morphology occurs simul-
taneously because of ongoing gene flow between continents (17,
48). We simulated four different models (see SI Fig. 7C) that
differ in the way population sizes change over time and whether
population growth has been instantaneous or exponential. For-
ward in time, all models start with an archaic African population
that moves out of Africa in an event that attempts to model the
peopling of Asia by H. erectus. Since then, and up to the present,
Africa and Asia exchange migrants. Another major migration
event takes place only from Asia to the Americas. In model
MRE1S, African and Asian population sizes and migration rates
are held constant over the whole simulated period. In model
MRE2S, there is a transition between an ‘‘archaic’’ and ‘‘mod-
ern’’ population size that occurs independently first in Africa and
then in Asia, with new migration rates occurring after the
demographic transition in Africa. The remaining models imple-
ment a bottleneck in Africa during the emergence of modern
humans: In model MREBIG, all populations grow instanta-
neously, whereas in model MREBEG, all ‘‘modern’’ populations
grow exponentially.

Finally, the African origin with assimilation (see SI Fig. 7B) is
a ‘‘hybrid’’ model that includes an early dispersal of H. erectus out
of Africa, but it differs from MRE in two major aspects: There
is no migration between continents, and a fraction of ‘‘modern’’
Asian lineages have originated recently from Africa, like in the
African replacement model. However, another fraction of the
‘‘modern’’ Asian lineages come from the archaic Asian popula-
tion. The ASIG and ASEG models differ by implementing
instantaneous or exponential growth, respectively, after the
bottlenecks associated with the founding of each continent by
‘‘modern’’ humans. These scenarios have been adapted from the
models reviewed in Stringer (47). The prior distributions of the
parameters of the eight tested models are described in SI Table
7 (see next section).

Approximate Bayesian Computations. Parameter estimation and
model evaluation were done under an ABC framework (21). The
different steps of the ABC parameter estimation procedure are
described in detail (see refs. 21 and 49), but we briefly outline
them below. For each model, we first perform a large number of
genetic simulations based on a demographic history that de-
scribes the model using the program SIMCOAL ver. 2 (50).
Some or all parameters that define the model (e.g., population
sizes, migration rates, timing of the demographic events, muta-
tion rates) are considered as random variables for which some
prior distribution must be defined, as shown in SI Table 7. For
each simulation, the parameter values are drawn from their prior
distributions defining a demographic history that is used to build
a specific input file for the SIMCOAL program. SIMCOAL then
performs coalescent-based (51) simulations to generate the
genetic diversity of samples, with the same number of gene
copies and loci than those observed. Summary statistics (S)
identical to those computed on the observed data (S*) are then
calculated for the simulated data set. As in any coalescent
approach, our simulations were performed considering haploid
individuals and with time scaled in generations. Following
Beaumont et al. (21), a Euclidean distance � is calculated
between normalized S and S* for each simulated data set.

Prior Distributions. The prior distributions of the parameters of all
eight models are shown in SI Table 7.

Summary Statistics. Summary statistics of genetic diversity were
calculated by using the program Arlequin ver 3.1 (52). The
following summary statistics were computed: total and per
population number of segregating sites (S), nucleotide diversity
(�) for each population, and total and pairwise FSTs (53).
Because there is some uncertainty associated with the phasing
procedure, we used only summary statistics that do not depend
on phase information. Summary statistics calculated for the 50
loci are reported in SI Table 8.

Model Choice. The posterior probability of each model is esti-
mated by an approach based on a weighted multinomial logistic
regression procedure (54). This approach is an extension of
ordinary logistic regression to more than two categories, and it
is explained in more detail in SI Text and SI Fig. 8. Briefly,
Beaumont (54) has suggested that one can sample the model
indicator (i.e., {1, . . . , m} for models M1, . . . , Mm) from the
prior, �(M) and treat it as a categorical random variable, Y, in
the ABC simulations. We can then apply categorical regression
to estimate P(Y � y�S � S*), where y � 1. . . m is the indicator
for model My, and S* is the vector of observed summary
statistics. Specifically, we estimate the coefficients � in

P	Y � y�S
 � exp	�y
TS
� �

i�1

m

exp	� i
TS
� �1

using the VGAM package implemented in R. We make the
regression estimate locally around S* in the same way as in the
standard regression approach, i.e., only the 5,000 simulations
closest to the observations are retained, and these are weighted
by an Epanechnikov kernel that has a maximum when S � S*
(see SI Text for details). This procedure has been shown (54) to
substantially improve on a previous method (55, 56) for selecting
models by using ABC, and its application to a mixture model
shows that it performs almost as well as a reversible jump
Markov Chain Monte Carlo method using the full data (57).
Model selection within each set of scenarios was based on 2
million simulations for each model. We performed an additional
3 million simulations for each of the best African replacement,
multiregional, and assimilation models to obtain their posterior
probability based on a total of 5 millions simulations for each
model.

Parameter Estimation. For the best model within each set of
scenarios, we retained the 5,000 simulations with smallest asso-
ciated Euclidean distance � computed on a total of 5 million
simulations. Then posterior distributions of the parameters were
obtained by means of a locally weighted multivariate regression
(see ref. 21 for more details). Parameters (x) were transformed
as z � log[tan(x)�1] before regression to prevent estimations
from exceeding distribution limits (58). Although several point
estimators can be computed from these distributions, we report
only the median in Table 1 because it has been shown to have the
overall lowest associated mean square error (59), but we also
report the mode of the parameter distributions for all models in
SI Table 2.

TMRCA Simulations. We generated for each model the expected
distribution of the TMRCA by performing 5,000 simulations of
50 loci, using as fixed parameter values the median estimates
obtained under our ABC approach, which is a reasonably good
point in the parameter space. In the same way, we generated the
distribution of TMRCAs for uniparentally inherited markers by
dividing the population sizes by four because the effective size
for these markers is four times less than for nuclear loci.
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