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Abstract
Rationale and Objectives—We have previously described a probabilistic model for the multiple-
reader, multiple-case paradigm for ROC analysis. When the figure of merit is the Wilcoxon statistic,
this model returns a seven-term expansion for the variance of this statistic as a function of the numbers
of cases and readers. This probabilistic model also provides expressions for the coefficients in the
seven-term expansion in terms of expectations over the internal noise, readers, and cases. Finally,
this probabilistic model sets bounds on both the overall variance of the Wilcoxon statistic as well as
the individual coefficients.

Materials and Methods—In this paper we will first validate the probabilistic model by comparing
variances determined by direct computation of the expansion coefficients to empirical estimates of
the variance using independent sampling. Validation of the probabilistic model will enable us to use
the direct estimates of the expansion coefficients as a gold-standard to compare other coefficient-
estimation techniques. Next, we develop a coefficient-estimation technique that employs
bootstrapping to estimate the Wilcoxon statistic variance for different numbers of readers and cases.
We then employ constrained, least-squares fitting techniques to estimate the expansion coefficients.
The constraints used in this fitting are derived directly from the probabilistic model.

Results and Discussion—Using two different simulation studies, we show that the novel (and
practical) bootstrapping/fitting technique returns estimates of the coefficients that are consistent with
the gold standard. The results presented also serve to validate the seven-term expansion for the
variance of the Wilcoxon statistic.
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1. INTRODUCTION
Receiver operating characteristic (ROC) analysis is the standard method used to assess imaging
technologies for radiology, as well as other diagnostic procedures. ROC studies are typically
time consuming and expensive. Therefore, considerable effort has been devoted to analyzing
sources of variability and designing experiments to maximize statistical power. A large part
of this effort involves identifying and estimating sources of variability in the area under the
ROC curve (AUC) or other figures of merit associated with the ROC curve. The major sources

Correspondence to: Matthew A. Kupinski.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Acad Radiol. Author manuscript; available in PMC 2007 November 13.

Published in final edited form as:
Acad Radiol. 2006 November ; 13(11): 1422–1430.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of variability in ROC studies are caused by the finite number of readers, the finite number of
cases, and the reader internal noise.

In the multiple-reader, multiple-case (MRMC) paradigm, each member of a sample of readers
reads all of the cases in a sample of cases. Each reader produces a rating (or test statistic) for
each case which represents her or his confidence that an abnormality, such as a tumor, is present.
The end result is an array of test statistics which is then used to compute a figure of merit for
the imaging system being tested. In MRMC analysis, we are not only interested in the value
of the chosen figure of merit, we are also interested in the variance of this number as a function
of the numbers of readers and cases. This information aids in the design of the ROC studies
and can help ensure that the results are statistically meaningful.

Standard methods for MRMC analysis have used linear models and analysis of variance
(ANOVA) techniques to determine the variance of the figure of merit as a function of numbers
of readers and cases [1,2]. Bootstrapping techniques have also been employed using the same
linear model [3]. With the linear model, one assumes that the figure of merit can be expanded
as a sum of independent random variables; one that depends on the reader sample, one that
depends on the case sample, one that depends on the reader-case interaction, and a final variable
that describes internal reader noise. The variance of the figure of merit then becomes a sum of
the variances of the individual terms. The validity of the results obtained using this model
depends, of course, on the validity of the initial linear model. Even if the terms in the linear
model are not independent, the expression for the variance can be considered a first-order
expansion for the variance of the figure of merit.

The probabilistic approach, as described in Clarkson et al. [4], builds on the work of Hoeffding
[5] and Lehmann [6] and is based on a probability model for the generation of reader test
statistics. This probability model accounts for random cases, random readers, and internal
noise. The readers are chosen independently from a population of readers, cases are chosen
independently from a population of cases, and the reader sample is independent of the case
sample. A reader’s test statistic is a random variable whose distribution depends on the
interaction of the reader with a case as well as the internal noise of the reader. When this
probabilistic model is applied to the Wilcoxon statistic [7,8], the result is an exact, seven-term
expansion for the variance of this statistic in terms of the numbers of readers and cases.

In this paper, we both validate the probabilistic model and present a method for computing the
coefficients in the seven-term expansion. To validate the probabilistic model, we directly
compute the expansion coefficients from expectations derived from the probabilistic model.
The computation of these expectations combines analytical formulas with Monte-Carlo
techniques to compute the relevant expectations. The variance derived from the direct
computation of the expansion coefficients can then be compared to empirical estimates of
variance computed using independent sampling. Once the probabilistic model has been
validated, these direct estimates of the model coefficients can be used a gold standard to
compare our new estimation technique. Our estimation technique uses bootstrapping to
estimate the variance of the Wilcoxon statistic at many choices of numbers of readers and cases.
The resulting data are then fit to the seven-term expansion using constrained least-squares
fitting techniques. The bounds on the coefficients derived from the probabilistic model are
used as constraints for the fitting. This method, unlike the direct computation of the coefficients
and the independent sampling technique, requires only a single reader and case sample.

Two separate simulations are used to validate the model and evaluate the bootstrap-estimation
technique. For the first simulation (or data model), we employ a very simplistic representation
for the cases and readers. A single case is represented by a Gaussian-distributed random
variable, the mean of which depends on the truth state. A reader is represented by a pair of
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numbers each sampled from a uniform distribution centered up 1.0. The reader-case interaction
is described by a simple multiplication of one reader random variables with a case random
variable. The truth state of the case determines which reader random variable is employed.
After adding a Gaussian random variable to this product to simulate internal noise, we have
the test statistic for the given reader and case. This model, while simplistic, does account for
reader proficiency, reader-case interaction, and internal noise. One advantage of this model is
that expectations over internal noise and cases can be computed analytically. All that is left is
to perform the average over readers to compute the expectations needed for the direct
computation of the expansion coefficients.

For the second, more realistic, simulation, we employ a lumpy background model for the signal-
absent images and add in a known signal for the signal-present images. Detector noise is
modeled as being Poisson distributed. A reader is described by an image called a template that
has the same dimensions as the case images. The templates have a single, random width
parameter that represents the reader variability. A reader reads an image by taking the inner
product of the template with the image and adding Gaussian noise to account for internal noise.
For this simulation, expectations over internal noise can still be performed analytically but
Monte-Carlo methods must be used for averages over readers and cases.

By comparing the results from the direct computation to independent sampling results, we will
validate the probabilistic model and the seven-term expansion. By comparing the results of the
bootstrap method to the other two, we will demonstrate the usefulness of the bootstrap method
for estimating the seven coefficients.

2. PROBABILISTIC MODEL
We will briefly review the probabilistic MRMC model. For a detailed derivation of this model,
consult Clarkson et al. [4] and Barrett et al. [9]. The probabilistic models begins by considering
random cases, readers, and test statistics. A case from the signal-absent ensemble is represented
by a random vector g0 (bold-face type denotes vectors), while a case from a single-present
ensemble is represented by the random vector g1. These random vectors have corresponding
distribution given by pr(g0) and pr(g1). A case sample is composed of N0 independent samples
from pr(g0) and N1 independent samples from pr(g1).

A reader is represented by a random vector γ with distribution pr(γ). This reader vector may
represent a mathematical representation of a reader or simply an identifying string, e.g., reader
58 out of 1000 or “Mary.” A reader sample consists of Nr independent samples from pr(γ).

Given a reader γ and a case ga (a is 0 or 1), the test statistic ta is a random variable with a
conditional distribution give by pr(ta|γ, ga). This conditional distribution encompasses the
reader-case interaction and describes the internal noise for reader γ. Given a case sample and
reader sample, the entries in the test statistic matrix are independent samples from the
corresponding conditional distributions, one for each reader-case pair. For example, the entry
for the reader γr (i.e., the rth reader in the reader sample), and signal-absent case g0i (i.e., the
ith signal-absent case in the case sample) is t0ri and this is a sample from the distribution pr(t|
γr, g0i). Similarly, the entry for the reader γr and signal-present case g0j is t1rj and this is a
sample from the distribution pr(t|γr, g1j).

Using this notation, the Wilcoxon figure of merit is given by

Â = 1
NrN0N1

∑
r=1

Nr
∑
i=1

N0
∑
j=1

N1
s(t1rj − t0ri), (1)

Kupinski et al. Page 3

Acad Radiol. Author manuscript; available in PMC 2007 November 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where s(·) is the step function. The Wilcoxon statistic Â is an estimate of the area under the
ROC curve (or AUC) averaged over all readers. We have previously shown [4] that the variance
of Â can be written exactly as the seven-term expansion:

Var Â =
α1
N0

+
α2
N1

+
α3

N0N1
+

α4
NR

+
α5

NRN0
+

α6
NRN1

+
α7

NRN0N1
. (2)

Here the αn are coefficients to be determined.

Not only does the probabilistic model return an exact, seven-term expansion, it also gives
analytic expressions for each of the αn terms. These expressions can be used in simulation
studies to determine the correct values of the αn for comparison with estimation methods. It is
useful to first define,

s̄(γr, g0i, g1 j) = s(t1rj − t0ri) t1rj,t0ri∣γr,g0i,g1 j (3)

s̄̄(g0i, g1 j) = s̄(γr,g0i, g1 j) γr. (4)

For ease of notation, we drop the i, j, and r subscripts to arrive at s ̄(γ, g0, g1) and s ̿(g0, g1). The
term s ̄(γ, g0, g1) represents the average step-function response of reader γ reading the pair of
cases g0 and g1. This is analogous to a two-alternative forced choice (2AFC) experiment where
a particular reader is determining which of a pair images has the abnormality. It is well known
that the fraction of correct decisions that the reader makes is the AUC for that reader on that
set of images. Thus, s ̄(γ, g0, g1) can be thought of as the AUC of a reader reading a pair of
images when the reader has perfect memory loss after each reading; it is an average over reader-
internal noise only. The term s ̿(g0, g1) is the average of s ̄(γ, g0, g1) over all readers γ. Again,
using the 2AFC analogy, s ̿(g0, g1) can be thought of as the average AUC of all readers reading
the pair of images g0 and g1.

With both s ̄(·) and s ̿(·) defined, we can now write the first four αn terms as

α1 = Var s̄̄(g0, g1) g1∣g0
(5)

α2 = Var s̄̄(g0, g1) g0∣g1
(6)

α3 = Var s̄̄(g0, g1) − α1 − α2 (7)

α4 = Var s̄(γ, g0, g1) g0,g1∣γ
(8)

The remaining terms, while not as simple as α1 through α4, can also be written in terms of
expectations of s(·),

α5 = s(t1 − t0) t1,g1∣t0,γ,g0
2

t0,γ∣g0
− s(t1 − t0) t1,g1∣t0,γ,g0 t0,γ∣g0

2
g0

− α4 (9)

α6 = s(t1 − t0) t0,g0∣t1,γ,g1
2

t1,γ∣g1
− s(t1 − t0) t0,g0∣t1,γ,g1 t1,γ∣g1

2
g1

− α4 (10)
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α7 = s 2(t1 − t0) t0,t1,γ∣g0,g1
− s(t1 − t0) t0,t1,γ∣g0,g1

2
g0,g1

− α4 − α5 − α6. (11)

Finally, utilizing the fact that variances must be positive and variances of quantities bounded
between zero and one must not exceed 14 , we can derive bounds on each of the αn. Namely,

0 ≤ α1 ≤ 1
4 (12)

0 ≤ α2 ≤ 1
4 (13)

0 ≤ α3 ≤ 1
4 (14)

0 ≤ α1 + α2 + α3 ≤ 1
4 . (15)

0 ≤ α4 ≤ 1
4 (16)

0 ≤ α4 + α5 ≤ 1
4 (17)

0 ≤ α4 + α6 ≤ 1
4 (18)

0 ≤ α4 + α5 + α6 + α7 ≤ 1
4 . (19)

For a detailed derivation of these bounds, refer to Clarkson et al. [4].

3. METHODS
To both validate the probabilistic model and test methods for estimating the coefficients, we
examined two data models. We first describe the two data models and then the coefficient-
estimation techniques.

3.1 Data Model 1
The first data model was designed to include reader variability, case variability, reader-case
interactions, and internal noise yet be simple enough to allow analytical computations of
expectations (Eqns. 5–11). To achieve this simplicity, cases are represented by a single random
variable g0 or g1 distributed as N(0, 1) and N (μ, 1), respectively. Here, μ is an adjustable model
parameter that represents the signal strength. A reader is represented by a pair of random
variables c0 and c1 both independently distributed as U (1 − Δ, 1 + Δ). The parameter Δ is an
adjustable parameter relating to the reader variability. The test statistics are generated by

t0 = g0c0 + η0 (20)

t1 = g1c1 + η1, (21)

where η0 and η1 are both independently N(0, σt
2) and represent the reader internal noise. The

term σt controls the amount of internal noise. It should be noted that the terms c0 and c1 are
random across readers but are fixed for a given reader.
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The reason for using a pair of numbers for the readers is to account for varying reader skill.
The reader-case interaction arises because the reader parameters are multiplied by the case
variables. Note that for a fixed reader, t0 and t1 are Gaussian random variables. This fact means
that averages over internal noise and cases conditioned on readers can be computed
analytically. For our simulations, μ = 1, Δ = 0.95, and σt = 0.3.

3.2 Data Model 2
For the second, more realistic, data model we employed simulated images and linear readers.
The cases are simulated images that are generated by a two-dimensional “lumpy” image model
with Poisson noise added. The mean of the mth pixel in the lumpy image model is given by,

ḡ(rm) = ∑
l=1

L
l(rm − cl), (22)

where rm is the two-dimensional coordinate vector for the mth pixel, L is the number of lumps,
l(·) is the lump function (typically Gaussian), and cl is the center of the lth lump. Here, L is a
Poisson-distributed random variable with mean L ̄, and the cl are random locations with a
uniform distribution across the image. For signal-present cases, a small (relative to the lump
size) Gaussian signal is added to the mean image at its center or the (0,0) location.

For this model, we chose an image size of 64 pixels by 64 pixels, i.e., g is a 642-dimensional
vector. The mean number of lumps L ̄ was 25. This relatively small number ensures that the
statistics governing g0 and g1 are not Gaussian. The lump function was a Gaussian with a
standard deviation of 5 pixels and an amplitude of 20 units. The signal was a Gaussian function
with a standard deviation of 3 pixels and an amplitude of 35 units.

A reader was simulated by also generating an image called a template. The mth pixel in this
template is given by

γ(rm) = 1

2πσ 2
exp ( − ∣ rm∣2

2σ 2 ). (23)

Here σ is the width of the template. Note that this Gaussian template is always centered on the
signal location. The width of the template σ is a random variable uniformly distributed between
1 and 10 pixels. Templates with different σ parameters will perform differently. Thus, the
random σ parameter accounts for varying reader skill.

Finally, the test statistics are generated by taking the inner product of a reader template with
an image and adding noise to simulate internal noise. That is,

t0 = γ tg0 + η0 (24)

t1 = γ tg1 + η1. (25)

Note that the random variables η0 and η1 are independent Gaussians with standard deviations
of 5. Again, this model accounts for case variability, reader variability and internal noise.
However, unlike the previous model, we will not be able to perform the case-averages
analytically because of the non-Gaussian, high-dimensional distributions associated with g0
and g1.
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3.3 Variance Estimation Techniques
3.3.1 Direct Computation—An advantage of the probabilistic model is that it returns
analytic expressions for the αn coefficients. We have numerically evaluated Eqns. 5–11 to
arrive at estimates for the αn. For data model 1, any conditional expectation where the reader
γ is fixed, such as s ̄(γ, g0, g1), can be computed exactly in terms of error functions. Other
expectations must be computed via Monte-Carlo integration. For data model 2, s ̄(γ, g0, g1) can
still be computed exactly but all other expectations must be computed by Monte-Carlo
integration. When Monte-Carlo integration was required, we employed 10,000 samples to
estimate the expectations. The αn returned by this direct computation will serve as our gold
standard which will be used to assess the other techniques.

It should be noted that direct computation of the αn is not possible using a single dataset because
replication over internal noise must be performed. Thus, this method is useful only for
mathematical observers, validating the probabilistic model or validating new estimation
techniques.

3.3.2 Independent sampling—To validate the seven-term expansion, we employed
independent sampling to estimate the variance of the Wilcoxon statistic at varying numbers of
readers and cases. For a given number of readers and cases, we generated 10,000 independent
reader and case samples. We then generate the matrix of test statistics (with internal noise) by
having each reader read each case in the corresponding sample (including internal noise). From
these 10,000 test-statistic matrices, we compute 10,000 AUCs and estimate the AUC variance.
Thus, we can estimate the AUC variance for any numbers or readers and cases (i.e., any Nr,
N0, and N1) and compare these results to the results returned by direct computation.

3.3.3 Bootstrap sampling—With real data, one cannot use either of the first two techniques
since independent samples are not readily available and the distributions of the random
variables are not known. Typically, a single test-statistic matrix is all that we have to work
with. With just a single sample, however, we can exploit bootstrapping techniques to estimate
variances. In this procedure, reader and case samples are drawn by bootstrapping. We then
extract all of the test statistics for the selected readers and cases. The AUC for this bootstrap
sample can be readily computed using Eqn. 1. A total of 1000 test-statistic matrices are
generated by bootstrapping for different choices of Nr, N0, and N1. By evaluating the AUC
variance for different combinations of numbers of cases and readers, we can generate data
which can be used to fit the αn parameters in the seven-term expansion. This fitting process is
not only linear (see Eqn. 2) but also constrained (Eqns. 12–19). Thus, constrained linear least-
squares fitting is used to determine the αn. These results can be compared with the direction
computation technique to assess the usefulness of this procedure.

4. RESULTS
4.1 Data Model 1

Due to the simplicity of the first data model, many of the expectations in Eqns. 5–11 can be
computed analytically. Only expectations over readers must be computed using Monte-Carlo
methods. Thus, direct and accurate computation of the αn can be performed. These αn are used
as the gold standard with which to compare the independent sampling and the bootstrap
techniques for estimating the αn. We employed 10,000 samples to compute expectations over
readers.

Figure 1 compares the variance computed using the direct computation of the αn (solid line)
to the measured variance of AUC using 10,000 independent reader and case samples with
varying Nr, N0 and N1. In Fig. 1a, the Nr is varied from 1 to 50 and the N0 and N1 are both
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fixed at 100. In Fig. 1b, Nr is fixed at 5 and both N0 and N1 are varied between 10 and 1000.
These plots clearly indicate that the seven-term expansion is accurately predicting the variance
of the Wilcoxon statistic for varying Nr, N0, and N1.

While the results presented in Fig. 1 are important, both the direct computation of the αn and
the independent sampling technique are impractical for real data. The direct computation
technique requires expectations over internal noise and the independent sampling technique
requires an impractical number of readers and cases to be useful. The bootstrapping technique,
however, requires only a single sample of readers reading a single case sample to produce a
test-statistic matrix. The bootstrap estimates of AUC variance can be used to estimate the
individual αn by using constrained, linear, least-squared curve fitting. Using a dataset of 25
readers and 1000 image pairs, we computed the bootstrap estimates of the αn. To perform the
fitting, a 3 × 3 × 3 grid of Nr, N0, and N1 was used. These 27 bootstrap estimates of variance
were used in the constrained fitting algorithm to determine the αn. This process was repeated
100 times to determine how this algorithm performs on average, i.e., we determine the mean
and the standard deviation of each estimated αn parameter. The results of this study are
summarized in Fig. 2. The solid line is the gold standard variance computed using the direction
computation technique. The gray area represents the mean plus and minus one standard
deviation of the bootstrap-estimated αn. Clearly, the bootstrap technique is returning both
accurate and precise estimates of αn. We will see with the second data model that small sample
sizes can introduce some bias into this estimation technique.

4.2 Data Model 2
We further validated the bootstrap technique using the second data model. This more realistic
data model employs images with random backgrounds and Poisson detector noise. A reader
was simulated by generating a random template which allows for varying reader skill. Finally,
internal noise was simulated as Gaussian. Unlike data model 1, many of the expectations in
Eqns. 5–11 cannot be computed analytically. Thus, we employed large samples of readers
(10,000) and cases (10,000) to estimate these expectations directly. To ensure that our estimates
of αn were accurate, we repeated this experiment multiple times and found that our estimates
of αn did not vary through the first three significant digits. Thus, we employed these direct
estimates of the αn as the gold standard.

For this second data model, independent sampling is not feasible because of the time needed
to generate sufficient numbers of images and readers. The direct computation technique also
requires a large sample size. However, only one reader sample and case sample was necessary.
Thus, we will present AUC variances determined using only bootstrap estimates of the αn,
further validating the bootstrap estimation technique. Figure 3 compares the variance
determined using the direct computation of the αn to the mean plus and minus one standard
deviation of the variances determined using bootstrap estimates of the αn. As with the first data
model, 25 reader and 1000 image pairs were simulated. A 3 × 3 × 3 grid of Nr, N0 and N1 was
employed. Again, these 27 bootstrap estimates of variance were used in the constrained fitting
algorithm to determine the αn. Clearly, the fitting method is both accurate and precise.

Figure 4 shows similar results except that only 10 readers were simulated along with 100 pairs
of images. Here, we begin to see that the bootstrap estimates of the variances might exhibit
some bias when the initial sample is small. However, this bias appears to be small and in the
positive direction. Note that Fig. 4 plots the predicted variances well beyond the 10 readers
and 100 images pairs used to estimate the αn.
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5. CONCLUSIONS
Using the probabilistic model we previously showed that variance of the MRMC Wilcoxon
statistic can be expressed as a seven-term expansion in terms of Nr, N0, and N1. The probabilistic
formulation also results in exact expressions for the seven coefficients in this expansion. With
the first data model in this paper, we showed that direct calculation of the coefficients using
the probabilistic method gives variances that agree with those computed using independent
sampling. This was an important validation to ensure that the no mathematical mistakes were
made in the rather complicated derivation of the seven-term expansion. Thus we feel confident
in using the direct computation results as gold standards with which to compare other
techniques for estimating the αn.

Furthermore, with the first and second data models, we compared the results of our bootstrap/
least-squared-fitting technique for estimating the αn to our gold standard. In the first data model,
the bootstrap estimation technique worked well in terms of bias and variance. For the second
data model, a small bias was introduced when the number of readers is small (i.e., around 5).

In the future, we plan to extend the probabilistic model and our estimation techniques to account
for multiple modalities. Preliminary work indicates that an expansion similar to the seven-term
expansion for one modality can be derived for two modalities.
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Fig 1.
Comparison of the variances predicted using direct computation of the expansion coefficients
(solid line) to empirical estimates of the variance computed using independent sampling
(circles). In (a), Nr is varied from 1 to 50 with both N0 and N1 fixed at 100. In (b), Nr was fixed
at 5 while both N0 and N1 were varied from 10 to 1000. For the independent sampling, 10,000
repetitions were used.
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Fig 2.
An evaluation of the bootstrap coefficient estimation technique. The dashed line indicates the
gold standard computed using the direct computation technique. The gray area represents the
mean plus and minus one standard deviation of the variance predicted using the fitted αn. For
this study, a single dataset of 25 readers and 1000 image pairs was used to estimate the
expansion coefficients. This process was repeated 100 times using 100 different datasets of the
same size to determine the mean and the standard deviations of the estimates αn. In (a), Nr is
varied from 1 to 50 with both N0 and N1 fixed at 100. In (b), Nr was fixed at 5 while both N0
and N1 were varied from 10 to 1000.
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Fig 3.
An evaluation of the bootstrap coefficient estimation technique using the second data model.
The dashed line indicates the gold standard computed using the direct computation technique.
The gray area represents the mean plus and minus one standard deviation of the variance
predicted using the fitted αn. For this study, a single dataset of 25 readers and 1000 image pairs
was used to estimate the expansion coefficients. This process was repeated 100 times using
100 different datasets of the same size to determine the mean and the standard deviations of
the estimates αn. In (a), Nr is varied from 1 to 50 with both N0 and N1 fixed at 100. In (b), Nr
was fixed at 5 while both N0 and N1 were varied from 10 to 1000.
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Fig 4.
An evaluation of the bootstrap coefficient estimation technique with small datasetes. The
dashed line indicates the gold standard computed using the direct computation technique. The
gray area represents the mean plus and minus one standard deviation of the variance predicted
using the fitted αn. For this study, a single dataset of only 10 readers and 100 image pairs was
used to estimate the expansion coefficients. This process was repeated 100 times using 100
different datasets of the same size to determine the mean and the standard deviations of the
estimates αn. In (a), Nr is varied from 1 to 50 with both N0 and N1 fixed at 100. In (b), Nr was
fixed at 5 while both N0 and N1 were varied from 10 to 1000. Note that while the initial datasets
were small, we are accurately predicting variances with much larger Nr, N0, and N1.
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