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Microscopic statistical pressure fluctuations can, in principle, lead to
corresponding fluctuations in the shape of a protein energy land-
scape. To examine this, nanosecond molecular dynamics simulations
of lysozyme are performed covering a range of temperatures and
pressures. The well known dynamical transition with temperature is
found to be pressure-independent, indicating that the effective en-
ergy barriers separating conformational substates are not signifi-
cantly influenced by pressure. In contrast, vibrations within substates
stiffen with pressure, due to increased curvature of the local harmonic
potential in which the atoms vibrate. The application of pressure is
also shown to selectively increase the damping of the anharmonic,
low-frequency collective modes in the protein, leaving the more local
modes relatively unaffected. The critical damping frequency, i.e., the
frequency at which energy is most efficiently dissipated, increases
linearly with pressure. The results suggest that an invariant descrip-
tion of protein energy landscapes should be subsumed by a fluctu-
ating picture and that this may have repercussions in, for example,
mechanisms of energy dissipation accompanying functional,
structural, and chemical relaxation.

critical damping � dynamical transition � energy dissipation �
harmonic–anharmonic motions

A fundamental concept in protein biophysics is that of an
energy landscape. Originally introduced to explain the

temperature dependence of the rebinding kinetics of ligands to
myoglobin (1, 2), over time the energy landscape picture has
been successfully used to describe such diverse phenomena as
the temperature-induced dynamical transition, protein folding,
and enzyme function (3–5).

Valuable information on the physics of protein energy land-
scapes has been obtained through study of the temperature
dependence of protein structure and dynamics (6). However, it
is only recently that the experimental tools have become avail-
able to investigate the effect of pressure on the structure and
dynamics of biomolecules (7, 8). Whereas temperature variations
influence both the thermal energy and, due to thermal expan-
sivity, the volume of a system, a pressure perturbation affects
only the system volume, via the isothermal compressibility. For
proteins, for example, pressure changes of a few kbar give rise to
changes in free energy that are similar to the free-energy
difference between the native and unfolded state (8).

In Fig. 1, a schematic diagram of a protein energy landscape
is shown. The region of minimal free energy, which accomodates
the ensemble of native or folded states, is surrounded by regions
of high free energy, where the protein is partly or wholly
unfolded. Local minima in the energy landscape may give rise to
functional or folding intermediate states. In contrast to temper-
ature variations, the application of pressure alters the structure
of the energy landscape and may, for example, result in nonna-
tive configurations competing with the ensemble of lowest

free-energy states, thus leading to pressure-induced structural
changes or unfolding. In this contribution, however, the focus is
on pressure-induced changes in the native-state region of the
energy landscape.

On a microscopic length scale, i.e., the length scale of a single
protein molecule, pressure is not constant but fluctuates with
amplitudes in the kbar-range around the macroscopic mean
value. These fluctuations give rise to instantaneous changes in
the energy landscape topology on the characteristic time scale
�F � d/vs, where d is the molecular diameter and vs the velocity
of sound; for small globular proteins in solution, realistic values
are in the order of d � 1 nm and vs � 103 m s�1, hence �F � 1
ps. Motions on this time scale are important for overall protein
flexibility and, thus, may also be of relevance for functional
dynamics.

In this contribution, the pressure-induced changes in the
native-state region of the energy landscape of the protein hen
egg white lysozyme (HEWL) in solution are investigated by using
molecular dynamics (MD) simulations in the pressure and
temperature ranges from 0.1 to 1,000 MPa and from 20 to 320
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Fig. 1. Schematic illustration of the protein energy landscape. (Left) Native
and high-pressure conditions. N, I, and D represent ensembles of native,
intermediate, and pressure-denatured states, respectively. (Upper Center) The
application of pressure may change the local curvature of the energy land-
scape (dashed line), alter the height of energy barriers between substates
(dotted line), or both. (Lower Center) Dissipative forces of the environment
can be depicted as roughness of the energy landscape and may also be
pressure dependent. (Right) Schematic illustration of the simulation results.
(Upper Right) Application of pressure increases curvature of local potential
wells without changing barriers between them. (Lower Right) Below the
dynamical transition temperature the damping is relatively unaffected by
pressure, whereas above Tg the application of pressure strongly increases
frictional effects.
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K, respectively. HEWL has been shown to readily and reversibly
denature above 350 MPa on the time scale of minutes (9).
However, here the focus is on changes upon pressurization in the
local curvature of, and barrier heights separating substates in the
energy landscape of the native ensemble, as is illustrated in Fig.
1. Furthermore, the pressure-temperature dependence of dissi-
pative forces acting on collective modes of protein motion are
analyzed. The results suggest that the traditional, static view of
a protein energy landscape should be subsumed by a fluctuating
picture, and that this can potentially have functional
consequences.

Results and Discussion
In Fig. 2, we show representative examples of picosecond
fluctuations in pressure and atomic coordinates observed during
the MD simulations. The pressure of the whole simulation-box
rapidly fluctuates with an amplitude of �50 MPa around the
reference value. The fluctuations in atomic position involve fast
components on the subpicosecond time scale, which resemble
vibrations in the underlying approximately harmonic potential,
and slower components on the picosecond (or longer) time scale,
which are due to variations in the position and force constant of
that potential. Fig. 2 also illustrates how the underlying potential
and force constant can be determined from the fluctuations in
atomic position. The variation of the force constant on the
picosecond time scale is also shown.

A measure for the overall motion present in a protein
molecule is provided by the time-dependent atomic mean-
square displacement (MSD), ��r2�(�) � �[rk(t) � rk(t � �)]2�,
where rk(t) is the coordinate vector of atom k at time t, and ���
and �� are the time and ensemble averages, respectively. ��r2�T,P(�)
can readily be calculated from the MD trajectories, rT,P(t). In Fig.
3, the temperature dependence of the hydrogen ��r2� is shown
for � � 1 ps. Hydrogen atoms were chosen here due to their large
and evenly distributed abundance in the protein, to avoid
mass-weighting, and because the hydrogen ��r2� can be directly
measured in neutron scattering experiments. Similar results were
obtained when all atoms are included in the analysis (data not
shown). For all pressure values, ��r2�P(T) is linear for T � Tg �
200 K and increases nonlinearly at a higher rate for T 	 Tg. This
phenomenon is widely known as the protein dynamical (or glass)
transition and is due the solvent-driven activation of anharmonic
dynamics with increasing temperature above Tg (4, 10, 11). For
temperatures below Tg the energy landscape explored by the
system is effectively harmonic. Tg is related to the depth of this

harmonic potential well by kBTg 
 EB, where EB represents the
effective energy barrier indicated in Fig. 1. Fig. 3 Inset shows
that, although Tg f luctuates with pressure, there is no systematic
pressure dependence and Tg(P) is effectively constant. Hence,
the effective energy barriers EB separating the harmonic sub-
states are independent of pressure.

From the slope of ��r2�P(T) in the linear regime (T � 160 K)
the effective force constant of the underlying harmonic potential
can be derived by using keff(P) � 6kB/(d��r2�P/dT) (12). The
results are shown in Fig. 4. keff(P) increases with increasing
pressure corresponding to an overall stiffening of the protein.
The slope of keff(P) is approximately linear in two distinct ranges
of P, being 3.0 � 0.2 pN/nm MPa and 1.6 � 0.4 pN/nm MPa for
P � 400 MPa and P � 700 MPa, respectively, with a transition
around P* � 480 MPa, indicating a qualitative change in the
pressure response of the protein energy landscape.

The transition pressure P* is closely similar to the value of 400
MPa found previously for the pressure-induced dynamical tran-
sition in the atomic MSD for a crystalline protein, Staphylococ-
cal nuclease (SNase) (13), between two approximately linear
regions of ��r2�300K(P), with d��r2�(P)/dP�P�P* 	 d��r2�(P)/
dP�P	P*. To investigate whether a similar transition occurs in the
present system of HEWL in solution, ��r2�T is plotted against
pressure in Fig. 5. For all temperatures, ��r2�T(P) significantly
decreases with increasing pressure but with the slope being
nonlinear over the whole pressure range. Assuming this decrease

Fig. 2. Examples of picosecond fluctuations in the simulation-box pressure
(Top), a single atomic cartesian coordinate (Middle), and its associated force
constant (Bottom) at 300 K and 0.1 MPa. The calculation of the one-
dimensional force constant, k is illustrated for a 1-ps interval indicated by the
rectangle: the probability distribution P(x) is fitted by a Gaussian, which
readily yields the effective potential V(x), and comparison with V(x) � kx2/2
yields k � kBT/�2, where �2 is the variance of P(x).

Fig. 3. Temperature dependence of the hydrogen mean-square displace-
ments during a time interval � � 1 ps for selected pressure values. (Inset) The
pressure dependence of the transition temperature Tg, calculated as the
intersection between two linear fits to ��r2�P(T) in the ranges T � 160 K and 220
K � T � 260 K, respectively, as illustrated for the 1,000 MPa data by the solid
(fit region) and dashed (continuation outside fit region) lines.

Fig. 4. Pressure dependence of the effective environmental force constant
keff for dynamics on the � � 1 ps time scale derived by using linear fits to
��r2�P(T) in the harmonic regime (T � 160 K), as illustrated in Fig. 3. The solid
and dashed lines are linear fits in the ranges P � 400 MPa and P � 700: MPa.
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in mobility with increasing P being due to the reduction
in accessible volume, ��r2�/��r0

2� � (V/V0)2/3, and using the
relations � � �(�(lnV)/�P) and � � ���1/�P, where � is the
compressibility and � is the nonlinearity index, yields

��r2��P

��P � c1

c2
��

2
3�

, [1]

where c1,2 are integration constants. For lysozyme in solution the
pressure dependence of ��r2�T(P) can be well described by using
Eq. 1, as shown in Fig. 5. The fit results for � are also shown in
Fig. 5 and vary between 1.1 and 1.7. Experimental � values for
proteins range from 7 to 12 (14), and for an ideal harmonic
system � � 1 (15). This result indicates that lysozyme in the
present MD simulations only partially relaxed at high pressure,
but was rather elastically compressed and thus remained close to
the native conformation.

The above analysis investigated the dynamics of individual
atoms, averaged over the whole ensemble present in the protein,
thus providing a mean-field measure for the local (cartesian
real-space) energy landscape explored by a single atom. The
curvature of this local energy landscape was found to increase
with increasing pressure, whereas the effective barrier height
separating substates remains unchanged. These results are pic-
torially described in Fig. 1 Upper Right.

In the following, the energy landscape is further examined but
with the focus redirected from the above mean-field description
to the characterization of collective dynamics. Collective coor-
dinates were determined by using principal component (PC)
analysis of the full MD trajectories. Apart from �10 modes at
T 	 Tg, all PC modes were found to be approximately harmonic.
Thus, Brownian dynamics in a harmonic potential was used to
model the collective dynamics and, in particular, to determine
the eigen and damping frequencies of each PC mode. Results for
anharmonic and/or undersampled lowest-frequency modes
(�5–20 modes for each trajectory) were excluded in the follow-
ing analysis. However, it is important to note that, due to the
superposition of PC modes (while sampling mode m, the trajec-
tory simultaneously samples all other modes), the effect of
anharmonic (and also solvent) dynamics is implicitly included in
all mode variables, i.e., in the time series of the projection �m(t).
In the Brownian description, Eq. 2, this effect is mediated by the
random force, 	.

In Fig. 6, we show the damping frequencies, � plotted against
the eigenfrequencies, 
0 of the PC modes for selected pressure
and temperature values. In general, the lowest-frequency PC
modes are those with the largest amplitude. Fig. 6 Top shows the
distribution of �P(
0) for individual modes at 300 K. At all
pressure values the distribution of damping frequencies has a
spread of �0.3 THz (at given 
0) and the average � increases
with increasing 
0. For the lowest-frequency modes � 	 
0 and,

therefore, the motion along these modes is overdamped. � � 
0
is critical damping. Critical damping establishes the fastest
process for dissipating the energy contained in an oscillator and,
therefore, the determination of the critical damping frequency
�c is of possible functional interest.

At 300 K, the application of pressure gives rise to an increase
of � at any given eigenfrequency for modes in the range 
0 � 3
THz, leading to a pressure-induced increase in the critical
damping frequency, from 0.66 THz at 0.1 MPa to 1.0 THz at
1,000 MPa. The damping frequencies of PC modes with 
0 � 3
THz show no significant dependence on pressure, indicating that
the dynamics of the largest-amplitude modes, i.e., those modes
with the lowest eigenfrequencies, is more strongly affected by
pressure than the more localized modes with higher frequencies.

The temperature dependence of �(
0) is shown for P � 0.1
MPa in Fig. 6 Bottom. In the regime of harmonic protein
dynamics, i.e., for T � Tg, �(
0) shows little temperature
dependence. However, in the presence of anharmonic dynamics,
i.e., for T � Tg, �(
0) significantly increases with increasing
temperature. This suggests the existence of two distinct damping
regimes: one that is associated with the dynamics within har-
monic substates, and one of relatively larger strength that is
associated with anharmonic and/or diffusive motions. This find-
ing is pictorially described in Fig. 1 Lower Right, where an
increased amplitude in the energy landscape roughness symbol-
izes relatively stronger damping.

Fig. 6 Middle shows a comparison of �P(
0) for two temper-
atures, 100 K and 300 K. For PC modes with 
0 � 1 THz, the
main effect of the lower temperature is to reduce the damping
frequency at any given 
0 by �0.4 THz. This is in accord with
the above finding. However, for the lowest-frequency (
0 � 0.5

Fig. 5. Pressure dependence of the hydrogen mean-square displacements
during a time interval � � 1 ps for temperatures well above the dynamical
transition temperature. Solid lines represent least-squares fits of Eq. 1, de-
scribed in the text, and the fit results for the nonlinearity index � are shown
in Inset.

Fig. 6. Eigen and damping frequencies 
0 and �, respectively, of the low-
frequency principal component modes for selected pressure and temperature
values. (Top) Symbols show {
0, �} for individual modes and thick solid lines
represent running averages. For clarity, data sets for different pressure values
are vertically offset by 0.5 THz. The thin solid lines indicate critical damping,
� � 
0. (Middle) Comparison of the damping frequencies at 300 K (thick solid
lines) and 100 K (thin solid lines) for the same pressure values as in Top.
(Bottom) Comparison of the damping frequencies at 0.1 MPa and various
temperatures.
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THz) modes, the temperature-induced change in � is smaller.
Because these modes describe collective displacements distrib-
uted over the whole protein, damping of these modes may be of
particular importance. At temperatures below Tg, the surround-
ing solvent acts as a cage for protein dynamics (on the ns/ps time
scale) that may provide a strong damping mechanism additional
to protein-internal damping. With increasing frequency, the PC
modes become more localized and, thus, the relative importance
of protein/solvent interactions is reduced and protein-internal
damping mechanisms become more dominant. This hypothesis
is supported by the observation that, at 100 K, �(
0) initially
decreases with increasing 
0, as is also shown in Fig. 6. For T 	
Tg, with increasing temperature, this initial decrease in �(
0)
becomes smaller and vanishes at �260 K, as can be seen for P �
0.1 MPa in Fig. 6 Bottom.

The pressure and temperature dependence of �(
) of the
low-frequency PC modes also determines the critical damping
frequency, �c(P,T). �c(P,T) was determined for all temperatures
and pressures as the intersection of the � � 
0 line with a linear
(T � 260 K) or quadratic (T � 240 K) fit to �(
0) for 
0 � 1.5
THz. The results are shown in Fig. 7. At constant temperature,
�c(P) increases approximately linearly with increasing pressure.
Because �(
) is a slowly varying monotonic function for 
 � 1
THz, �c 
 P is equivalent to an approximately linear increase
with pressure of �, which can also be seen in Fig. 6 Top and
Middle. For T � 220 K and T � 240 K, the slope ��c of �c(P) is
almost independent of temperature, the averages being (2.7 �
0.1)10�4 THz MPa�1 and (3.56 � 0.06)10�4 THz MPa�1,
respectively. This difference in slope can be related to the two
damping regimes found above, which are associated with the
harmonic and anharmonic dynamics below and above Tg,
respectively.

The critical damping frequency at ambient pressure (i.e., at 0.1
MPa), �c

0, was also determined from the linear fits to �c(P). For
T � 160 K, �c

0(T) f luctuates around a constant value of �0.43 �
0.01 THz, whereas for T � 180 K �c

0(T) increases linearly with
increasing temperature. Again, this finding is consistent with the
above observation that the damping is independent of temper-
ature in the harmonic substates. However, when the temperature
increases to or above Tg, the trajectories cumulatively sample
more anharmonic regions of the energy landscape, in which � is
larger and thus �c increases.

Conclusions
Understanding the topology of and the dynamics on protein
energy landscapes furnishes insight into the physical mechanisms
governing protein folding and function. Here, the variation of
pressure and temperature in MD simulations of lysozyme has
revealed a pressure-induced increase in the curvature of the
harmonic substates lining the ensemble of native states. The
effective force constant associated with this curvature initially

increases linearly with increasing pressure, but at �480 MPa
exhibits a 2-fold reduction in slope, indicating the presence of
two pressure–response mechanisms. Because the application of
pressure in the 100 MPa range does not significantly change the
lengths of chemical bonds, both mechanisms are likely to orig-
inate from interactions governed by van der Waals forces. The
question arises as to whether these mechanisms describe the
different pressure responses of the protein and the solvent, or
whether both can be attributed to either the protein or the
solvent. For example, the application of pressure significantly
decreases the tetrahedrality of the water structure (16). Because
the protein dynamics is slaved to the solvent fluctuations (17),
the comparatively more rigid tetrahedral water structure at
lower pressure may then cause a stiffer protein response to
pressure changes than the less rigid van der Waals liquid-like
water structure at higher pressure.

Protein relaxation accompanying functional processes such as
folding, ligand binding or chemical reaction often requires the
dissipation of kinetic and/or potential energy contained within
collective degrees of freedom (modes). This dissipation is fastest
for modes that are critically damped and, because of the equi-
partition of energy among all modes and mode coupling (18),
these modes contribute disproportionately high to energy dissi-
pation and thus relaxation. Accordingly, the critical damping
frequencies for collective modes of protein motions were deter-
mined. �c(P) is found to depend approximately linearly on
pressure indicating that the pressure dependence is governed by
a single physical mechanism. In contrast, the temperature de-
pendence of �c(T) reveals the existence of two damping mech-
anisms with a transition temperature close to the protein dy-
namical transition. One temperature-independent mechanism
(present at all T) is associated with the motions within harmonic
substates. The other mechanism (present for T � Tg) originates
from anharmonic and/or diffusive dynamics connecting the
harmonic substates and its contribution increases with increasing
temperature.

Finally, the above results suggest that an invariant description
of the protein energy landscape is incomplete on the picosecond
time scale. Fluctuations in volume, and thus in pressure, are
inevitably present on the molecular length scale and lead to
variations in both the topology and the dissipation characteristics
of the energy landscape. For globular proteins (with an average
size on the nanometer length scale), these fluctuations occur on
the picosecond time scale, which is the predominant time scale
for global vibrations (19). Therefore, pressure-fluctuation in-
duced variations in the protein energy landscape may be impor-
tant for substate alterations of functional relevance and may
expedite relaxation processes by broadening the range of the
most effective, i.e., critical, damping.

Methods
Molecular Dynamics. MD simulations were performed of hen egg
white lysozyme over the temperature and pressure ranges 20–
320 K (every 20 K) and 0.1–1,000 MPa (every 50 MPa). The
initial structure 1GXV (20) (solved at atmospheric pressure
using NMR) was taken from the Protein Data Bank (21) and
centered in the rhombic-dodecahedron primary simulation cell
with initial box length of 70 Å. A total of 7,309 TIP4P water
molecules (22), 15 sodium ions, and 24 chloride ions were added
as a 0.1 M salinity solvent, resulting in an electrically neutral
system comprising 31,236 atoms.

MD simulations were performed by using the Gromacs suite
of programs (23, 24) with the all-atom OPLS-AA/L force field
(25) and periodic boundary conditions. The OPLS force field
was parameterized in conjunction with the TIP4P potential,
which reproduces the anomalous diffusion coefficient of water in
the present temperature and pressure ranges (16). Electrostatic
interactions were computed by using the particle mesh Ewald

Fig. 7. Pressure dependence of the critical damping frequency �c for selected
temperatures. Symbols represent data points, and the solid lines are linear fits.
The temperature dependence of the slope ��c and intercept �c

0 of each linear
fit to �c(P) are presented in Upper and Lower Insets, respectively.
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method (26) with the direct-sum cutoff and Fourier grid spacing
being 9 and 1.2 Å, respectively, and van der Waals interactions
were cut off at 14 Å.

The system was energy minimized to a root-mean-square (RMS)
force gradient of 1.6 � 10�2 kJ mol�1Å�1, subsequently heated
during 100 ps and then pressurized and equilibrated during 600 ps.
Temperature and pressure coupling were enforced by using the
extended-ensemble Nosé–Hoover/Parrinello–Rahman algorithms
(27–30) with a coupling time constant of 1 ps. The production phase
at each temperature–pressure value was 1 ns long. Coordinates
were saved with a sampling interval of 0.1 ps used in all subsequent
analyses. For all simulations, the trajectory-average protein C
-
atom RMS-deviation from the experimental structure was �1.7
Å, indicating that the protein structure remained close to the native
state in all simulations. Also, the comparison with an additional 10
ns trajectory (at T � 300 K, P � 0.1 MPa) showed that the 1-ns
sampling of the native state is sufficient for the atomic RMS
displacements to converge within 5% of the average value obtained
during the 10-ns trajectory.

Eigen and Damping Frequencies of Protein Collective Motions. Col-
lective protein motions present in each trajectory rT,P(t) were
determined by using principal component (PC) analysis as
described in ref. 31, i.e., by diagonalizing the all-protein-atom
mass-weighted variance–covariance matrix yielding the eigen-
vectors vm. The dynamics along the mth PC mode were inves-
tigated by analyzing the time series of the projection, �m(t) �
(M1/2[rT, P(t) � rT, P

ave ]) � vm, where M is the diagonal mass matrix
and rT, P

ave denotes the average structure. The effective free-energy
landscape along the mode is given by Gm(�) � �kBT ln p�m

,
where kB is the Boltzmann constant and p�m

d� is the probability
of �m(t) � [�,� � d�). If the motion is harmonic, then Gm(�) is
also harmonic and the probability density p�m

is Gaussian.
Anharmonic and/or quasiharmonic modes were found for T �

200 K at all pressure values as has been reported for other
systems (11, 13).

The projection �m(t) can be rationalized as a stochastic process
sampling the underlying potential. Therefore, if Gm(�) is ap-
proximately harmonic, �m(t) can be described as Brownian
motion in a harmonic potential using the set of Langevin
equations

�̇�t
 � ��t
, �̇�t
 � � 2���t
 � 
0
2��t
 � 	�t
, [2]

where � is the damping frequency, 
0 is the eigenfrequency, and
	(t) is a random force that represent the effect of environmental
degrees of freedom, i.e., 	m(t) implicitly represents the effect on
�m(t) of the solvent dynamics but also of �m��m(t). In equilib-
rium, 	 and � are related by the fluctuation–dissipation theorem,
�	(t)	(t�)� � 4�kBT �(t � t�), where �(t) is the Dirac Delta
function.

The power spectral density (PSD) S��(
) can be calculated
analytically (32)

S���

 �
4�kBT
2

�
0
2 � 2�
 � 
2
�
0

2 � 2�
 � 
2

, [3]

with � � �
0
2 � �2, and can be compared with the PSD S�� �


�2S�� obtained from the simulation. S�� was computed from
�m(t) by using a fast Fourier transform and subsequently the
analytical S�� was least-squares fitted to the simulation-derived

2S�� to determine the parameters 
0 and � (31, 33, 34).
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