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Abstract

We determined whether host matrix metalloproteinase

(MMP) 9 is essential to angiogenesis and to the growth

of L3.6pl human pancreatic cancer cells implanted into

the pancreas of wild-type (MMP-9+/+) and knockout

(MMP-9�/�) nude mice. Four weeks after tumor cell in-

jection, pancreatic tumors in MMP-9+/+ mice were large,

had many blood vessels, and contained many macro-

phages expressing MMP-9. In contrast, pancreatic tu-

mors in MMP-9�/� mice were significantly smaller, had

few blood vessels, and had few macrophages. Next,

we parabiosed MMP-9+/+ mice with MMP-9+/+ mice,

MMP-9�/� mice withMMP-9�/� mice, andMMP-9+/+ mice

with MMP-9�/� mice. Two weeks after parabiosis, we

implanted L3.6pl cells into the pancreas of the re-

cipient mouse in each pair. Four weeks later, the mice

were necropsied. The parabiosis experiment revealed

a direct correlation between intratumoral MMP-9+/+ ex-

pressing macrophages, angiogenesis, and progressive

tumor growth. Because the expression of MMP-9 by

L3.6pl tumor cells was similar in all parabionts, the data

clearly demonstrate a major role for host-derived MMP-

9 in angiogenesis and in the growth of human pan-

creatic cancer in the pancreas of nude mice.
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Introduction

After the initial transformation and growth of malignant cells,

tumors must recruit a new vasculature to expand beyond

1 mm in diameter. This recruitment is accomplished by the

synthesis and secretion of several proangiogenic factors

by tumor cells and infiltrating host cells, leading to the de-

velopment of a capillary network that is connected to sur-

rounding host tissues [1,2]. The infiltration of leukocytes

into tumors is known to promote angiogenesis and progres-

sive growth of lesions [3–5]. Histopathological data ob-

tained from multiple clinical cancer specimens reveal that

the higher is the density of leukocyte infiltration into tumors,

the worse is the disease outcome [6–13]. For example,

chronic pancreatitis is known to increase the risk of devel-

oping pancreatic cancer [14–16], and this risk is associated

with the presence of inflammatory cells [17–19].

To produce a new vasculature, endothelial cells must mi-

grate, divide, and form tubes [20,21]. Proteolysis of the ex-

tracellular matrix [22,23] facilitates migration and releases

stored angiogenic signaling molecules from the extracellular

matrix [24,25]. High levels of matrix metalloproteinase (MMP)

9 in tissues are associated with active neovascularization [22–

25]. Studies in mice genetically modified to lack MMP-9 ex-

pression [24–27] have shown that MMP-9 expressed by host

inflammatory–stromal cells contributes to angiogenic switch

that occurs during carcinogenesis [24,25,28]. Human pan-

creatic cancers express both MMP-2 and MMP-9 [29–31],

and increased expression of these MMPs is associated with

invasive and metastatic potential [30,31]. Whether the MMP-9

produced by stromal cells within these tumors plays a major

role in angiogenesis and tumor expression is unclear.

Recently, we have reported that host MMP-9 expression

contributes to angiogenesis and the progressive growth of

human ovarian cancer cells implanted into the peritoneal

cavities of female nude mice that lacked the gene for MMP-9

(MMP-9�/�) or were wild-type for MMP-9 (MMP-9+/+) [28]. In-

traperitoneal injection of nucleated spleen cells from young

MMP-9+/+ nude mice into MMP-9�/� nude mice promoted the

growth of human ovarian cancer cells implanted into the peri-

toneal cavity, indicating that host-derived MMP-9 (most likely

in tumor-infiltrating macrophages) plays a major role in pro-

gressive tumor growth [28]. To determine whether host-derived

MMP-9 is also essential to angiogenesis and the progressive

growth of orthotopically implanted human pancreatic cancer

in nude mice, we used the parabiosis method to reconsti-

tute MMP-9�/� mice with MMP-9+/+ circulating cells. The data

clearly show that infiltration of MMP-9+/+ macrophages into
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orthotopic human pancreatic tumors correlates with angio-

genesis and the progressive growth of tumors.

Materials and Methods

Human Pancreatic Cancer Cell Line

Human pancreatic cancer L3.6pl [32] cells were main-

tained in Eagle’s minimal essential medium supplemented

with 10% fetal bovine serum, sodium pyruvate, nonessential

amino acids, L-glutamine, a two-fold vitamin solution (Life

Technologies, Inc., Grand Island, NY), and a penicillin–

streptomycinmixture (Flow Laboratories, Rockville, MD). Ad-

herent monolayer cultures were maintained on plastic and

incubated at 37jC in a mixture of 5% CO2 and 95% air. The

cultures were free of Mycoplasma and the following patho-

genic murine viruses: reovirus type 3, pneumonia virus,

K virus, Theiler’s encephalitis virus, Sendai virus, minute

virus, mouse adenovirus, mouse hepatitis virus, lymphocytic

choriomeningitis virus, ectromelia virus, and lactate dehy-

drogenase virus (assayed by the Research Animal Diagnos-

tic Laboratory, University of Missouri, Columbia, MO). The

cultures were maintained for no longer than 12 weeks after

recovery from frozen stock.

Animals

Athymic BALB/c nude mice with wild-type MMP-9 genes

(MMP-9+/+) were purchased from the Animal Production

Area of the National Cancer Institute’s Frederick Cancer

Research Facility (Frederick, MD). Mice lacking an intact

MMP-9 gene were originally developed through homologous

recombination in mice with a 129/CD1 genetic background

[26]. We generated theMMP-9�/� female nude mice used in

the current study by breeding MMP-9�/� 129/CD1 mice with

MMP-9+/+ female nude mice for eight generations [28]. The

nude mice were housed under pathogen-free conditions and

used for all studies when they were 8 to 12 weeks old. Mice

used for parabiosis were age-matched. Animals were main-

tained according to institutional regulations and in facilities

approved by the American Association for Accreditation of

Laboratory Animal Care, in accordance with current regula-

tions and standards of the US Department of Agriculture,

Department of Health and Human Services, and the National

Institutes of Health.

Genotyping of Mouse MMP-9 By Polymerase Chain

Reaction Analysis

The genotypes of the mice were determined by using poly-

merase chain reaction (PCR) analysis [27]. Tails or spleens

were digested in a buffer containing proteinase K and ex-

tracted twice by using phenol. DNA was precipitated and

resuspended in TE buffer (10 mM Tris base, 1 mM EDTA,

pH 7.5) containing RNase A. Three hundred nanograms of

DNA was used in a 50-ml PCR. We used two pairs of PCR

primers in the same reaction (one for MMP-9 and one for

neomycin), which were used to replace most of exon 2 and

all of intron 2 on the MMP-9 gene in MMP-9�/� mice [27].

The sequences of the MMP-9 exon 2 forward and reverse

primers were 5V-GCATACTTGTACCGCTATGG-3V and 5V-

TGTGATGTTATGATGGTCCC-3V, respectively. These pri-

mers yielded a 224-bp product that was only present in the

unaltered allele (most of exon 2 and all of intron 2 are de-

leted in the knockout allele). The sequences of neomycin

PCR primers were 5V-ATGATTGAACAAGATGGATTGCAC-3V

and 5V-TTCGTCCAGATCATCCTGATCGAC-3V, respectively.

These primers yielded a 479-bp product that was only pres-

ent in the knockout allele. PCR took place in a Mastercycler

gradient 5331 (Eppendorf, Hamburg, Germany) at 98jC for

20 seconds, 65jC for 30 seconds, and 68jC for 30 seconds,

for 35 cycles. All PCR products were separated by electro-

phoresis on 2% agarose gels.

Orthotopic Model for Pancreatic Cancer

To produce pancreatic tumors, L3.6pl cells were har-

vested from subconfluent cultures by brief exposure to a

phosphate-buffered saline (PBS) solution containing 0.25%

trypsin and 0.02% EDTA. Trypsinization was stopped with a

medium containing 10% fetal bovine serum, and the cells

were washed once in serum-free medium and resuspended

in Hank’s balanced salt solution. Only single-cell suspen-

sions of > 90% viability (trypan blue exclusion) were used for

injection into the pancreas.

The mice were anesthetized by an intramuscular injection

of pentobarbital (0.5 mg/kg). Abdominal skin was cleaned

with 70% alcohol, and a small left abdominal flank incision

was made. The spleen was exteriorized, and the pan-

creas was identified in a region just beneath the spleen. A

30-gauge needle was inserted into the pancreas, and tumor

cells (1�106 per 50 ml of Hanks’ balanced salt solution) were

injected subcapsularly [32]. The abdominal wound was

closed in one layer with wound clips (Auto-clip; Clay Adams,

Parsippany, NJ). The animals tolerated the surgical pro-

cedure well, and no procedure-related deaths occurred.

After 4 weeks, the mice were euthanized and pancreatic

tumors were harvested. A portion was fixed in formalin and

another portion was immediately embedded in ornithine car-

bamyl transferase compound (Miles, Elkhart, IN), rapidly

frozen in liquid nitrogen, and stored at �80jC. Comparative

experiments were performed concurrently.

Immunohistochemical Analysis and Quantitation

of Microvessel Density

Pancreatic tumors were harvested at autopsy and pro-

cessed for immunostaining as previously described [32]

using the following antibodies: rat polyclonal antibody F4/

80, which recognizes the mouse macrophage-specific anti-

gen F4/80 (1:100 dilution, MCAP497; Serotec, Inc., Raleigh,

NC); anti–human MMP-9 rabbit polyclonal antibody (1:100

dilution, AB13458; Chemicon, Temecula, CA); anti–CD31/

platelet–endothelial cell adhesion molecule-1 (PECAM-1)

monoclonal antibody, which recognizes PECAM-1 on endo-

thelial cells (1:400 dilution, 25 mg/ml, mouse-specific; BD

Pharmingen, San Diego, CA); and appropriate horserad-

ish peroxidase–conjugated secondary antibodies (Jackson
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ImmunoResearch Laboratories, Inc., West Grove, PA). Nega-

tive controls were stained with nonspecific immunoglobulin

(Ig) G and appropriate horseradish peroxidase–conjugated

secondary antibody. All sections were counterstained with

Gill’s hematoxylin. Immunostained tumor sections were ex-

amined by bright-field microscopy. For the quantification

of microvessel density (MVD) or macrophage infiltration,

10 random 0.159-mm2 fields at �100 magnification were

captured, and CD31-positive or F4/80–positive cells were

counted [33]. Images were digitized by using a Sony 3CD

color video camera (Sony Corp., Tokyo, Japan) and a per-

sonal computer equipped with Optimas image analysis soft-

ware (Optimas Corp., Bothell, WA).

Immunofluorescence Double Staining for F4/80

and MMP-9

Frozen specimens of human pancreatic carcinoma cells

growing in the pancreata of nude mice were cut into 4-mm
sections, mounted on positively charged slides, and stored

at �80jC. Tissue sections were fixed in cold acetone for

10 minutes and then washed three times with PBS for 3 min-

utes each. The slides were placed in a humidified chamber

and incubated with protein-blocking solution (4% fish gelatin

in PBS) for 20 minutes at room temperature. The slides were

then incubated overnight at 4jC with goat polyclonal anti–

mouse MMP-9 antibody (AF909; R&D Systems, Minneap-

olis, MN) at a 1:60 dilution (17 mg/ml). Next, the slides were

rinsed three times with PBS, incubated for 10 minutes in

protein-blocking solution, and then incubated for 1 hour at

room temperature with Alexa 488–conjugated anti-goat sec-

ondary antibody at 1:400 dilution (Molecular Probes, Inc.,

Eugene, OR). From this step onward, the slides were pro-

tected from light. They were rinsed three times in PBS and

incubated for 20 minutes at room temperature with protein-

blocking solution (5% normal horse serum and 1%normal goat

serum in PBS). They were then incubated overnight at 4jC
with a 1:100 dilution of F4/80 (10 mg/ml MCAP497; Serotec,

Inc.). The slides were rinsed three times with PBS and incu-

bated for 10 minutes in protein-blocking solution. They were

then incubated for 1 hour at room temperature with a 1:400

dilution of Alexa 594–conjugated anti-rat secondary antibody

(Molecular Probes, Inc.). They were then rinsed three times

in PBS and counterstained with Hoechst 3342 (100 mg/ml in

PBS). The slides were then rinsed three times with PBS, and

a mounting medium was placed on each sample and cov-

ered with a glass cover slip (Fischer Scientific, Pittsburgh, PA).

The mounting medium consisted of 90% glycerol, 10% PBS,

and 0.1 M propyl gallate. The concentrations of stock anti-

body used were adjusted to 1.0 mg/ml. IgG antibodies were

selected and matched to secondary antibodies such as rat

(012-000-003; Jackson ImmunoResearch Laboratories, Inc.),

rabbit (011-000-003; Jackson ImmunoResearch Laboratories,

Inc.), and mouse (015-000-003; Jackson ImmunoResearch

Laboratories, Inc.) IgG.

Immunofluorescence microscopy was conducted using

a Zeiss Axioplan fluorescence microscope (Carl Zeiss, Inc.,

Thornwood, NY). Images were captured with a cooled C5810

camera (Hamamatsu Photonics KK, Bridgewater, NJ) using

Optimas software (Media Cybernetics, Silver Spring, MD) run

on a Dell personal computer (Dell, Round Rock, TX). MMP-9

staining was identified by red fluorescence, and F4/80 staining

was detected by green fluorescence. Colocalization of MMP-9

and F4/80 was detected by yellow fluorescence.

Parabiosis

The parabiosis mouse model can be used as a powerful

tool to study sequential biologic events [34,35]. We tested

whether circulating cells (including lymphoreticular cells)

from aMMP-9+/+ nudemouse populating anMMP-9�/� nude

mouse stimulate the growth of L3.6pl cells injected into the

pancreas of the MMP-9�/� nude mouse. Parabiosis was

performed according to the technique originally described

by Eichwald et al. [33], with modifications. MMP-9�/� nude

mice and normal nude mice (MMP-9+/+) were anesthetized

with pentobarbital. An incision through the skin and panni-

culus was made from the hind leg to the front leg on each

partner. A subpannicular space extending approximately

15 mm was created by blunt dissection. The latissimus dorsi

and abdominal external oblique muscles on each mouse

were split. The peritoneal cavities were not penetrated. The

muscles were sutured together with absorbable sutures. The

skin and panniculus of the two mice were sutured together

continuously with monofilament suture material. To improve

postsurgery wound healing and to prevent the separation of

parabionts, a flexible cohesive veterinarian bandage (1 in.

width, cat no. COFLEX1; Med-Vet International, Mettawa, IL)

was wrapped around the two parabionts. The parabionts

were placed in a cage (1 pair/cage) for a 2-week recovery

period before the experiments. The parabiosed mice recov-

ered exceptionally well from the procedure. To prevent pain,

we administered aspirin (100–120 mg/kg, po, twice daily) for

2 days, as prescribed by the Institutional Animal Care and

Use Committee’s Analgesia Standard Operating Proce-

dures. Common circulation was usually established by 7 to

10 days after parabiosis. Viable anastomoses of the parabi-

osis system were determined by microscopic examination of

cross-circulated green fluorescent protein (GFP) erythro-

cytes in the normal mouse (GFP-negative) and in non-GFP

erythrocytes in a GFP parabiont (data not shown).

Statistical Analysis

Mann-Whitney U test was used to compare tumor weight,

the number of macrophage infiltrations, and MVD (CD31/

PECAM-1) in MMP-9+/+ and MMP-9�/� nude mice. All sta-

tistical tests were two-sided, and the P value cutoff for sta-

tistical significance was .01.

Results

Human Pancreatic Cancer Cell Growth in the Pancreas

of MMP-9 Knockout Mice

In the first set of experiments, we injected L3.6pl cells into

the pancreas of six MMP-9+/+ mice and six MMP-9�/� nude

mice (the available number of animals). Pancreatic tumors
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developed in all six MMP-9+/+ nude mice, but only three of

the MMP-9�/� nude mice developed tumors that were sig-

nificantly smaller than those inMMP-9+/+ mice (P < .01). The

median weight of the L3.6pl tumors in MMP-9+/+ nude mice

was 0.93 g (interquartile range, 0.24–1.76 g), whereas it

was 0.1 g (interquartile range, 0–0.28 g) in MMP-9�/� nude

mice. Thus, disruption of the MMP-9 gene in recipient mice

decreased tumorigenicity and the size of human pancreatic

cancer cells in the pancreas.

Effect of Tumor Cell–Derived MMP-9 on MMP-9�/� Mice

Because both human pancreatic cancer cells and cells

from MMP-9+/+ mice produced MMP-9, we determined

whether the difference in tumor incidence between MMP-

9+/+ and MMP-9�/� mice was associated with MMP-9 pro-

duced by mouse cells or human cancer cells. The in vivo

expression level of MMP-9 in tumor cells growing in mice

was determined by immunohistochemical analysis using an

anti–humanMMP-9 antibody. As shown in Figure 1, the level

of MMP-9 produced by L3.6pl cells was similar in MMP-9�/�

and MMP-9+/+ nude mice.

Macrophage Infiltration of Pancreatic Tumors Growing

in MMP-9+/+ and MMP-9�/� Nude Mice

MMP-9 is expressed in macrophages, which are a major

component of lymphoreticular cells that infiltrate tumors [34].

We used immunohistochemistry to characterize the tumor-

infiltrating macrophages in L3.6pl pancreatic tumors (Fig-

ure 1). Specific staining for macrophages with the F4/80

antibody revealed the presence of macrophages throughout

the L3.6pl tumors in MMP-9+/+ nude mice (median number

of macrophages per field = 155; range, 117–277). In con-

trast, L3.6pl tumors in MMP-9�/� mice contained fewer

macrophages (median number of macrophages per field =

54; range, 42–79).

Angiogenesis in Pancreatic Tumors in MMP-9�/�

and MMP-9+/+ Nude Mice

Next, we determined whether macrophage infiltration into

human pancreatic tumors was associated with the formation

of blood vessels [36]. MVD in L3.6pl tumors in the pancreas

of MMP-9�/� and MMP-9+/+ nude mice was determined by

Figure 1. Immunohistochemical analysis of MMP-9, F4/80, and CD31/PECAM-1. L3.6pl human pancreatic cancer cells were injected into the pancreata of

MMP-9+/+ and MMP-9�/� nude mice. After 4 weeks, pancreatic tumors were processed for immunohistochemical analysis. Tumor sections were immunostained

with an anti –human MMP-9 antibody to detect MMP-9 expressed by human L3.6pl tumor cells. Macrophage infiltration was determined by immunostaining with

an anti –F4/80 antibody. Blood vessels in the tumors were visualized and counted after immunostaining with an anti-CD31 antibody. The staining patterns

shown are representative of those observed for at least 10 random fields. All sections were counterstained with Gill’s hematoxylin (blue). Brown indicates specific

antibody reactivity.
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staining for CD31 (Figure 1). In MMP-9+/+ nude mice, L3.6pl

tumors were highly vascularized, with a median of 71 mi-

crovessels per field (range, 54–96), whereas the median

number of microvessels per field was 27 (range, 21–33) in

MMP-9�/� nude mice (P < .001).

Tumorigenicity in Reconstituted MMP-9�/� Parabiotic Mice

The presence ofMMP-9–expressing cells in the spleens of

MMP-9�/� nude mice reconstituted by parabiosis into MMP-

9+/+ nude mice was confirmed by PCR from DNA extraction

of the spleens (Figure 2). Three parabiotic groups were used,

as shown in Table 1. The first group consisted of MMP-9+/+

nude mice parabiosed with MMP-9+/+ nude mice (positive

control group); the second group consisted ofMMP-9�/� nude

mice parabiosed with MMP-9�/� nude mice (negative control

group); and the third group consisted ofMMP-9�/� nude mice

parabiosed with MMP-9+/+ nude mice (MMP-9–reconstituted

group). Two weeks after the parabiosis procedure, L3.6pl

cells were injected into the pancreas of one mouse in each

pair (recipient mouse). Parabiont hosts were not injected. The

tumorigenicity of the L3.6pl cells was determined 4 weeks

after injection. As shown in Table 1, all injected mice in the

first group (MMP-9+/+ with MMP-9+/+) developed pancreatic

tumors (median tumor weight = 1.0 g), whereas only 5 of

10 injected mice in the second group (MMP-9�/� with MMP-

9�/�) developed pancreatic tumors, which were much smaller

(median weight = 0.1 g) (P < .001). This result was consistent

with those of the first set of studies shown, as discussed pre-

viously. All of the injected mice in the third group (MMP-9�/�

withMMP-9+/+) developed pancreatic tumors that were larger

(median weight = 0.7 g) than those of the second group (P <

.001). These results indicate that reconstitution of MMP-9�/�

nude mice with MMP-9+/+ cells (but not with MMP-9�/� cells)

increases the growth of L3.6pl pancreatic tumors. Moreover,

the MVD and macrophage infiltration of pancreatic tumors

were significantly higher in the third group than in the second

group (P < .001) (Table 1).

MMP-9 Production By Tumor-Infiltrating Macrophages

Next, we examined whether MMP-9 expression in tumor-

infiltrating macrophages was associated with angiogenesis

and the progressive growth of orthotopic human pancreatic

cancers in nudemice. Pancreatic tumors from the three groups

of parabiotic mice (Table 1) were resected and processed for

immunohistochemical analysis. MMP-9–expressing mouse

cells were detected with an anti–MMP-9 antibody specific

for murine MMP-9 and visualized by red fluorescent sig-

nals. Tumor-infiltrating macrophages were detected with an

antibody against the macrophage-specific marker F4/80 and

were visualized by green fluorescent signals. Colocaliza-

tion of the two antibodies yielded a yellow fluorescent signal.

Pancreatic tumors inMMP-9+/+ withMMP-9+/+ parabionts con-

tained F4/80–positive macrophages that expressed MMP-9

(Figure 3). Tumors in MMP-9�/� with MMP-9�/� parabionts

contained F4/80–positive macrophages that did not express

MMP-9. Tumors from MMP-9�/� nude mice that were para-

biosed with MMP-9+/+ nude mice contained a few macro-

phages that expressed MMP-9 (Figure 3). These data

confirm that the increased angiogenesis and growth of human

pancreatic tumors in the pancreas of MMP-9�/� nude mice

reconstituted with MMP-9+/+ cells were associated with the

infiltration of MMP-9–expressing macrophages.

Discussion

Our results demonstrate that MMP-9 produced by circulating

macrophages plays an important role in the angiogenesis

and growth of human pancreatic cancer cells implanted into

the pancreas of nude mice. InMMP-9+/+ mice, orthotopically

injected L3.6pl cells produced highly vascularized and rap-

idly growing tumors, whereas in MMP-9�/� mice, the tumor

Figure 2. Genotyping of mouse MMP-9 in spleen cells was performed by

PCR. DNA was derived from recipient mouse spleen cells in each group. (+/+)

DNA from recipient MMP-9+/+ mouse parabiosed with MMP-9+/+ nude mouse.

(�/�) DNA from recipient MMP-9�/� mouse parabiosed with MMP-9�/�

mouse. (+/�) DNA from recipientMMP-9�/� mouse parabiosed with MMP-9+/+

mouse. Neomycin (Neo) was used to replace most of exon 2 and all of intron 2

of the MMP-9 gene in MMP-9�/� mice. MMP-9 (a 224-bp product) is only

present in the unaltered allele, and Neo (a 479-bp product) is only present in

the knockout allele.

Table 1. Effect of Parabiosis Reconstitution with MMP-9+/+ and MMP-9�/� Nude Mice on the Growth of Human Pancreatic Cells in MMP-9�/� Nude Mice.

Nude Mice Pancreatic Tumors in Injected Mice Macrophage Infiltration MVD

Injected

(Recipient)

Parabiont (Donor) Incidence Tumor Weight (g)

[Median (Range)]

P* Median Number/Field

(Range)

P* Median Number/Field

(Range)

P*

MMP-9+/+ MMP-9+/+ 10/10 1.0 (0.5–1.9) 152 (90–207) 68 (55–91)

MMP-9�/� MMP-9�/� 5/10 0.1 (0.0–0.3) < .001 55 (32–80) < .001 25 (19–40) < .001

MMP-9�/� MMP-9+/+ 10/10 0.7 (0.4–1.3) 108 (80–179) 58 (42–73)

Nude mice were parabiosed 2 weeks before L3.6pl human pancreatic cancer cells were injected into the pancreas of the recipient mouse. The parabiosed mice

were killed 4 weeks later.

*Mann-Whitney U test (one field = 0.159 mm2 at �100 magnification).
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cells produced fewer, smaller tumors with low MVD. The

decrease in angiogenesis in mice that lacked MMP-9 ex-

pression was associated with a decrease in macrophage in-

filtration into pancreatic tumors. When the mice that lacked

MMP-9 expression were parabiosed with MMP-9+/+ mice,

the tumorigenicity of pancreatic tumors increased, suggest-

ing that tumor-infiltrating macrophages that produce MMP-9

played a major role in the angiogenesis and growth of pan-

creatic tumors.

Expression of MMP-9 enhances carcinogenesis in pan-

creatic islets and skin epithelium by triggering angiogenic

switch [24,25]. In a mouse model of skin carcinogenesis,

MMP-9 was predominantly expressed in inflammatory cells

rather than in oncogene-positive neoplastic cells, suggesting

that inflammatory cells are the critical suppliers of MMP-9 in

this pathway of carcinogenesis [23]. Specifically, Coussens

et al. [37] demonstrated that mast cells that are prevalent

in hyperplasia and dysplasia, and that invading cancer plays

an important role in angiogenic switch. In the MMP-9�/�

nude mice used in our study, reduced tumorigenicity and an-

giogenesis were associated with inhibition of macrophage

infiltration into lesions. Reconstitution of MMP-9+/+ cells in

MMP-9�/� nude mice by parabiosis was associated with in-

filtration of the tumors by MMP-9–expressing macrophages,

enhanced angiogenesis, and progressive tumor growth. Ac-

tivated macrophages can influence the angiogenic process

by secreting enzymes that can break down the extracellular

matrix and by secreting angiogenic molecules and growth

factors, such as basic fibroblast growth factor, transforming

growth factor a and b, insulin-like growth factor I, platelet-

derived growth factor, and vascular endothelial growth factor/

vascular permeable factor [38–40].

The number of macrophages that infiltrate tumors has

been shown to directly correlate with MVD [34]. In clinical

samples of human pancreatic tumors, MMP-9 is expressed

in both epithelial and stromal cells [29,30]. Our finding that

decreased angiogenesis of pancreatic tumors in MMP-9�/�

nude mice was associated with a decrease in macrophage

infiltration into the tumors supports the conclusion that mac-

rophages positively influence the vascularization of human

pancreatic tumors. To infiltrate a tissue, macrophages must

penetrate the extracellular matrix. Our data provide direct

evidence that MMP-9 is involved in this process. Con-

sistent with the decrease in macrophage infiltration into

tumors growing in MMP-9�/� nude mice, parabiosed macro-

phages from MMP-9�/� nude mice were less capable of

Figure 3. Double immunofluorescent staining for macrophage marker F4/80 and mouse MMP-9 in L3.6pl pancreatic tumors. Nude mice were parabiosed 2 weeks

before 1 � 106 L3.6pl cells were injected into the pancreas of the recipient mouse. Four weeks later, pancreatic tumors were processed for immunofluorescent

analysis. rWT/dWT, a representative of the pancreatic tumor from an MMP-9+/+ nude mouse parabiosed with an MMP-9+/+ nude mouse (positive control). rKO/

dKO, the pancreatic tumor from an MMP-9�/� nude mouse parabiosed with an MMP-9�/� nude mouse (negative control). rKO/dWT, the pancreatic tumor from

an MMP-9�/� nude mouse parabiosed with an MMP-9+/+ nude mouse (host MMP-9 reconstitution). Macrophages were detected by using macrophage marker

F4/80 antibodies (green), and the host MMP-9 was detected by using anti –mouse-specific MMP-9 antibodies (red). Double-immunofluorescent staining for

F4/80 and mouse MMP-9 (yellow) demonstrated that only the macrophages of wild-type mice expressed MMP-9. Blood vessels in the tumors were detected by

an anti-CD31 antibody (red).
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penetrating a reconstituted extracellular matrix than were

those from MMP-9+/+ nude mice. Whether these data are

applicable to other infiltrating cells (e.g., neutrophils) is un-

clear [41–43].

In summary, we have demonstrated that macrophage-

derived MMP-9 contributes to the angiogenesis and growth

of human pancreatic cancers implanted in the pancreas of

nude mice. Our data do not exclude the possibility that other

host cells, such as endothelial cells, mast cells, and neutro-

phils, could have contributed MMP-9 [2,3,24,43,44]. In any

event, we found that deficiency of MMP-9 in host cells (but

not in tumor cells) inhibited neoplastic angiogenesis and,

hence, the growth of human pancreatic cancer cells in the

pancreas of nude mice. Targeting the expression of MMP-9

in tumor cells and, more importantly, in specific host cells

may therefore be an effective approach to controlling the

angiogenesis and growth of pancreatic tumors.
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