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Biomolecular structures are assemblies of emergent anisotropic
building modules such as uniaxial helices or biaxial strands. We
provide an approach to understanding a marginally compact phase
of matter that is occupied by proteins and DNA. This phase, which
is in some respects analogous to the liquid crystal phase for chain
molecules, stabilizes a range of shapes that can be obtained by
sequence-independent interactions occurring intra- and intermo-
lecularly between polymeric molecules. We present a singularity-
free self-interaction for a tube in the continuum limit and show
that this results in the tube being positioned in the marginally
compact phase. Our work provides a unified framework for un-
derstanding the building blocks of biomolecules.

buried area � marginally compact � protein structure � DNA structure �
tube

The structures and phases adopted by inanimate matter have
traditionally been understood and predicted by simple par-

adigms; e.g., seemingly disparate phenomena such as phases of
matter, magnetism, critical phenomena, and neural networks (1)
have been successfully studied within the unified framework of
an Ising model (2). Liquid crystals (3), whose molecules are not
spherical, form several distinct stable, yet sensitive, structures.
They possess translational order in fewer than three dimensions
and/or orientational order and exist in a phase between a liquid
with no translational order and a crystal with translational order
in all three directions. The liquid crystal phase is poised in the
vicinity of the transition to the liquid phase and accounts for its
exquisite sensitivity. Any material that resides in a particular
phase of matter exhibits the general properties characteristic of
that specific phase, and there are just a few essential ingredi-
ents—such as the symmetry of the atoms or molecules compris-
ing the material and certain macroscopic parameters, such as the
pressure and temperature—that determine the relevant phase.

Biomolecules, such as DNA and proteins, form the basis of life
and exhibit simple forms such as a single, double, or a triple helix
and almost planar sheets assembled from zigzag strands (4). The
latter are also implicated in amyloid structures that play a role
in diseases such as Alzheimer’s and type II diabetes (5). The
origin of these structures is now well understood based on details
of the constituent atoms and the quantum chemistry that governs
their assembly (6–8). The common use of these modular struc-
tures by nature begs for a simple unified explanation for their
ubiquity. Here we show that not only single, double, and triple
helices but also planar sheets made up of biaxial strands are
natural forms in a marginally compact phase of matter of a
flexible tube, the simplest description of a chain molecule that
incorporates the correct symmetry. Remarkably, this phase of
matter is analogous to a liquid crystalline phase but for chain
molecules and is assembled from emergent anisotropic building
blocks. Our work provides a unified description, which tran-
scends chemical details, of the structural motifs of biomolecules.
We elucidate the role played by discreteness in promoting the
creation of biaxial strands through spontaneous symmetry
breaking. An important consequence of our work is that it

suggests that physical scientists and engineers who wish to build
nifty machines akin to proteins would do well to design their
devices so that they are poised in this phase of matter with all of
its advantages.

The fluid and crystalline phases of ordinary matter are well
described by a simple model of a collection of beads or hard
spheres (2). A hard sphere can be thought of as a point, a
zero-dimensional object, in space with an excluded volume
region obtained by symmetrically inflating it to a size equal to its
radius. The packing of spheres is a classic optimization problem
(9) with a long and venerable history and many important
applications. There are a large number of important synthetic
materials, such as plastic, rubber, gels, and textile fibers, com-
prised of polymer molecules (10). Life is also based on chain
molecules such as DNA and proteins. The generalization of the
hard sphere to a one-dimensional manifold consists of taking a
curve and symmetrically inflating it to form a flexible tube of
thickness � characterized by uniaxial symmetry (Fig. 1). We will
show that the tube paradigm provides a unified and natural
explanation for helical forms and sheets in biomolecules.

Results and Discussion
Buried Area of Tubes. We begin by describing the discrete version
of a tube of thickness � represented by a chain of coins, whose
planes coincide with equally spaced circular cross-sections of the
tube. The self-avoidance of the tube is implemented by the
three-body prescription (11, 12) described in the legend of Fig.
1. A classic way to take into account the solvophobic effect is to
introduce an attractive pairwise interaction between the coin
centers with an interaction range R1. In refs. 13 and 14, it was
shown that, when � � R1, a short tube had relatively few
low-energy conformations compared with the generic compact
phase (� �� R1) and the swollen phase (� �� R1). Structures in
this novel marginally compact phase were found to be con-
structed from two building blocks, helices and zigzag strands, and
able to possess liquid crystal-like sensitivity because of being
poised in the vicinity of a transition to the swollen phase.

In the continuum limit, two-body interactions are necessarily
singular because there is a continuum of pairs, close by along the
chain, that are within the interaction range (12). A singularity-
free formulation of the attractive interaction follows from the
following physical situation. Let us suppose that the tube is
immersed in a poor solvent whose molecules are approximated
by spherical balls of radius R. For any given tube configuration,
there are regions of the tube surface that the solvent molecules
can come in contact with and other regions that are inaccessible.
The latter constitutes the buried surface of the tube configura-
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tion. The bigger the radius of the solvent molecule, the larger the
buried surface. We will show that an interaction based on the
buried area is sufficient to lead to ground state tube conforma-
tions in the marginally compact phase with a variety of secondary
motifs.

The simplest potential for the solvophobic interaction is
given by

H0��r�s��� � �� sol	B(R), [1]

where r(s) defines the smooth curve corresponding to the tube
axis, s is the arc-length, 	B(R) is the buried area in presence of
solvent molecules of radius R, and �sol is an effective interaction
strength that we set equal to 1 without loss of generality. An
analytical derivation is given in Methods.

The interaction as given by Eq. 1 describes a tube with a
uniform solvophobicity. As discussed below, for proteins it is
more appropriate to introduce a mixed solvophobicity tube. In
its simplest version, this tube has two types of surface regions,
each characterized by a different degree of solvophobicity, as
described by Eq. 9 in Methods.

Uniform Solvophobic Tubes. Fig. 2 a–h depicts the conformations
adopted by short tubes subject to compaction. Our results are
obtained by maximizing the buried surface area (15–17) of the
tube (see Eqs. 1 and 8). Such an optimization requirement is
generically encountered when a tube shows a higher affinity to
itself than to a solvent; e.g., in poor solvent conditions (10).
Strikingly, the conformations of choice are single, double, and
triple helices, all characterized by chirality and adopted by nature
in the context of biomolecules such as proteins and DNA. It is
remarkable that the shapes of closely packed single and double
helices adopted by flexible tubes match those of �-helices (18,
19) and the DNA double helix (20), respectively. At somewhat
higher temperatures, one obtains the conformation in Fig. 2h, as
a result of the interplay between the simultaneous maximization
of both the buried area and the entropy, comprising almost
parallel elongated tube segments. Fig. 3 shows an optimal
arrangement of several segments of continuous tubes arranged
in a hexagonal array. [Such an arrangement is called an Abri-
kosov flux lattice in the field of superconductivity (21).] One
would expect that the helical state of a few tubes would be
supplanted by such an ordering when many tubes are packed
together.

Mixed Solvophobic Tubes. We turn now to a consideration of two
distinct mechanisms that promote sheet formation within the
context of the tube picture. The first mechanism is directly
inspired from the observation that the side chains of amino acids
stick out in a direction approximately opposite of the bending
direction of the protein backbone (22), yielding an effectively
mixed solvophobic tube. In other words, certain parts of the
solvophobic tube, determined by the instantaneous tube con-
formation, are already protected from the solvent by the side
chains, whereas the rest of the tube needs to shield itself from the
solvent by means of the compaction process. The structures in
Fig. 2 i–l, obtained by minimizing the energy given by Eq. 9, are
optimal conformations for a single tube (i) and for multiple tubes
at low temperature ( j) and at a higher temperature (k and l). Our
studies have been carried out at c 
 5, which corresponds to the
region P being solvophilic and the region H being solvophobic.
The resulting sheet structure is characterized by planarity as well
as strands that zigzag normal to the plane of the sheet, as
observed in real protein structures.

The second mechanism is more subtle and does not invoke
mixed solvophobicity but instead arises from the consideration

a

b

Fig. 1. Sketch of a hard sphere (a) and a tube (b). The self-avoidance of an
ensemble of hard spheres, each of radius �, can be ensured by considering all
pairs of spheres and requiring that none of the distances between the sphere
centers is �2�. The self-avoidance of a tube of thickness � can be enforced
through a suitable three-body potential (11, 12). We denote the tube axis by
a smooth curve, r(s), where the arc-length s satisfies 0 � s � L, and L is the total
length of the tube. For a tube, one considers all triplets of points ri 
 r(si), i 

1, 2, 3 on the tube axis and draws circles through them and requires that none
of the radii r(r1, r2, r3) of these circles is less than the tube radius �.
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Fig. 2. Optimal conformations of tubes subject to compaction. In our
simulations, we considered a discretized representation with N segments
separated by a distance b 
 �/2, where � is the tube radius. The continuum
limit is obtained when b �� �—we have verified that our results are substan-
tially the same on reducing the value of b down to �/3. The conformations are
obtained by using metropolis Monte Carlo simulations by annealing or by long
simulations at constant temperature. The simulations are performed with
standard pivot and crank-shaft move sets (25). For systems of multiple chains,
the tubes are placed inside a hard-wall cubic box of side of 40�—we verified
that the walls of the box did not influence the conformations shown. (a–e)
Conformations of single solvophobic tubes (c 
 0) of various lengths and for
different solvent molecule radius R that maximize the buried area (Eq. 8). (a)
N 
 20 and R 
 0.1�. (b) N 
 20 and R 
 0.2�. (c) N 
 30 and R 
 0.1�. (d) N 

40 and R 
 0.1�. (e) N 
 50 and R 
 0.2�. ( f–h) Optimal conformations of
multiple solvophobic tubes (c 
 0) of length N 
 20 and for R 
 0.1� obtained
in long simulations at constant temperatures. ( f) Two tubes at a low temper-
ature. (g) Three tubes at a low temperature. (h) Four tubes at an intermediate
temperature. (i–l) Conformations of mixed solvophobicity tubes (c 
 5) that
minimize the energy (Eq. 9). R 
 �/2 for all cases. (i) A single helix of length N 

30 and �1 
 15° obtained by slow annealing (one obtains the same confor-
mation for �1 
 30° or 45°). (j) A stack of four helices of length N 
 15 and �1 

45° obtained by slow annealing. (k and l) Two views of a planar sheet
arrangement of five chains of length N 
 15 and �1 
 30° obtained in a
constant temperature simulation run at T 
 0.4.

17284 � www.pnas.org�cgi�doi�10.1073�pnas.0704594104 Banavar et al.



of a discrete version of the tube as described above. Instead of
maximizing the buried surface area of the continuous tube, we
now seek to maximize the number of pairwise contacts between
nonconsecutive coin centers within a prescribed mutual distance
of the order of the tube thickness to be within the marginally
compact phase (13, 14). The optimal packing for the discrete
case at its edge of compaction is shown in Fig. 4—one obtains
a planar arrangement of chains that zigzag within the plane. In
the continuum, one retains the uniaxial anisotropy characteristic
of a tube, whereas in the discrete case, the symmetry between the
two directions perpendicular to the principal strand direction is

spontaneously broken (in the mixed solvophobic tube, this
symmetry is broken overtly). Strikingly, the out-of-plane zigzag
pattern shown in Fig. 2 for continuous tubes is realized in protein
�-sheets when viewed in the C� representation (see Fig. 5a),
whereas the in-plane zigzag pattern of the discrete case shown in
Fig. 4 is obtained in a different representation with interaction
centers on both the N�H and C�O bonds (see Fig. 5b).

Conclusions
Our work suggests that protein native state structures occupy a
novel phase of matter corresponding to that of compact con-
formations of a flexible tube. This marginally compact phase is
analogous in several respects to the liquid crystal phase but this
time for chain molecules. The liquid crystal phase is exquisitely
sensitive to perturbations because it is poised close to the
transition to the liquid phase. Likewise, protein structures are
able to facilitate the range of functions that proteins perform in
the living cell because a tube at the edge of compaction is in the
vicinity of a swollen phase in which the attractive potential is no
longer operational. In addition, just as liquid crystals are made
up of anisotropic molecules, protein native state structures are
made up of emergent anisotropic building blocks—uniaxial

Fig. 4. Sketch of optimally packed short segments of three tubes (solid lines)
obtained from metropolis Monte Carlo annealing simulations at the edge of
compaction. The self-avoidance of a discrete tube [defined through a set of N
points along the discretized tube axis {r1, r2, . . . , rN} with unit spacing (b 
 1)
between consecutive points] is enforced through the three-body potential de-
fined in the legend of Fig. 1. The number of pairwise contacts between noncon-
secutive beads is maximized. Any two such beads are forbidden to come closer
than 1.1 units and are defined to form a contact when they come closer than 1.6
units (R1 
 1.6) (these numbers have been selected to conform to the known
length scales associated with real proteins). For convenience, the three tube
segments are placed inside a hard-wall spherical box of radius 9 units—the
conformations shown are not affected by the presence of the walls. Our simula-
tions were performed with standard pivot, crank-shaft, and tail slithering move
sets. Random translations of one of the chains were also attempted. All tubes
have a radius � 
 1.1. To minimize edge effects, the tubes were of different
lengths, and the first and last points, which are not shown in the figure, were not
allowed to form any contact. One obtains eight pairwise contacts for both of the
ground state arrangements shown in the figure as dashed lines. Also drawn, in
red, are some of the circles of radius � going through several local and nonlocal
triplets.

Fig. 3. Optimal arrangement of several segments of continuous tubes
arranged in an Abrikosov flux lattice-like state (21) with straight tube seg-
ments parallel to each other. In the plane orthogonal to the tube axes, the
tube cross sections are arranged in a hexagonal array.

Fig. 5. Parallel �-sheets from a structural model of CA150.WW2 protofila-
ments forming amyloid fibrils [Protein Data Bank (26) entry 2NNT]. The model
is based on distance constraints obtained by means of magic angle spinning
(MAS) NMR spectroscopy (27). (a) Side view of the two �-sheets (in yellow)
forming the hairpin structure of the whole protofilament. C� backbone
representation is used (28). (b) Top view of the �-sheet included in the
rectangular box in a. The representation used in b employs virtual interaction
centers based on main backbone atom positions. Blue (red) spheres are placed
in the middle of the N–H (C–O) bonds and lie approximately in the same plane.
Thick black lines are drawn to connect interaction centers along the same
�-strand. Thin green lines are drawn to represent interactions (i.e., virtual
hydrogen bonds) between neighboring strands.
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helices and almost planar sheets comprised of biaxial strands. It
is tempting to speculate that nature, through evolution and
natural selection, has been able to exploit the marginally com-
pact phase of flexible tubes under the constraints of quantum
chemistry governing covalent and hydrogen bonds.

Methods
We derive an analytical expression for the buried area of a tube
of length L (0 � s � L) and radius �. A generic point on the tube
surface is given by

u�s , �� � r�s� � ��n̂�s� cos � � b̂�s� sin �� , [2]

where n̂(s) and b̂(s) are the normal and binormal vectors, respec-
tively, at position s, and � is an azimuthal angle running from 0 to
2	 (23). The surface element is given by �g(s, �)dsd�, where

g � ��

u

s�

2 
u

s


u

�


u

�


u

s � 
u


�
� 2� . [3]

Note that 
2r/
s2 
 �n̂(s), Rc(s)  1/�(s) is the local radius of
curvature, and 
b̂/
s 
 ��n̂(s), where � is the torsion (24). One
obtains

g � �2�1 � �� cos ��2. [4]

For the tube Rc(s) 
 1/�(s) � �, @s, thus 1 � �� cos � � 0, and

�g � ��1 � �� cos �� . [5]

The total area of the tube is

	 � 	
0

2	

d� 	
0

L

ds �g � 2	�L. [6]

The buried surface is determined by the inequality

BR�s , �� � min
s�

�r�s� � �� � R��n̂�s�cos � � b̂�s�sin ��

� r�s�� �  � � R , [7]

yielding an expression for the buried area:

	B�R� � � 	
0

L

ds 	
0

2	

d� � 1 �
�

Rc�s�
cos ��

���� � R � BR�s , ��� , [8]

where �(x) is equal to 1 if x � 0, and 0 otherwise.
The simplest version of a mixed solvophobicity tube has two

types of surface regions, each characterized by a different degree
of solvophobicity. We denote these regions as P (for solvophilic)
and H (for solvophobic), respectively. We consider the gener-
alized Hamiltonian

Hc��r�s��� � ��	
0

L

ds 	
0

2	

d� � 1 �
�

Rc�s�
cos �� �����

� R � BR�s , ��� � c���1 � �	 � � �� ��1

� ��� � R � BR�s , ����� , [9]

where �1 defines half the angular width of region P centered
around � 
 	 and c is a measure of the coupling between this
region and the solvent. The case c 
 0 corresponds to the
uniform tube described previously.

Note Added in Proof. Hansen-Goos et al. (29) have studied the solvation
free energy of proteins in the tube model and have identified the
parameter regions in which one obtains the optimal helix and �-sheets.
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