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Measles virus (MV) is hypothesized to enter the host by infecting epithelial cells of the respiratory tract, followed by
viremia mediated by infected monocytes. However, neither of these cell types express signaling lymphocyte activation
molecule (CD150), which has been identified as the receptor for wild-type MV. We have infected rhesus and
cynomolgus macaques with a recombinant MV strain expressing enhanced green fluorescent protein (EGFP); thus
bringing together the optimal animal model for measles and a virus that can be detected with unprecedented
sensitivity. Blood samples and broncho-alveolar lavages were collected every 3 d, and necropsies were performed
upon euthanasia 9 or 15 d after infection. EGFP production by MV-infected cells was visualized macroscopically, in both
living and sacrificed animals, and microscopically by confocal microscopy and FACS analysis. At the peak of viremia,
EGFP fluorescence was detected in skin, respiratory and digestive tract, but most intensely in all lymphoid tissues. B-
and T-lymphocytes expressing CD150 were the major target cells for MV infection. Highest percentages (up to 30%) of
infected lymphocytes were detected in lymphoid tissues, and the virus preferentially targeted cells with a memory
phenotype. Unexpectedly, circulating monocytes did not sustain productive MV infection. In peripheral tissues, large
numbers of MV-infected CD11c¢" MHC class-Il" myeloid dendritic cells were detected in conjunction with infected T-
lymphocytes, suggesting transmission of MV between these cell types. Fluorescent imaging of MV infection in non-
human primates demonstrated a crucial role for lymphocytes and dendritic cells in the pathogenesis of measles and
measles-associated immunosuppression.
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cells (DCs), and activated B- and T-lymphocytes [8,9]; there-
fore, these cells are the most likely primary target cells for MV
infection.

Introduction

In spite of significant progress in global measles control

programs, each year infections with measles virus (MV) cause
almost half a million deaths in developing countries [1,2].
Measles is associated with a profound but transient immu-
nosuppression, and as a result, opportunistic infections may
cause pneumonia, gastroenteritis, and otitis media [3,4]. MV
is a member of the family Paramyxoviridae, genus Morbillivirus,
which are enveloped viruses with a single-stranded RNA
genome of negative polarity. Morbilliviruses are among the
most infectious viruses of mammals, and are predominantly
transmitted via the respiratory route [3]. Surprisingly, little is
known about the specific cells involved in virus transmission
and dissemination throughout the body.

Classical textbook descriptions of measles pathogenesis
suggest that MV initially infects epithelial cells of the
respiratory tract, subsequently spreads to the regional lymph
nodes, and is finally disseminated during a viremic phase
mediated by infected monocytes [5-7]. However, epithelial
cells and unstimulated monocytes do not express signaling
lymphocyte activation molecule (SLAM, CD150), the receptor
used by wild-type MV [8,9], making this sequence of events
unlikely. Moreover, wild-type MV does not readily infect
monocytes or epithelial cell lines in vitro [10-12]. CD150 is
expressed on subsets of thymocytes, macrophages, dendritic
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It has been described that wild-type MV strains replicate
efficiently in lymphocytes in vivo [13] and in vitro [14],
although it has taken until the early 1990s before lymphoid
cells replaced Vero cells as the golden standard for isolation
of wild-type MV from clinical samples [15]. A decade ago it
was shown that human DCs could be infected with wild-type
MV [16-18], which was shown to be mediated by CD150 [19].
Infected DCs produced infectious virus [17] and were able to
transmit the virus upon in vivo inoculation [20].

Recent studies with an animal morbillivirus, canine
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Author Summary

Measles remains one of the most important causes of childhood
mortality in developing countries. The virus is highly infectious and
is spread via the respiratory route. According to textbook
descriptions, measles virus first infects respiratory epithelial cells,
followed by viremia mediated by infected monocytes. However, this
order of events is inconsistent with current knowledge about
receptor usage by measles virus strains. In this paper we have
revisited the pathogenesis of measles by infecting non-human
primates with a recombinant measles virus expressing enhanced
green fluorescent protein. An important advantage of this system is
that infected cells become fluorescent and can be detected with
high sensitivity in living animals as well as tissue samples. Strikingly,
at the peak of virus replication all lymphoid tissues were strongly
fluorescent, and up to 10% of T-lymphocytes and 30% of B-
lymphocytes were infected. In peripheral tissues the virus predom-
inantly infected lymphocytes and dendritic cells, although to a lesser
extent respiratory epithelial cells were also infected. We hypothesize
that measles virus, like human immunodeficiency virus, utilizes
dendritic cells as a vehicle to establish infection of the lymphoid
system and cause immunosuppression. This study reshapes our
basic view of measles pathogenesis.

distemper virus in ferrets, also showed a viral tropism that
was compatible with CD150-expressing cells: the major
infected cell populations were T-and B-lymphocytes and
thymocytes [21,22]. In this model, infection of macrophages
or DCs could not be demonstrated. However, since infection
with this ferret-adapted virus causes mainly neurological
symptoms and is almost always fatal, it is difficult to
extrapolate these data to measles in humans.

Humans are the only natural host for MV, although measles
outbreaks have also occurred in captive non-human primates
following contact with human patients [23]. The incubation
time of measles is approximately 2 wk, which has made it
difficult to investigate the early phases of MV infection in
humans. Onset of the typical rash coincides with the
appearance of virus-specific neutralizing antibodies and T-
lymphocytes, which correlate with a rapid decrease in viral
load [3]. Although several small laboratory animal models for
MV infection have been developed, none of these closely
mimic the pathogenesis of measles in humans [24]. Exper-
imental infection of non-human primates, especially mac-
aques, has proven crucial for studying the pathogenesis of MV
infection. Both rhesus (Macaca mulatta) and cynomolgus
(Macaca fascicularis) macaques are highly susceptible to MV
infection [25,26], although clinical signs such as rash and
conjunctivitis may be more prominent in rhesus than in
cynomolgus macaques [27-29].

A full-length anti-genomic clone (MV-IC323) was previ-
ously generated from a Japanese wild-type MV strain, and the
resulting recombinant virus was shown to be virulent in
macaques [30]. The virus was shown to utilize CD150, but not
CD46, as receptor [30,31]. Subsequently, the gene encoding
enhanced green fluorescent protein (EGFP) was inserted in
this clone within an additional transcription unit upstream of
the MV nucleocapsid gene. The resulting recombinant virus,
MV-IC323-EGFP, displayed similar in vitro replication
characteristics as its parental IC323 strain, and infected cells
produced high amounts of EGFP [31]. Morbillivirus genes are
transcribed by a start-stop mechanism from a single
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promoter in the 3’ leader region [4], resulting in the highest
number of mRNAs being transcribed from promoter-prox-
imal transcription units. Thus, in MV-IC323-EGFP-infected
cells EGFP is the maximal virally expressed protein, and its
amount is directly related to the level of virus replication. We
therefore reasoned that experimental infection of macaques
with MV-IC323-EGFP would provide an ideal opportunity to
study measles pathogenesis at the cellular, tissue, and whole
organism level.

Results
MV-1C323-EGFP Causes Measles in Macaques

Three rhesus (#R1-3) and three cynomolgus macaques
(#C1-3) were infected intra-tracheally with 10* cell culture
infectious dose-50 of MV-IC323-EGFP. Two animals of each
species were euthanized on day 9, the expected time of peak
virus replication, and one on day 15, at which time no
residual infectious MV was expected to be present. To assess
the virulence of the recombinant virus in vivo, we performed
virus isolations from broncho-alveolar lavage (BAL) cells and
peripheral blood mononuclear cells (PBMCs). MV-IC323-
EGFP was isolated from BAL cells and PBMCs of all six
animals (Figure 1A and 1B), and kinetics and peak levels of
infected cells were similar to those described previously for
wild-type MV infection in macaques [25,29,32,33]. MV was
also detected by reverse transcriptase (RT)-PCR in throat and
nose swabs, but only after onset of viremia (Figure 1C and
1D). MV-specific serum IgM and IgG did not appear until
after day 9 (Figure 1E and 1F). Of the two animals that were
euthanized at a later time point, one (#¥C2) developed typical
measles skin rash (Figure 2). Collectively, these results
indicate that MV-IC323-EGFP infection in macaques is a
valid model to study the pathogenesis of measles and is
comparable to MV infection in humans.

Macroscopic Detection of Fluorescence in Skin, Mouth,
and Lymphoid Tissues

In the living animals, we examined the skin and mouth for
EGFP fluorescence on days 3, 6, and 9 after infection. No
fluorescence was detected on day 3, while on day 6 a few
fluorescent spots (hallmarks of MV replication) were detected
in the buccal mucosa of one animal (#C3). On day 9 after
infection, many fluorescent spots were detected in the skin of
four of the six animals (Figure 2A): all three cynomolgus
macaques and one of the rhesus macaques (#R1). In all six
animals fluorescent spots were detected in the buccal mucosa,
gingiva, and/or on the tongue on day 9 (Figure 2B and 2C).

Upon necropsy on day 9 we examined the major organs for
fluorescence. Lymphoid tissues were brightly fluorescent,
including the tonsils, inguinal lymph nodes, tracheo-bron-
chial lymph nodes, spleen, and gut-associated lymphoid tissue
(Figure 2C-2G). Furthermore, fluorescence was also detected
in the trachea (unpublished data) and in the wall of the
stomach (Figure 2F, left). No fluorescence was visible macro-
scopically in the thyroid gland, heart, liver, kidneys, adrenal
glands, pancreas, urinary bladder, or brain of any of the six
animals. Thus, lymphoid tissues were the major sites of MV
replication.

On day 11, skin rash was observed on the abdomen and legs
of cynomolgus macaque #C2, which co-localized with
fluorescence indicating the presence of MV-infected cells in
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Figure 1. MV Replication and Specific Antibody Responses in Macaques at Different Time Points after Infection

Virus isolation from BAL cells (A) and PBMCs (B); virus detection by TagMan RT-PCR in throat (C) and nose (D) swabs; MV fusion protein (F)-specific
serum IgM (E) and IgG (F) responses as determined by FACS-measured immunofluorescence. Symbols indicate rhesus macaques #R1 (e), #R2 (m), #R3

(¥), and cynomolgus macaques #C1 (o), #C2 (), and #C3 (A).
doi:10.1371/journal.ppat.0030178.g001

the skin (Figure 2H and 2I). The rash peaked on day 13 and
had disappeared on day 15. In rhesus macaque #R2 no
fluorescence was detected in the skin at any time point, and
this animal did not develop skin rash during the period
between day 9 and day 15. The other four animals had been
euthanized before the expected time of onset of rash.

Upon necropsy on day 15, fluorescence was no longer
macroscopically detectable in lymphoid tissues or any of the
other internal organs. However, we still detected fluorescent
spots on the skin, tongue, gingiva, and buccal mucosa of one
of the two animals (#C2), suggesting delayed clearance in
these peripheral tissues. The ability to macroscopically detect
MV-infected tissues in the intact host and select these for
detailed microscopic analysis provides a unique opportunity
for pathogenesis studies.

Massive MV Replication in B- and T-Lymphocytes

Next, we determined the phenotype of MV-infected cells in
peripheral blood and lymphoid tissues by FACS analysis.
Between 0.1% and 10% of circulating B-lymphocytes, CDh4"
T-lymphocytes, and CD8" T-lymphocytes proved to be MV-
infected, while MV replication was virtually absent in
monocytes (Figures 3 and 4A), natural killer cells, or
polymorphonuclear cells (unpublished data). In all PBMC
subpopulations, EGFP fluorescence was almost exclusively
detected in cells expressing the MV receptor CD150 (Figures
3 and S1). Considering the subpopulation distribution in
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PBMC (Table S1), the highest absolute numbers of circulating
MV-infected cells were detected in the CD4" T-lymphocyte
population. Notably, memory T-lymphocytes were preferen-
tially infected, as demonstrated by the two to ten times higher
percentage of EGFP" cells in the CD45RA™ as compared to
the CD45RA™ subpopulation of T-lymphocytes (Table S2).

Large numbers of infected lymphocytes were detected in
single cell suspensions of lymphoid tissues collected on day 9
after infection, in which up to 10% of T-lymphocytes and up
to 30% of B-lymphocytes were EGFP* (Figure 4B). In absolute
numbers (Table S3), B-lymphocytes were usually the major
infected lymphocyte population in lymphoid tissues. In
addition, not only the percentage of infected cells but also
the virus replication level, as measured by the level of EGFP
expression per cell, was consistently higher in B-lymphocytes
than in T-lymphocytes (Figure S2).

MV Infection in Skin and Mouth

In skin samples collected on day 9, we detected MV-infected
cells in the dermis but not in the epidermis. Most fluorescent
cells were present in association with aggregates of inflam-
matory cells near hair follicles, and many of the cells had the
phenotype of DCs with long cellular processes (Figure A and
5B). We placed dermis sections in culture to allow DCs and
inflammatory cells to migrate from the tissue, similar as
described previously [34]. Fluorescent migrated cells proved
to be a mixture of small MHC class-II" and large MHC class-II"
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Figure 2. EGFP Fluorescence in Tissues of Macaques after Experimental Infection with MV-1C323-EGFP

Cynomolgus macaque #C3 on day 9: MV infection in the skin (A), gingiva and buccal mucosa (B), tongue and tonsils (C), inguinal lymph nodes (D), lungs
with tracheo-bronchial lymph nodes (E), stomach (left), spleen (upper left), and large intestine with gut-associated lymphoid tissue (F), spleen (right),
and large intestine with gut-associated lymphoid tissue (G); cynomolgus macaque #C2 on day 13 after infection: skin rash shown in normal light (H) or
by EGFP fluorescence ().

doi:10.1371/journal.ppat.0030178.g002

cells, suggesting the presence of MV-infected T-lymphocytes
and DCs (Figure 5C). In addition, we could isolate MV-IC323-
EGFP from these cells in Vero cells expressing CD150.

In the submucosa of tongue and buccal wall, fluorescence
was also mainly detected in association with aggregates of
inflammatory cells, which in these tissues were present near
the mucous glands (Figure S3). Similar to those in the skin,
the aggregates appeared to contain both infected lympho-
cytes and DCs. In addition, in these tissues fluorescent cells
were also detected in the keratinized epithelium, in many
cases associated with intercellular vacuolization, indicative
for epithelial necrosis (Figure S3).

In a biopsy of skin-exhibiting rash that was collected on day
13, we observed sero-purulent crusting. Infected cells were
present in aggregates of inflammatory cells close to the hair
follicles and sebaceous glands, but a substantial amount of
fluorescence was localized to the keratin layer of the stratum
corneum (unpublished data).

MV Infection in Internal Organs

Large numbers of MV-infected lymphocytes and DCs were
detected in lymphoid tissues and in tissues of the respiratory
and digestive tracts collected on day 9 after infection. MV-
infected cells in the submucosa of the trachea were
interconnected by long dendritic processes (Figure 6A and
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6B), suggesting cell-to-cell transmission of the virus. We also
detected MV-positive cells in the lumen of the trachea (Figure
6C), which could play a role in virus transmission if expelled
during coughing.

Confocal analysis of the spleen showed that red pulp areas
contained almost no EGFP™ cells, while white pulp areas were
strongly fluorescent (Figure 6D). Fluorescent cells were
CD20% (Figure 6E), CD3" (Figure 6F), or CD11ct (Figure
6G), but did not co-stain with the macrophage-specific
marker Mac287 (Figure 6H, see also Figure S4). Multi-
nucleated EGFP* Warthin-Finkeldey cells (Figure 6I) and
EGFP™ cells with the distinctive morphology of DCs (Figure
6]) were detected in the lymph nodes.

In the walls of the stomach and the small and large
intestines both large process-rich cells (DCs) and small round
cells (lymphocytes) were concentrated in aggregates of
lymphoid tissue (Figure 6K-6M). EGFP" cells were not
detected in the outer epithelial cell layer in these organs.
However, EGFP" ciliated epithelial cells were detected in the
trachea and in the lungs (Figure 6N-6P). Cell-to-cell fusion of
these cells was particularly common in these tissues.
Fluorescent ciliated epithelial cells were also detected in
BAL samples collected on days 6 and 9 after infection, but the
majority of EGFP" cells in the BAL were large MHC class-1T"
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Figure 3. EGFP" Cells in PBMC Subpopulations of Macaque #C2 at Different Time Points after Infection

Freshly isolated PBMCs were stained with monoclonal antibodies and analyzed in a FACScalibur measuring approximately 500,000 events per sample to
allow detection of low-frequent MV-infected cell populations. Results are shown as dot plots, with EGFP expression on the y-axis and CD150 (SLAM)
expression on the x-axis. EGFP-expression in CD37CD4" T-lymphocytes is shown in red; CD37CD8" T-lymphocytes in green; MHC class-II"'CD20" B-

lymphocytes in blue, and CD14" monocytes in orange.
doi:10.1371/journal.ppat.0030178.g003

CD1l1ct cells (most likely alveolar macrophages) or small
MHC class-II" CD11c™ cells (most likely T-lymphocytes).

Discussion

Here, we have infected macaques with a recombinant MV
strain expressing high levels of EGFP, enabling highly
sensitive detection of infected cells. The recombinant virus
proved to be virulent in macaques, allowing macroscopic and
microscopic assessment of the course of measles. Lympho-
cytes expressing the MV receptor CD150 were found to be the
major target cells for MV replication in vivo. In submucosal
tissues we detected large numbers of MV-infected lympho-
cytes and DCs in aggregates of inflammatory cells. Finally, MV
infection was also detected in the epithelia of mouth and
trachea.

We identified CD150" B- and T-lymphocytes as major
targets for MV infection in vivo. The preferential infection of
lymphocytes expressing CD150, a T cell activation marker
[35,36], suggests that MV targets activated rather than resting
T-lymphocytes. Our in vivo data are in agreement with
recently published results of ex vivo infection studies in
human tonsillar tissue, demonstrating that wild-type MV
strains predominantly infected human CD150% B- and T-
lymphocytes [37].

In previous studies monocytes were postulated to be the
key MV-infected cell population in peripheral blood of
humans, based on the detection of MV RNA by RT-PCR in
monocyte-enriched PBMC samples obtained from measles
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patients [5]. However, the samples used in those studies were
collected after onset of rash, and these results may have
reflected binding of opsonized virus particles to Fc-receptors
rather than active virus replication. Our data are in
accordance with the observation that non-activated human
monocytes do not express CD150 and are only inefficiently
infected in vitro [10,12]. MV-infection of human and non-
human primate lymphocytes has been described previously
[27,38-40], but the data we collected in macaques are the first
to show the kinetics and high frequency of MV-infected
lymphocytes in peripheral blood and lymphoid tissues.
Estimations of MV-infected cells in PBMCs by an infectious
center assay (Figure 1B) or by EGFP detection (Figure 3)
suggested that the latter method was one to two log values
more sensitive. This clearly illustrates the strength of our
model based on infection with an autofluorescent virus as
compared to conventional pathogenesis studies.

MHC class II" CD11c¢" DCs in the dermis of the skin and the
submucosa of respiratory and digestive tracts were identified
as a second major target cell population for MV infection.
Since DCs are known to express CD150 and can be infected
with MV in vitro, a role for this cell population in the
pathogenesis of measles had been hypothesized [41,42]. Here
we formally prove that this is indeed the case in macaques in
vivo. Interestingly, infected DCs in our study were in many
cases found in association with lymphoid tissue or aggregates
of inflammatory cells near hair follicles and mucous glands.
Theoretically DCs could also have become fluorescent by
uptake of EGFP rather than by MV-infection. However, this is
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events to allow detection of low-frequency infected cell populations.

(A) Percentages of EGFP-positive cells in the same PBMC subpopulations as shown in Figure 3, for all six animals over time.
(B) Percentages of EGFP-positive B- and T-lymphocytes in single cell suspensions of lymphoid tissues of the four animals that were euthanized on day 9.

doi:10.1371/journal.ppat.0030178.9004

unlikely to result in high EGFP expression levels as those
observed in our study (Figures 5 and 6). We are currently
undertaking additional studies to further characterize the
phenotype and functionality of these infected DCs.

Our observation that high percentages of infected lym-
phocytes and DCs were detected in lymphoid tissues of
infected macaques sheds new light on measles-associated
immunosuppression. Measles causes lymphopenia [3], which
has previously been attributed to apoptosis of uninfected
cells [40]. Our data suggest that actual depletion of the many
MV-infected lymphocytes may contribute significantly to the
observed lymphopenia. In addition, MV was found to
preferentially infect CD150" lymphocytes with a memory
phenotype (CD45RA™). This is in accordance with data
recently published by Condack et al., describing the prefer-
ential MV-infection of human memory T-lymphocytes as
compared to naive T-lymphocytes in ex vivo infection studies
in human tonsillar tissue [37]. Overall, these data strongly
suggest that depletion of memory T- and B-lymphocytes as a
direct consequence of MV infection may play an important
role in immunosuppression. In addition, MV infection of DCs
may lead to immune modulation as previously demonstrated
in ex vivo studies [41-43].

Levels of MV-infected cells varied substantially between
Whereas the viral load in PBMCs of
animal #R3 resembled those detected in the other animals,

individual animals.

the absolute percentages of EGFP-positive cells were much
lower (Figure 3B). This animal also had the lowest percen-
tages of EGFP-positive cells in lymphoid tissues (Figure 3C),
and no EGFP expression was macroscopically detected in the
skin. This variation in responses is likely related to the use of
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outbred non-SPF animals, and may reflect natural variations
in the course of measles in humans, where children may
develop either mild or more severe measles.

The case-fatality rate of measles in humans is approxi-
mately 0.01% in industrialized countries, but may be up to
10% in developing countries [44]. The increased mortality
may be explained by factors such as crowding, poor
supportive care, and the high pressure of opportunistic
infections [45], which are often considered to be the ultimate
cause of measles-associated mortality [3]. However, oppor-
tunistic infections may also influence the pathogenesis of
measles by another mechanism. Our data demonstrate that
CD150" lymphocytes are major targets for MV replication.
Opportunistic pathogens may cause chronic immune activa-
tion [46], likely resulting in higher numbers of CD150"
lymphocytes in circulation and in lymphoid tissues. This
suggests that chronic immune activation from high pathogen
pressure may facilitate MV replication and spread, thus
increasing the severity of MV infection.

Apart from MV infection of lymphocytes and DCs, we also
detected MV infection in the squamous stratified epithelium
of tongue and buccal mucosa and in the ciliated epithelium of
the trachea. In these tissues infection was associated with
syncytium formation. Since epithelial cells do not express
CD150, these observations suggest the possibility of non-
CD150-mediated MV infection and spread. In previous in
vitro studies it was shown that MV could infect human
primary small airway epithelial cells or lung carcinoma cells
via a CD150- and CD46-independent mechanism, resulting in
the formation of syncytia [11,47]. It has been suggested that
high local concentrations of virus would enable the virus to
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Figure 5. MV-Infected Cells in the Skin of Animal #C3 on Day 9 after Infection
(A) and (B) are serial sections of the same tissue. (A) Hematoxylin and eosin staining, showing aggregate of inflammatory cells (between arrows)

adjacent to a hair follicle (asterisk).
(B) Confocal microscopy image (EGFP-fluorescence in green, TO-PRO counter staining in blue) showing presence of fluorescent cells in the aggregate of

inflammatory cells; the inset shows an example of a fluorescent cell with long processes interpreted as a DC.

(C) FACS analysis of cells migrated from the dermis after 2 d in cell culture. Half of the migrated cells were small MHC class Il-negative (i.e., most likely T-
lymphocytes), of which approximately 3% were EGFP-positive. 20% of the migrated cells were identified as large granular cells in scatter, approximately
40% of these were MHC class Il-positive (i.e., most likely dendritic cells), of which approximately 10% were EGFP-positive.
doi:10.1371/journal.ppat.0030178.g005
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Figure 6. Assessment of the Distribution of MV-Infected Cells in Fixed Tissue Sections Collected 9 d after Infection

MV infection was visualized by detection of EGFP fluorescence in paraformaldehyde-fixed vibratome-cut tissue sections (V, 100 um) or through the use
of anti-EGFP or anti-MV N antibodies in formalin-fixed microtome-cut tissue sections (FF, 6 um) from infected rhesus (#R1) or cynomolgus (#C1)
macaques. Propidium iodide (red) was used as a structural counterstain (A, B, D, G, |, N, P). The asterisk indicates the approximate location of the MV-
infected cells shown in the inset in (B, D, K and N).

(A) Animal #R1 (V). A single MV-infected ciliated epithelial cell (arrow) is visible in the mucociliary epithelium of the tracheal mucosa. A number of MV-
infected cells of lymphoid origin (arrowheads) are present in subjacent lamina propria and submucosa. MCE, mucociliary epithelium.

(B) Animal #R1 (V). Numerous MV-infected cells (green) with extended cellular processes (inset) are visible in different levels of the tracheal mucosa.
(C) Animal #R1 (FF). MV-infected cells (arrow) are present in the tracheal lumen; the arrowhead indicates infected cells in the tracheal lamina propria /
submucosa.

(D) Animal #R1 (V). A number of MV-infected germinal centers (inset) are visible in a composite image of the spleen.

(E) Animal #R1 (V). Co-localization of EGFP fluorescence (green) and CD20-expression (blue) in infected B-lymphocytes in the spleen.

(F) Animal #R1 (V). Co-localization of EGFP fluorescence (green) and CD3-expression (blue) in infected T-lymphocytes in the spleen.

(G) Animal #R1 (FF). Co-localization of EGFP fluorescence (green) and CD11c-expression (blue) in infected DCs in the spleen.

(H) Animal #R1 (FF). No co-localization between MV infection (red) and expression of the macrophage marker Mac287 (green) in the tracheo-bronchial
lymph node.

(I) Animal #R1 (V). Multiple interconnected foci of MV infection in the tracheo-bronchial lymph node.

(J) Animal #R1 (FF). Infection of cells with the morphological characteristics of DCs (arrows) in the tracheo-bronchial lymph node.
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(K) Animal #R1 (V). Numerous MV-infected cells (green) in a composite image of the ileum. EGFP fluorescence does not co-localize with cytokeratin

expression (red) (inset).

(L) Animal #R1 (FF). MV-infected cells in lymphoid tissue of the duodenum.

(M) Animal #C1 (FF). MV-infected cells in lymphoid tissue of the lamina propria of the stomach.

(N) Focus of MV-infected cells (green) in the ciliated bronchial epithelial cell layer of the bronchus adjacent to the bronchial lumen. Fluorescent cilia
(inset) are readily identified at the periphery of the infected cells. CBE, ciliated bronchial epithelial cell layer; BL, bronchial lumen.

(O) Animal #R1 (FF). MV-infected cells (green) in the bronchus express the epithelial cell marker cytokeratin (red). Cell nuclei were counterstained with

DAPI (blue).

(P) Animal #C1 (FF). Detection of multiple foci of MV-infected cells (green) in the lung.

doi:10.1371/journal.ppat.0030178.g006

enter cells using low affinity receptors [9,31]. However, the
existence of an additional high affinity MV receptor cannot
be excluded [11,47].

On basis of our data we hypothesize that, upon natural MV
infection, initial MV replication takes place in the tonsils.
However, it remains unclear how the virus gains access to this
organ. Given its high person-to-person transmissibility, the
virus would need an easily accessible target cell in the upper
respiratory or digestive tract that could “trap” the virus and
subsequently transport it into lymphoid tissues. The observed
substantial MV infection of DCs suggests that CD150" DCs
may fulfill this role, as has also been suggested for HIV-1
infection [48]. Notably, DC-SIGN was recently identified as a
new attachment receptor for MV, which could enhance viral
transmission to CD150" lymphocytes [49]. Whether this
process takes place at the respiratory mucosa, in the tonsillar
crypts, or elsewhere will need to be determined in future
studies focusing on earlier time points after MV infection.

In conclusion, our data demonstrate that in non-human
primates MV targets CD150" lymphocytes and CD1l1c"
myeloid cells, and to a lesser extent epithelial cells. In
contrast to previous studies in human measles patients,
circulating monocytes in peripheral blood do not sustain
productive MV infection in macaques. Although the experi-
ments described here are based on a single recombinant MV
strain, and important differences may exist between the
course of MV infection in humans and macaques, these data
warrant re-evaluation of the tropism of MV in humans. This
non-human primate model provides new opportunities to
address specific aspects of measles pathogenesis in vivo.

Materials and Methods

Study design. Three cynomolgus macaques (animals #C1-3) and
three rhesus macaques (animals #R1-3) were infected by intra-
tracheal inoculation with 10* cell culture infectious dose-50 of MV-
1C323-EGFP diluted to a volume of 5 ml in phosphate buffered saline
(PBS). The animals were juvenile (2-4 y), seronegative for measles as
determined by virus neutralization, and were housed in negatively
pressurized hepa-filtered BSL-3 isolator cages. The virus stock was
grown in human B-lymphoblastic B-lymphocytes (BLCL) and tested
negative for contamination with Mycoplasma species. The infections
were performed in pairs, the first (#C1 and #R1) and third (#C3 and
#R3) set of animals were euthanized on day 9 while the animals of the
second set (#*C2 and #R2) were euthanized on day 15. Necropsies were
performed in a laminar flow biosafety cabinet. The study was
approved by the animal ethics committee and performed according
to Dutch guidelines for animal experimentation.

Samples. Heparinized blood samples were collected at days 0, 3, 6,
9, 11, 13, and 15 after infection. Plasma was separated by
centrifugation, heat inactivated (30 min 56 °C) and stored at —20 °C.
PBMCs were isolated by density gradient centrifugation, resuspended
in RPMI-1640 supplemented with antibiotics and heat-inactivated
fetal bovine serum, counted, and used fresh for virus isolation (see
below). BAL were collected on days 3, 6, 9, and 13 after infection, by
intra-tracheal infusion of 10-ml PBS through a flexible catheter.
Recovered BAL fluid was centrifuged, and BAL-cells were resus-
pended in culture medium with supplements as described above,
counted and used fresh for virus isolation.

@ PLoS Pathogens | www.plospathogens.org

MYV detection and serology. MV was isolated in human BLCL using
an infectious centre test as previously described [29,33]. Cytopathic
changes were monitored by light and fluorescence microscopy after
co-cultivation for 3-6 d, and results were expressed as numbers of
infected cells per 10% total cells. In our hands, virus isolation from
PBMC and BAL cells in BLCL proved to be slightly more sensitive
than isolation in Vero cells expressing CD150 (unpublished data).
Real-time RT-PCR was performed as described previously [50].
Fusion protein-specific serum IgM and IgG antibody levels were
determined by FACS-measured immunofluorescence as described
previously [51].

Macroscopic detection of EGFP fluorescence. For the purpose of
detecting EGFP fluorescence inside a BSL-3 isolator cage or a laminar
flow biosafety cabinet, a lamp was custom-made containing six 5-volt
LEDs (Luxeon Lumileds, lambertian, cyan, peak emission 490-495
nm) mounted with D480/40 bandpass filters (Chroma) in a frame that
allowed decontamination with 70% alcohol or fumigation with
formaldehyde. Emitted fluorescence was visualized through the
amber cover of a UV transilluminator (UVP) normally used for
screening DNA gels. Photographs were made using a Nikon D80
digital SLR camera.

Necropsies. Animals were euthanized by sedation with ketamine (20
mgl/kg body weight) followed by exsanguination. Samples were
collected both in 4% paraformaldehyde and in buffered formalin. A
selection of samples was also collected in PBS for direct processing of
fresh tissues or was snap-frozen in liquid nitrogen and stored at —80 °C.

FACS analysis. Freshly isolated PBMCs were stained with four
different combinations of subset-specific monoclonal antibodies
cross-reactive with macaque cells. Staining 1: CD150™® (Pharmingen,
clone A12) / CD3"*“" (Pharmingen, clone SP34-2) / CD8*"“ (DAKO,
clone DK25); staining 2: CD150"" | HLA-DR""“" (BD Biosciences,
clone G46-6) / CD20APC (Beckman Coulter, clone BIE9); staining 3:
CD150 | CD14%"“? (Pharmingen, clone M5E2) | CD16"7%17
(Pharmingen, clone 3G8); staining 4: CD45RAP® (Pharmingen, clone
5H9) | CD3"°"" | CD4*"C (BD Biosciences, clone SK3). Fluorescence
was detected in a FACSCalibur, obtaining approximately 500,000
events to allow detection of low-frequent EGFP" subpopulations.
Lymphoid tissues were minced, and single cell suspensions were
prepared by using cell strainers with 100-pm pore size (BD
Biosciences); these cells were directly used for FACS analysis.

Skin cultures. Shaven skin sections were collected in PBS during
necropsies and processed as previously described [34] with adapta-
tions. Briefly, tissues were incubated overnight in trypsin (0.05%),
after which dermis and epidermis were mechanically separated. The
two tissues were subsequently cultured for 2 d in complete medium to
allow DCs to migrate out of the tissue. The single cell suspension that
remained in the medium was used for FACS analysis.

Preparation of tissue samples for vibratome sectioning. 4% (w/v)
paraformaldehyde-fixed tissue samples were immersed in 0.2 M
sodium cacodylate buffer (pH 7.2) for 20 min and embedded in 5%
(wlv) agarose (Type VII low gelling temperature, Sigma) in PBS. A
vibratome (Leica Microsystems) was used to cut serial 100-pm sections
into 0.2 M TRIS buffered saline. A number of tissue sections were
counterstained by incubation for 60 s in propidium iodide. Sections
were mounted in Eukitt mounting medium (Electron Microscopy
Sciences) onto glass slides and cover slips.

Immunocytochemical staining of 100-pm vibratome-cut tissue
slices. Vibratome-cut tissue sections (100 um) were permeabilized
in PBS with 0.2% (viv) Triton X-100 (TX-100) for 30 min at room
temperature to facilitate the dissemination of primary and secondary
antibodies through the tissue slice. Sections were incubated overnight
at 4 °C in an appropriate primary antibody diluted in PBS with 0.1%
(viv) TX-100 and 1% (wlv) bovine serum albumin (BSA). Monoclonal
antibodies to CD20 (1:100, DAKO) and CD3 (1:100, DAKO) were used
to detect B- and T-lymphocytes, respectively. CAM 5.2 was used to
detect cells of an epithelial origin. After incubation in primary
antibodies, tissue sections were rinsed three times in PBS with 0.1%
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(viv) TX-100. Sections were incubated for 2 h at room temperature in
goat anti-mouse Alexa 568 or goat anti-mouse Alexa 647 (Molecular
Probes) diluted in PBS with 0.1% TX-100 (v/v) and 1% (wlv) BSA.
Sections were rinsed several times in PBS with 0.1% (v/v) TX-100 and
mounted as described previously.

Imaging of vibratome- and microtome-cut brain slices. Photo-
micrographs of vibratome-cut tissue slices were collected by confocal
scanning laser microscopy. Tissue slices were viewed using an upright
DM-IRBE fluorescence microscope (Leica) and appropriate fields
selected. A Leica TCSINT confocal microscope equipped with a
krypton-argon laser as the source for the ion beam was used to detect
EGFP and appropriate secondary antibodies as described previously
[562]. Selected histological or immunocytochemically stained sections
were digitally scanned using an Aperio Scanscope T3 with a X40
objective. From these scans selected images could be viewed or
displayed at a range of magnifications.

Immunohistochemical and immunofluorescence analysis. All for-
malin-fixed sections were deparaffinized, and antigen retrieval was
performed in a pressure cooker at full power for 2 min in 0.01M
TRIS-EDTA buffer (pH 6.0). MV-infected cells were detected using a
polyclonal antibody to EGFP (Invitrogen). Sections were incubated in
primary antibody overnight at 4 °C, and specific antibody-antigen
binding sites were detected using an Envision-Peroxidase system with
DAB (DAKO) as substrate. Single and dual labeling immunofluor-
escence was performed using anti-EGFP and monoclonal antibodies
to the DC marker CD11c (Novacastra), the macrophage cell marker
Mac387 (Abcam), and the epithelial cell-specific marker CAM 5.2
(Becton-Dickinson). Antigen binding sites were detected with either
goat anti-mouse or anti-rabbit Alexa 488 or 568 (Molecular Probes).
In some instances, sections were counterstained with either propi-
dium iodide (Sigma) or DAPI mounting medium (Vector).

Supporting Information

Figure S1. Expression of CD150 on T-Lymphocytes, B-Lymphocytes,
and Monocytes

PBMCs of animal #R1 collected 9 d after infection with MV-IC323-
EGFP were stained with anti-CD150"", anti-CD3""“", and anti-
CD20*"C. As an isotype control for the anti-CD150 monoclonal, a
second sample was stained with mouse IglePF‘, anti-CD3"*"*, and
anti-CD20*"“, Three PBMC subpopulations were gated (A): T-
lymphocytes (CD3+CD207, red), B-lymphocytes (CD37CD20+, green),
and non-T/non-B cells (blue). The percentages of the total PBMCs and
the scatter plots (B) of these subpopulations suggested that the non-T/
non-B cells mainly consisted of monocytes. The histograms showed
that CD150 was expressed by T-lymphocytes (C) and B-lymphocytes
(D), but not by the non-T/non-B cell population (E). Isotype controls
are shown as dotted lines.

Found at doi:10.1371/journal.ppat.0030178.sg001 (2.7 MB TIF).

Figure S2. Percentages of EGFP" Cells in Lymphoid Tissue-Derived
Lymphocytes

EGFP' lymphocyte subpopulations were detected in single cell
suspensions of a mandibular lymph node (A-F) or gut-associated
lymphoid tissue (G-L) of macaque #C3, collected 9 d after infection
with MV-IC323-EGFP. EGFP-expression in CD3"CD8™ T-lymphocytes
is shown in green (D and ]), after gating on region R1 (A and G), and
R2 (B and H); EGFP-expression in CD3"CD8" T-lymphocytes is shown
in purple (E and K), after gating on region R1 (A and G), and R3 (B
and H); EGFP-expression in MHC-class Ir'cp2ot B-lymphocytes is
shown in blue (F and L), after gating on region R1 (A and G), and R4
(C and D).

Found at doi:10.1371/journal.ppat.0030178.sg002 (2.9 MB TIF).
Figure S3. EGFP" Cells in Tissues of the Oral Cavity

Samples were collected from cynomolgus macaque #C3 on day 9 after
infection with MV-IC323-EGFP. Subsequent panels represent serial
sections of the same tissue, of which the first shows fluorescence
(EGFP-fluorescence in green, TO-PRO counter staining in red or
blue) and the second the corresponding hematoxylin and eosin
staining. EGFP™ cells were detected in the lamina propria/submucosa
of the tongue (A), seromucous glands of the tongue (C), and buccal
wall (E) localized to aggregates of mononuclear cells in these tissues
(B, D, and F). Fluorescent cells in the keratinized epithelium of the
tongue (G) were detected in association with intercellular vacuoliza-
tion, indicative for epithelial necrosis (H).

Found at doi:10.1371/journal.ppat.0030178.sg003 (9.7 MB TIF).
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Figure S4. Identification of MV-Infected Cells in Tissue Sections

MV-infected cells in paraformaldehyde-fixed vibratome-cut tissue
sections (A and B) or formalin-fixed microtome-cut tissue sections
(C-E) from macaque #R1 on day 9 after infection with MV-1C323-
EGFP.

(A) Identification of MV-infected cells (green) in the spleen that
express the B cell marker CD20 (blue).

(B) Identification of MV-infected cells (green) in the spleen that
express the T cell marker CD3 (blue).

(C) Identification of MV-infected cells (green) in the spleen that
express the DC marker CD11c (blue). Cell nuclei are counterstained
with propidium iodide (red).

(D) No co-localization between MV-infected cells (red) in the tracheo-
bronchial lymph node and cells expressing the macrophage cell
marker Mac287 (green).

(E) MV-infected cells (green) in the bronchus expressing the epithelial
cell marker cytokeratin (red). Cell nuclei are counterstained with
DAPI (blue).

Found at doi:10.1371/journal. ppat.0030178.sg004 (2.6 MB TIF).

Table S1. PBMC Lymphocyte Subpopulations

Percentages of CD3'CD4", CD3'CD8", CD20", and CD14" cells in
PBMCs collected on different sampling points and percentages of
EGFP" cells per PBMC subpopulation.

Found at doi:10.1371/journal.ppat.0030178.st001 (64 KB DOC).

Table S2. PBMC T Cell Subpopulations

Percentages of CD3'CD4'CD45RA™, CD3'CD4'CD45RA™Y,
CD3"CD8"CD45RA™, and CD3"CD8'CD45RA" cells in PBMCs col-
lected on different sampling points and percentages of EGFP™ cells
per subpopulation. In addition, the ratio between the percentage of
EGFP? cells in CD45RA™ versus CD45RA™ cells is shown, indicating
preferential MV-infection of CD45RA™ T cells (i.e,, T cells with a
memory phenotype).

Found at doi:10.1371/journal.ppat.0030178.st002 (66 KB DOC).
Table S3. Organ Suspension Lymphocyte Subpopulations

Percentages of CD3" and CD20" cells in single cell suspensions
prepared of different lymphoid tissues collected from animals R1, C1,
R3, and C3 and the percentages of EGFP" cells per subpopulation.

Found at doi:10.1371/journal. ppat.0030178.st003 (36 KB DOC).

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.goviGenbank/) accession num-
bers for proteins discussed in this manuscript are CD150
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