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The role of stochasticity and noise in controlling genetic circuits is
investigated in the context of transitions into and from compe-
tence in Bacillus subtilis. Recent experiments have demonstrated
that bistability is not necessary for this function, but that the
existence of one stable fixed point (vegetation) and an excitable
unstable one (competence) is sufficient. Stochasticity therefore
plays a crucial role in this excitation. Noise can be generated by
discrete events such as RNA and protein synthesis and their
degradation. We consider an alternative noise source connected
with the protein binding/unbinding to the DNA. A theoretical
model that includes this ‘‘nonadiabatic’’ mechanism appears to
produce a better agreement with experiments than models where
only the adiabatic limit is considered, suggesting that this non-
conventional stochasticity source may be important for biological
functions.

stochasticity � nonadiabaticity � gene networks � competence

Bacteria encode in their genetic material many different strate-
gies of responding to environmental stress to ensure their

survival. Examples of such strategies are motility, chemotaxis,
antibiotic production, and ultimately sporulation (1). Many of these
responses occur only in a fraction of an isogenic population:
phenotypic variability can be obtained even from identical DNA
sequences (2, 3). Thus, a population, without rare genetic muta-
tions, can rapidly regenerate a variety of phenotypes from a single
phenotype able to survive a certain condition. This variability most
likely arises from fluctuations in the cell network that occur even
under favorable conditions. This stresses the biological relevance of
stochasticity in cellular processes, allowing functional plasticity by
switching between phenotypes (4).

Competence is a differentiated state observed in many bacterial
species that is an alternative survival strategy to sporulation.
Competence occurs in populations with high cell densities under
limited nutrient conditions, when the cells are in stationary growth.
When cells become competent, DNA replication stops and cell
division ceases. In this state, the cell becomes able to capture DNA
from its surroundings. There is no sequence specificity for the
subsequent DNA uptake. It has been proposed that the absorbed
genetic material can provide templates for DNA repair or be a
source of nutrients like phosphates or may simply be incorporated
in the cell’s genome. Competence is frequently linked to the
production of antibiotics that can lyse nearby cells, releasing their
genetic material in the medium. Competence is also induced by
quorum sensing mechanisms. These observations suggest that
competence can have a purpose of exchanging genetic material
within the species, functioning as a sexual cycle under limited
growth conditions (5).

In B. subtilis, the expression of the DNA-binding, -uptake, and
-recombination genes is activated by the transcription factor ComK.
Up to five transcription factors have already been identified that
bind the comK promoter. These factors are mainly proteins involved
in the control of stationary growth and sporulation. Studies where
these sites were mutated showed there is a positive feedback loop
where ComK activates its own expression. This loop provides the
essential regulation of competence control (3, 6–8). The levels of

ComK are tightly regulated by the presence of MecA, which recruits
ComK for degradation by the ClpC/ClpP protease complex. The
concentration of ComK is kept low by MecA/ClpC/ClpP degrada-
tion, but when a certain threshold is crossed, self-activation takes
place and ComK is brought to high levels. Virtually all cells lacking
a functional MecA protein produce ComK and go into competence.

Two different pheromones involved in quorum sensing, ComX
and PhrC, induce the srfA promoter. This promoter is linked both
to the synthesis of the antibiotic surfactin and also to the synthesis
of a small peptide ComS that binds to the MecA/ClpC/ClpP
complex. As the expression of mecA and cplC does not change much
over stationary growth phase, the production of ComS protects
ComK from degradation, allowing ComK levels to reach the
threshold for self-activation (5, 9, 10). Experiments have shown that
overexpression of ComK is preceded by high levels of ComS. There
is also experimental evidence for inhibition of comS by ComK (11)
(Fig. 1).

Even in optimal conditions, only �10% of the vegetative cells
overexpress ComK and become competent, and this percentage is
independent of neighboring cells or family history. Interestingly, the
overexpression of ComK has a more or less defined duration. Cells
that become competent come back to vegetative state and divide
after �20 h, suggesting that competence is not necessarily a stable
state (5). Previous studies have proposed a model where the system
shows a stable state and an excitable unstable state (12, 13). The
system can be thrown out of the stable state (vegetative) and then
make an excursion around the unstable fixed point (competence),
only to come back to the stable state after some time. The lack of
stability of the competent state would make its duration less
variable. These facts strongly suggest that noise plays a crucial role
in competence control, exciting the system into the competent state.
The noise can have many origins: the synthesis of RNA proteins, the
degradation of the proteins through the MecA/ClpC/ClpP complex,
and the binding of proteins to the DNA promoter, which are known
as intrinsic noise sources (14–16). Noise could also come from
extrinsic sources, which are fluctuations in the environment. These
extrinsic sources of noise would lead to variations in the rates of the
chemical equations that describe the system. Traditionally, an
adiabatic approximation is used to temporally average over the
neglected dynamics of chemical substeps of the system, such as the
degradation complex dynamics and binding and unbinding of
proteins to the DNA (17, 18). Such adiabatic approximations
usually consider that binding equilibrium is reached rapidly when
compared with the other timescales of the system. We argue
however that microscopic DNA binding events could be important
sources of fluctuations in this system as was discussed earlier in a
more abstract context (19). We investigate all these sources of noise,
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determining their effect in the competence cycle. A stochastic
model is developed with the goal of determining the importance of
different sources of noise (20–27).

Initially, we examined the deterministic limit to orient our
understanding of how different dynamical regimes are obtained for
different parameters (12, 13). Once the regimes leading to the
excitable mechanism are determined, we could then explore the full
stochastic approach, analyzing many possible sources of noise. We
express the results of our simulations through sample trajectories
plotted over the effective potential surface, obtained from the
average of many trajectories. These surfaces, although not denoting
a rigorously proper potential field (27), help visualizing the basins
of attractions and provide a systematic way of visualizing the
probability distribution. To connect our theoretical work to studies
in the laboratory, we address two variables that can be measured in
in vivo experiments: the competence time Tc and the probability of
initiation Pi. The competence time is simply the time that a cell will
spend in competence. The probability of initiation is the probability
that a vegetative cell will enter competence during its lifetime.
Competence itself is defined in this context as ComK expression
being above a certain threshold.

The Core Mechanism of Competence Induction
The central part of the mechanism of competence control is the
positive feedback loop of ComK. Our model assumes that the main
form of regulation of ComK expression is the binding of ComK to
its own promoter (20, 28). The unbound promoter (K1) has a basal
rate of expression of g1 and the bound promoter (K0) has a fully
activated rate of g0. The binding rate of ComK to its promoter is
taken to be h(k) � hknk (nk is a measure of nonlinearity), and the

unbinding rate is f. The expression of ComS is repressed by ComK.
The molecular mechanism of this repression is not known, so it will
be included through a Hill-type function describing the modulation
of the synthesis rate of ComS: gs(k) � gs/[1 � (k/xs)ns], where xs is
the ComK concentration for half-repression and S is the comS
promoter. It should be noted that using Hill coefficients to model
the binding rate of ComK to the promoter h(k) and the ComK-
dependent synthesis of ComS gs leaves potential sources of noise out
of the model. The binding rate h(k) could be affected by events such
as multimerization of ComK, and the synthesis of ComS could be
affected by noise resulting from the unknown mechanism of
repression by ComK. The concentration of the degradation com-
plex MecA/ClpC/ClpP is assumed constant in the cell. Free units of
the degradation complex can form complexes with ComK or ComS.
These, in turn, can lead to the degradation of ComK or ComS and
subsequent release of free units of the degradation complex. We
denote the total number of degradation complexes as A. Free units
of the degradation complex are denoted as Af, and complexes
formed with ComK and ComS are denoted as Ak and As, respec-
tively. This model can be expressed by the following chemical
reactions

K1 � k-|0
h�k�

f
K0 SO¡

gs�k�
S � s

K1O¡
g1

K1 � k Af � k-|0
�1k

�0k

AkO¡
�k

Af

K0O¡
g0

K0 � k Af � S-|0
�1s

�0s

AsO¡
�s

Af.

[1]

Little is known with certainty about the rates associated with
these individual reactions. In this work we will highlight the changes
in dynamical behavior that depend on the relative speed of three
processes: binding/unbinding events, MecA/ClpC/ClpP dynamics
and synthesis/degradation of proteins, and discuss the implication of
the relative kinetics in the stochastic context. The first two processes
(binding/unbinding and degradation dynamics) are usually assumed
to be extremely fast, but in a system where noise plays a decisive
role, the fluctuations induced even by fast processes can become
important. We will use different stochastic models to explore
different sources of stochasticity and observe their effect on the
system. We will express our results through trajectories generated
over effective potential surfaces. Trajectories are generated from
the stochastic reactions using the Gillespie algorithm. In the sim-
ulations, the system starts at the vegetative stable state and is
followed until a whole competence cycle is completed. The average
of many trajectories results in average vegetative times and average
competence times, as well as a probability distribution for the states
of the system. For better visualization, instead of the probability
distributions we plot ‘‘effective potential’’ surfaces, obtained from
Veff � �lnP. These surfaces, although not denoting a ‘‘real’’
potential, help visualize the basins of attraction in the system.

Exploring the Ensemble of Possible Dynamical Behaviors
To characterize when the model shows excitable dynamics, we first
simplify our model using the deterministic limit (12, 13). We discuss
the kinetic rate equations for k and s under the assumption that the
degradation complex binding to ComK and ComS and the binding/
unbinding of ComK to DNA are fast compared with synthesis and
degradation reactions. Assuming that the time scales for the
reactions involving the binding of the degradation complex to
ComK and ComS are overwhelmingly faster than the net degra-
dation rate, they can be considered as being in equilibrium. Con-
sidering that the total number of degradation complexes is constant

Fig. 1. Possible dynamical modes for competence control. (Upper Left) Core
mechanism of competence control, showing the positive feedback loop of ComK
and the competitive degradation of ComK and ComS by the degradation com-
plex MecA/ClpC/ClpP. (Upper Right and Lower) Examples of effective potential
surfaces and nullclines for different configurations of fixed points. A system with
only one stable fixed point in the vegetative (low ComK) state shows no compe-
tence. A system with one stable fixed vegetative point and one unstable compe-
tent fixed point shows a predominantly flat region corresponding to the excur-
sions intocompetence.Asystemwithtwostablefixedpoints,onecompetentand
one not, has the competent and vegetative states relatively stable, and the
surface shows two wells. In this case, the system sporadically switches between
the two configurations. Parameters were taken from the average parameter set
for each behavior, with �k � 100, �s � 50, and � � �d � 10. One stable vegetative
fixed point: nk � 3.5, ns � 3.5, G1 � 0.07, G0 � 0.4, Gs � 0.4, Xk � 0.7, Xs � 0.4. One
stable vegetative fixed point, one unstable competent fixed point: standard
values (SI Appendix). One stable vegetative fixed point, one stable competent
fixed point: nk � 4, ns � 3.5, G1 � 0.06, G0 � 0.5, Gs � 0.4, Xk � 0.5, Xs � 0.5.
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(A � Af � Ak � As), we can set dAf/dt, dAk/dt, and dAs/dt equal to
zero, yielding Af � A�(k, s), Ak � A�(k, s)k/�k, and As � A�(k,
s)s/�s, where �k � (�k � �0k)/�1k and �s � (�s � �0s)/�1s are the
concentrations of k and s for half-maximal degradation and
�(k, s) � Af/A � 1/(1 � k/�k � s/�s) is a measure of the availability
of the degradation complex. Assuming that the binding/unbinding
rates are also faster than the synthesis/degradation rates, the
synthesis rate of k will be obtained from g(k) � g1 P(K1) � g0P(K0),
where P(K1) � f/(h(k) � f) and P(K0) � h(k)/(h(k) � f). Intro-
ducing the maximal degradation rates 	k � A�k//�k and 	s � A�s/�s
and the equilibrium constant Xeq � f/h � xk

nk, we find the rate
equations:

ds
dt

�
gs

1 � �k�xs�
ns � ��k, s�	ss [2]

dk
dt

�
g1 � �k�xk�

nkg0

1 � �k�xk�
nk � ��k, s� 	kk. [3]

To study the different kinds of behavior of these equations for
different parameters, we can plot nullclines to determine the
system’s fixed points. We generated 500,000 different sets of
random dimentionless parameters and analyzed the fixed points of
the system for each set [see supporting information (SI) Appendix].
The sets of parameters were then categorized according to their
fixed points. For each of these categories, the nullclines were plotted
with the average set of parameters within the category. The
excitable system discussed earlier corresponds to the category
where there are three fixed points: one stable point, one saddle
point, and one unstable point. An unstable fixed point, correspond-
ing to high concentration of ComK, implies that lengthy excursions
of the trajectories to that unstable, but slow, region will be observed,
but that no true basin of attraction exists in that region. An excitable
system can show long competence cycles around the unstable fixed
point without having a stable competent state, as pointed out in the
pioneering work of Elowitz et al. (12, 13). Histograms of the values
of the sets of parameters found to result in an excitable system show
wide Gaussian-like distributions. The region in the parameter space
corresponding to the excitable system appears to be compact and
large enough to be robust to sizeable changes on the parameters.
This finding also indicates robustness to extrinsic noise, which can
ultimately be translated into variations in the rates of this model of
the module. From a biological perspective, it reflects robustness in
the variations between phenotypes. We chose from here a standard
set of parameters corresponding to the centers of the distributions
on the histograms.

Simulating the Full Stochastic Model
Using Eq. 1 as a basis for a stochastic treatment, simulations were
performed using the Gillespie algorithm (29), starting in the
vegetative state and simulated through many cycles. The Gillespie
method accounts for noise by explicitly dealing with the fate of small
number of particles actually involved in gene regulation in an
individual cell. Simulations were performed for several sets of
parameters: some corresponding to the system having one sta-
ble fixed point, others for the case having one stable and one
unstable fixed points and still others for situations where there are
two stable fixed points. Sample trajectories were generated and are
displayed over the ‘‘effective potential surface.’’ The effective
potential surface is calculated directly from the probability distri-
bution that results from the averaging over many trajectories. The
effective surface for a near-equilibrium system is Veff � �lnP and
we use the same construct to orient our thinking in the far-from-
equilibrium situation relevant here (Fig. 1).

Excursions into competence usually start with the system having
a higher concentration of ComS then the stable vegetative fixed
point, due to fluctuations. The ComK concentration then starts to
increase and the trajectory begins to drift toward the vicinity of the

unstable fixed point. The concentration of ComS then decreases at
high levels of ComK because of the repression. Finally, ComK
returns to its basal levels and the ComS levels are restored. The
effective potential surface exhibits a well that corresponds to
the vegetative state and a rather flat region that corresponds to the
excursions into competence exploring the neighborhood of the
unstable fixed point. To compare our results with the laboratory
experiments, we will use the models to compute the probability that
a cell under stress (presence of ComS) will go into competence (Pi)
and also will compute the time spent in competence cycles (Tc). To
compare the results of these calculations with observations, we note
that cells in the vegetative state have a life cycle of �4 h. However,
most vegetative B. subtilis cells in a culture under stationary growth
conditions eventually sporulate, providing a limiting time cutoff.
Some cells go into competence instead. These cells have cell
division arrested until they return to vegetative state, when the cell
grows, sceptates, and divides. Considering that each cell division
event in the culture leads to a vegetative cell, the total number of
competence events observed divided by the total number of cell
divisions will give the proportion Pi of vegetative cells that are said
to go into competence. Our simulations do not explicitly contain the
mechanism of sporulation. The proportion of vegetative cells going
into competence corresponds then to the probability of entrance
into competence within the average time of a vegetative life cycle.
Because cell division is not included in this model, Pi is obtained
from the relation of the average time that it takes for the system to
go into competence and an average vegetative lifecycle, estimated
from a comparison with Tc based in laboratory values. The average
life cycle of a vegetative cell in this case was considered to
be one-fourth of the average competence time for that set of
parameters.

Adiabaticity in Competence Control
To study the effects of different sources of noise on the system, we
use the approach of focusing in a specific source while silencing
other potential sources of noise. To investigate the importance of
considering explicitly the equilibrium of the complex formation
between MecA/ClpC/ClpP and ComK/ComS, we silence the noise
coming from ComK binding/unbinding to the DNA by using the
adiabatic limit of g(k) � g1P(K1) � g0P(K0). The system then shows
stochastic noise coming only from the synthesis and degradation of
ComK/ComS and from the degradation complex equilibrium.
Simulations performed for different values of a degradation adia-
baticity parameter showed that neither the competence times nor
the probabilities of initiation were significantly affected by different
levels of noise (see SI Appendix). The effective potential surfaces
also showed similar qualitative properties. These results suggest that
an adiabatic approximation is valid for the degradation complex
equilibrium. Making this approximation, simple stochastic reac-
tions referring to the degradation of ComK and ComS would have
k- and s-dependent rates �(k, s)	kk and �(k, s)	ss.

To study the importance of explicitly considering the binding and
unbinding of ComK to the DNA, we silence the noise coming from
the degradation complex equilibrium by using the adiabatic ap-
proximation discussed above. The sources of noise are now the
overall synthesis and degradation of ComK and ComS as well as
the binding and unbinding of ComK to the DNA. To indicate the
relative speed of these molecularly distinct processes, we introduce
the binding/unbinding adiabaticity parameter � � f/	. Simulations
were performed for many values of � and compared with the
commonly used adiabatic limit approximation. In the adiabatic limit
we use a k-dependent synthesis rate g(k) � (g1 � (knk/Xeq)g0)�(1 �
knk/Xeq) in substitution to the explicit binding and unbinding rates.

This approximation corresponds to the case where � � 
,
meaning the binding/unbinding reactions are much faster than
other time scales of the problem and can be averaged. In Fig. 2, we
see samples of trajectories plotted over the effective potential
surface for some values of �. The surface is less flat around the
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unstable fixed point for smaller values of �. Trajectories do not
approach the unstable fixed point and a clear path for entrance and
exit from competence emerges. For values of � smaller than 1,
expression of ComK equilibrates to the binding state of the comK
promoter, and the system shows a ‘‘stable’’ competent state, which
will persist for the lifetime of the ComK–DNA complex (19, 30, 31).
In Fig. 3, we see the time evolution of ComK and ComS levels for
different values of �. Smaller values of � allow a faster transition
to competence, as well as a higher expression of ComK and a longer
time spent at maximum levels of ComK. When the effects of
nonadiabaticity are considered, the probability of initiation of
competence is much higher, even for values of � well above 1 (SI
Appendix). Sets of parameters that do not exhibit competence when
the adiabatic approximation is made, can show competence when
there is nonadiabatic binding/unbinding of the promoter. We see,
therefore, that nonadiabaticity can expand the region of the pa-
rameter space showing competence, allowing increased the robust-
ness of the system to parameter variation. These results manifest the
idea of functional stochasticity, in which fluctuations increase the
cell’s robustness.

Changing Basal Rates of Expression of ComK and ComS
Laboratory experiments have been performed where the basal
rates of expression of ComK and ComS (g1 and gs, respectively)
were controlled (13). These studies reveal interesting effects on

both competence times (Tc) and probabilities of initiation of
competence cycles. The basal rate of expression of ComK has been
shown to control the probability of initiation of competence events,
whereas the basal rate of expression of ComS controls mostly the
duration of such events. To see the effects of adiabaticity on this
control, simulations were performed for different values of the
adiabaticity parameter �, using the standard set of parameters and
changing only the basal rates of expression. These effects are shown
in Fig. 4. As observed in the laboratory, increasing the basal ComK
expression g1 does not change the competence time, but does
increase the probability of initiation (13). Increasing the basal
ComS expression gs indeed increases the competence times. How-
ever, the effect of gs on the probability of initiation depends on the
adiabaticity. In the adiabatic limit or for high values of � there is no
change in Pi. For lower values of �, there is a slight increase in Pi,
whereas for � � 1, there is a large increase. Laboratory experiments
indeed do observe such an increase in Pi as the basal expression of
ComS is made larger. This finding suggests the presence of signif-
icant nonadiabatic effects in competence control.

To better illustrate these effects, we plot in Fig. 5 the time
evolution of ComK and ComS levels obtained from the simulations.
Increased g1 does not change the width of the peaks of ComK
expression, but does increase their frequency, eventually leading to
oscillatory behavior. This oscillatory behavior corresponds to an-
other region of the parameter space, where there is only one
unstable competent fixed point. Increasing gs causes the width of the
peaks to increase. The frequency of the peaks initially stays the
same, but increases for higher values of gs in the case of � � 10
considered here. For lower values of adiabaticity, there is an
increased probability of higher levels of ComS during vegetation (SI
Appendix). Higher levels of ComS start competence events, so this
change accounts for the increase in the probability of competence
initiation observed for nonadiabatic scenarios.

Entrance into and Exit from Competence
Here, we look more carefully into the events of entering into
competence and the exit from competence. We look only at the
variations of the ComK level k, considering the level of ComS to be
fixed (s is a parameter). We focus the analysis on the behavior of
the feedback loop of ComK having a fixed concentration of ComS.
This situation arises where ComS levels vary slowly or are deter-

Fig. 2. Comparison of simulations for different values of the adiabaticity
parameter � with the adiabatic approximation for binding/unbinding events.
The surface becomes less flat around the unstable fixed point for smaller
values of �.
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Fig. 3. Time evolution of ComK and ComS levels for competence events for
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and more sustainable peaks in the expression of ComK. Parameters are the
same as indicated in the SI Appendix.
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mined by other cell processes. The dynamics of the degradation
complex are taken to be in the deterministic limit, leaving a
stochastic model with noise only from synthesis and degradation of
ComK, and binding and unbinding of ComK to the DNA. We then
analyze two simplifications of this model, corresponding to the
deterministic limits of the synthesis/degradation and the binding/
unbinding processes. First, we will consider a model where binding/
unbinding processes occur at a deterministic rate and synthesis/
degradation are stochastic events. This results in a birth–death
process where the rates depend on k. This model corresponds to the
case where binding/unbinding events are fast. The more compre-
hensive model treats the binding/unbinding events explicitly in a
stochastic manner and the protein number respond deterministi-
cally to the DNA binding state. In this case, the probability of having
a binding or unbinding event depends on the number of proteins at
that time. This model would correspond to the case where binding/
unbinding events are especially slow.

Fast Binding/Unbinding
Considering synthesis/degradation and binding/unbinding deter-
ministically, we write an equation for the probability of having
precisely k molecules of ComK:

d
dt

P�k� � g�k � 1�P�k � 1� � g�k�P�k�

� ��k � 1�P�k � 1� � ��k�P�k�, [4]

where g(k) and �(k) � �(k)�kk are the k-dependent synthesis and
degradation rates discussed in the adiabatic limit. �(k) is �(k, s) with
s fixed.

The steady-state solution can be obtained iteratively by P(k �
1) � (g(k)/�(k � 1))P(k). A time-dependent solution can be
obtained by expressing the equation through a transition matrix M
such that dP/dt � MP, giving the matrix exponential solution P(t) �
eMtPo (19).

We analyze this approximation by comparing it to simulations
performed for different values of the adiabaticity parameter � (Fig.
6). We consider two scenarios: entrance into competence (s � 100)
and exit from competence (s � 20). In both cases, it is clear that
nonadiabaticity has a large influence on the stabilization of unfa-
vorable states. Nonadiabaticity allows bistability or excitability in

many cases where the adiabatic limit does not allow such behavior,
as can be observed from the preservation of the vegetative well in
the entrance case and the flat competent region in the exit case. The
adiabatic approximation can, however, successfully describe the
most stable well in both cases.

Slow Binding/Unbinding
We consider now the scenario where switching events between
binding states are slow and happen stochastically, whereas synthesis
and degradation are modeled in a deterministic fashion. If the
system is in a given binding state with synthesis rate g, the ComK
level k varies deterministically in time as

dk
dt

� g � ��k�	kk. [5]

This equation is separable, and a solution k(t) can be found. With
this solution in hand, given an initial binding state and an initial level
of ComK k, we can calculate the probability of switching binding
states at any given time based on the time evolution of k. If the
system starts with the gene unbound and typical low values of k, we
will call tup the time that it takes for the system to reach the threshold
to transition to competence, following a binding event. tup is then
the duration of switches in the binding state necessary for transi-
tions from vegetation to competence to occur. The probability of
reaching tup following a binding event will be called Pup, the
probability that the gene will stay bound long enough for the
transition to happen. The unbinding rate f is independent of k, so
Pup � e�ftup.

If, instead, the system starts with the gene bound and typical
competence values of k, we will call tdown the time that it takes to
reach the vegetative state after an unbinding event. The probability
of reaching tdown following an unbinding event has to take into
consideration the decreasing levels of k when the gene is unbound,
since the binding rate h(k) is k-dependent. We have therefore
Pdown � e�m(tdown), where m(t) � �0

t h(k(t�))dt�.
We know the probabilities that a switch in the binding state will

result in a transition between competence/vegetation (Pup and
Pdown). We can now calculate the average times in the bound and
unbound states by tbound � 1/f and tunbound � �0


th(k(t�))e�m(t�)dt�.
Finally, we can calculate the time that the system will spend between
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Fig. 5. Trajectories showing the effects of changes in the basal rates of
expression of ComK and ComS. Higher values of the basal rate of expression
of ComK G1 do not alter the width of ComK peaks, but peaks happen more
frequently. Higher values of the ComS rate of expression Gs result in wider
peaks of expression of ComK. For the adiabaticity parameter � � 10 consid-
ered here, peaks also occur slightly more often.
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Fig. 6. Fast and slow approximations for binding/unbinding of ComK to
DNA. (Upper) Effective potentials for the case of fixed expression of ComS and
fast binding/unbinding, considering s � 100 for entrance into competence and
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Nonadiabaticity is a cause of bistability and bimodality, as seen for the
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competence cycles as Tb � (tbound � tunbound)/Pup and the time that
the system spends in competence cycles as Tc � (tbound � tunbound)/
Pdown.

We compare the results of these intuitive approximations with
the values of competence times and probabilities of initiation
obtained from simulations (Fig. 6). The calculated values start
agreeing with the simulations for values of � as low as 1. Even
though such strong nonadiabaticity might not apply to the case
of the competence module, the present approximation scheme
could be useful for other cellular processes that are extremely
nonadiabatic.

Discussion
A stochastic model of the self-activating loop of ComK with
competitive degradation of ComS is able to reproduce most of the
features observed of this system observed in nature. Our analysis of
this model indicates the likelihood that nonadiabaticity accompa-
nying binding/unbinding events is important for this noise-

dominated system. Specifically, nonadiabatic noise from binding
and unbinding of ComK to the DNA probably plays an important
role on determining the region of the parameter space able to
exhibit excitable behavior, as well as in robustness to parameter
variation. Comparison of our model with laboratory experiments
where the basal rates of ComS were varied suggests the presence of
nonadiabatic noise in ComK binding/unbinding. Competence in
bacteria is a beautiful example of a cell process where noise plays
an important constructive role. Understanding the microscopic
origins of biochemical noise will be as essential for cell biology in
the future as understanding the average behavior of biomolecular
subprocesses has been in the past.
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