Skip to main content
. 2007 Nov 21;2(11):e1219. doi: 10.1371/journal.pone.0001219

Table 2. Effects of Age and Amplitude on performance, for each condition of precision.

Modality Variable and precision Age Amplitude Age × Amplitude
sustained reach time R low precision F(1,40) = 12.7 p<0.05, Δ = 39% F(3,120) = 31.3 p<0.001, Δ = 44% F(3,120) = 9.6 p<.005
reach time R high precision F(1,40) = 32.0 p<001, Δ = 47% F(7,280) = 22.6 p<0.001, Δ = 46% F(7,280) = 9.9 p<.001
complete stabilization time S low precision F(1,40) = 259.9 p<.001, Δ = 32% F(3,120) = 5.8 p<.005, Δ = 24% F = 0.41 N.S.
complete stabilization time S high precision F(1,40) = 458.5 p<.001, Δ = 38% F(7,280) = 1.2 N.S. F(7,280) = 1.9 N.S.
rate of failure F low precision F(1,40) = 6.6 N.S. F(3,120) = 3.6 N.S. F = 1.5 N.S.
rate of failure F high precision F(1,40) = 11.2 p<.005, Δ = 105% F(7,280) = 3.0 N.S. F(7,280) = 3.1 N.S.
impulsion reach time R low precision F(1,40) = 6.6 N.S. F(3,120) = 3.7 N.S. F = 0.6 N.S.
reach time R high precision F(1,40) = 5.6 N.S. F(7,280) = 9.2 p<.001, Δ = 19% F(7,280) = 1.0 N.S.
rate of failure F low precision F(1,40) = 38.4 p<.001, Δ = 74% F(3,120) = 5.4 p<.005, Δ = 31% F = 1.6 N.S.
rate of failure F high precision F(1,40) = 24.1 p<.001, Δ = 32% F(7,280) = 7.3 p<.001, Δ = 37% F(7,280) = 2.5 N.S.

Significance threshold is p = .05. The Greenhouse-Geisser corrective coefficient has been applied to the values of p because the distributions are not spherical, according to the Mauchly test. Δ = magnitude of effect determined as the maximal differences between marginal means expressed in percentage of overall Mean (unlike average difference, maximal difference allows comparing magnitude for variables that have different numbers of modalities, 2, 4 and 8).