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Background: Patients with alcohol addiction show a number of transient or persistent neurological and
psychiatric deficits. The complexity of these brain alterations suggests that several brain areas are involved,
although the definition of the brain alteration patterns is not yet accomplished.
Aim: To determine brain atrophy patterns in patients with alcohol dependence.
Methods: Voxel-based morphometry (VBM) of grey matter (GM) and white matter (WM) was performed in
22 patients with alcohol dependence and in 22 healthy controls matched for age and sex.
Results: In patients with alcohol dependence, VBM of GM revealed a significant decrease in density
(p,0.001) in the precentral gyrus, middle frontal gyrus, insular cortex, dorsal hippocampus, anterior
thalamus and cerebellum compared with controls. Reduced density of WM was found in the periventricular
area, pons and cerebellar pedunculi in patients with alcohol addiction.
Conclusions: Our findings provide evidence that alcohol addiction is associated with altered density of GM
and WM of specific brain regions. This supports the assumption that alcohol dependence is associated with
both local GM dysfunction and altered brain connectivity. Also, VBM is an effective tool for in vivo
investigation of cerebral atrophy in patients with alcohol addiction.

A
lcoholism can affect the brain and behaviour in a variety
of ways, and multiple factors can influence these effects.
A key goal of brain imaging in the research of alcoholism

is to detect changes in specific brain regions. Previous studies
using different imaging techniques have revealed a general
reduction of brain sizes as well as a consistent association
between heavy alcohol consumption and regional brain
damage. Various cortical regions and parts of the cerebellum
have been suggested to be predominantly involved in alcohol-
associated brain atrophy. Several neuroimaging studies have
recently described global and regional brain atrophy in patients
with alcohol dependence in both cross-sectional and long-
itudinal imaging studies.1–5 Neuropathological studies con-
ducted on the brains of deceased patients as well as findings
derived from neuroimaging studies of the brains of living
patients, point to increased susceptibility of frontal brain
systems to alcoholism-related damage.6 7 Neuropathological
studies have also demonstrated substantial changes in different
brain regions1 such as parts of cerebral cortex,8 basal forebrain,9

thalamus10 and hypothalamus.11

Since previous imaging studies applying conventional volu-
metry focused on preselected brain regions,12 13 the particular
pattern of alcohol-associated brain tissue alterations is not
completely established.8

Voxel-based morphometry (VBM) is a recently introduced
automated method of indirect volumetry, which allows the
investigation of the entire brain without restriction to a priori
defined regions of interest.14 In recent years, VBM has been
successfully applied in characterising structural brain differ-
ences in a variety of diseases including schizophrenia,15

autism,16 Alzheimer’s disease17 and dementia with Lewy
bodies.18

The purpose of this study was to investigate the altered
density of grey matter (GM) and white matter (WM) in the
whole brain of patients with alcohol addiction and to reveal the
atrophy pattern and alteration of different brain regions
induced by chronic alcohol consumption in order to provide

evidence for a preferential vulnerability of some brain regions
with respect to the toxic effects of alcohol.

MATERIALS AND METHODS
Subjects
Patients (n = 22; mean age 53.6 years, range 31–69 years; 14
men and 8 women) with alcohol addiction who were admitted
to the Department of Psychiatry, Innsbruck University Hospital,
Innsbruck, Austria, were included in this study. The following
exclusion criteria were applied: history of illicit drug misuse or
dependency, history of severe benzodiazepine misuse, liver
cirrhosis, major psychiatric disorders (other than alcohol
addiction) as defined by the International classification of diseases,
10th revision, history of severe brain injury, neoplastic brain
processes, history of vascular brain alterations, Wernicke
encephalopathy as defined by clinical operational criteria19

and general contraindications for magnetic resonance investi-
gation. In all, 22 age- and sex-matched healthy subjects (mean
age 53.7 years, range 31–73 years; 14 men and 8 women)
without a history of alcohol misuse served as controls. Patients
were investigated after alcohol abstinence of at least 10 days.
All patients included in this study had a drinking history of
.10 years. The range of daily alcohol consumption was
between 180 and 310 g/day and the number of smokers was
17 of 22. The level of education was not significantly different
between both groups (patients, mean (SD) 9.7 (2.6) years;
controls, 10.1 (2.3) years).

Alcohol addiction in patients was assessed according to the
International classification of diseases, 10th revision, diagnostic
criteria. Patients underwent neurological and general medical
examination and laboratory testing to exclude other causes of
possible brain alterations. The investigation included chest
radiography, ECG, chemistry profile, complete blood count,
thyroid function tests, vitamin B12 level, folic acid level and

Abbreviations: CSF, cerebrospinal fluid; GM, grey matter; VBM, voxel-
based morphometry; WM, white matter
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syphilis serology. Patients were scanned within the framework
of their routine diagnostic investigation and controls gave their
informed consent for this research project. The MRI data
acquisition protocol was approved by the local ethics committee
of the Medical University Hospital Innsbruck, Innsbruck, Austria.

Data acquisit ion, pre-processing and analysis
All participants were scanned on the same 1.5 T Siemens
Symphony MRI scanner using a T1-weighted fast low-angle
shot three-dimensional sequence with a repetition time of
9.7 ms, an echo time of 4 ms, a matrix size of 2566256 and a
field of view of 230 mm, yielding sagittal slices with a thickness
of 1.5 mm and an in-plane resolution of 0.9860.98 mm. These
raw images were pre-processed using the optimised protocol
described by Good et al20 and analysed using SPM2 software
(Welcome Department of Neurology, London, UK) implemented
in Matlab V.6.5 (Mathworks, Sherborn, Massachusetts, USA).

Customised template creation
The study group-specific template was created to minimise the
scanner-specific bias by averaging all images from the study-
specific subject group, after being normalised using an affine-
only procedure. Probability maps were obtained by segmenting
the individual normalised images into GM, WM and cerebrosp-
inal fluid (CSF), averaging and smoothing with an isotropic
Gaussian kernel of 8 mm full-width at half-maximum.

Segmentation
The optimised VBM protocol20 includes two segmentation steps:
(1) segmentation was performed in native space and non-brain
tissue removed automatically by modulation with an individu-
ally derived brain-tissue mask; and (2) segmentation was
performed after applying the normalisation parameters to the
original whole-brain images, including, once again, removing
of non-brain tissue followed by reslicing onto a voxel size of
16161 mm.

Normalisation
The spatial normalisation parameters were estimated by
matching the native spaced individual GM image with the
study-specific GM template.

Modulation
Voxel values of the segmented images were multiplied with the
Jacobian determinants to convert the GM segments into
measures of absolute GM volume, as opposed to relative GM
volume following spatial normalisation.

Smoothing
Finally, all modulated images were smoothed with a 10 mm
full-width at half-maximum Gaussian kernel.

Statistical analyses were performed with SPM2 using the
general linear model-based on the Gaussian field theory. The
global mean voxel values and the total intracranial volumes
(obtained by summing up GM, WM and CSF voxels) were used
as confounding covariates in an analysis of covariance to focus
on the regional differences in GM. The significance level was set
at p,0.05 false discovery rate corrected for multiple compar-
isons across the entire brain volume.

RESULTS
Patients with alcohol addiction demonstrated lower volumes of
GM (patients: mean (SD) 569.4 (63.5) ml; controls: mean (SD)
631.9 (62.75) ml; p = 0.002) and WM (patients: mean (SD)
435.5 (61.2) ml; controls: mean (SD) 470.1 (68.9) ml;
p = 0.085), as well as increased CSF volumes (patients: mean
(SD) 712.7 (137.7) ml; controls: mean (SD) 565.7 (93.2) ml;
p = 0.001). Total intracranial volumes were equal in both
groups (patients: mean (SD) 1717.6 (205.6) ml; controls: mean
(SD) 1667.7 (202.8) ml; p = 0.423).

Table 1 presents GM statistics for different brain regions.
Significantly reduced GM volumes (p,0.001) in patients with
alcohol addiction have been found in the right and left anterior
and dorsal parts of the thalamic region as well as in the left

Table 1 Reduced grey matter volumes in patients with alcohol addiction: anatomical
locations, Brodmann areas, z scores and p values (false discovery rate corrected for multiple
comparisons across the entire volume)

Location BA

Peak coordinates (mm)

Cluster size z Value p Valuex y z

Thalamus
Right 6 213 15 8232 6.27 ,0.001
Left 27 213 15 8232 6.27 ,0.001

Dorsal hippocampus
Right 32 234 25 8232 3.84 0.005
Left 228 245 24 8232 4.74 ,0.001

Precentral gyrus
Right 6 57 27 34 3845 6.21 ,0.001
Left 6 257 211 31 276 5.13 ,0.001

Middle frontal gyrus
Right 9 45 12 32 3845 5.17 ,0.001
Left 9 241 16 28 889 5.31 ,0.001
Left 46 244 27 25 967 4.68 ,0.001

Insula
Right 13 42 219 10 4870 4.74 ,0.001
Left 13 237 20 7 518 3.82 0.005

Cerebellum
Right 40 247 251 2048 4.04 0.003
Left 242 248 251 275 4.02 0.003

BA, Brodmann areas; MNI, Montreal Neurological Institute.
Peak coordinates are given in MNI space (http://www.bic.mni.mcgill.ca).
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thalamic nucleus medialis as compared with controls (table 1,
fig 1). Right and left dorsal hippocampus (p = 0.005 and
p,0.001, respectively) and cerebellum (p = 0.003) also showed
significantly reduced GM volumes in patients as compared with
controls (table 1). In patients, precentral gyrus (Brodmann area
6) and middle frontal gyrus (Brodmann area 9) were
significantly (p,0.001) altered in both hemispheres.
Furthermore, area 46 (middle frontal gyrus) showed reduced
volume in the left hemisphere (p,0.001). The insular region
(Brodmann area 13) was found to be altered in the right
hemisphere (p,0.001) as compared with controls.

Table 2 presents the VBM results of WM. Patients with
alcohol addiction showed significant volume loss (p = 0.001) in
the entire periventricular WM (anterior, central and posterior
parts) and reduced volume of the pons (p,0.001) and
cerebellar pedunculi (p,0.001).

An additional analysis focusing on gender differences was
also performed despite the smaller number of female partici-
pants. Age and gender were included as confounding covari-
ates. At a p,0.05 level after correction for multiple
comparisons, no significant regional differences were detected.

DISCUSSION
In this study, we investigated the distribution patterns of brain
atrophy in patients with alcohol addiction using VBM, which
allows the analysis of regional GM and WM partitions without
predefining regions of interest. This method provides the
possibility to analyse complex patterns of brain atrophy also
in those brain regions that are difficult to investigate using
anatomically based methods of volumetry. Previous studies
have shown that VBM is more sensitive in detecting subtle
changes in brain volume than conventional methods of
volumetry.14 16 20 To minimise methodological bias, we used an

optimised protocol based on the creation of study-specific
templates and the modulation of the segmented GM partitions
to compensate for volume changes in brain normalisation.20

One of the most intriguing findings of this study is the
pronounced decrease in GM volumes in the thalamus of patients
with alcohol addiction. These data are consistent with several
previous reports on the involvement of thalamic neuronal
circuits in different behavioural changes in patients with alcohol
dependence.8 On the other hand, our data contradict those of a
previous study demonstrating reduced thalamic volume only in
subjects with Korsakoff’s syndrome but not in subjects with
chronic alcoholism using conventional MRI volumetry.4 In
contrast with that, George et al21 have shown that patients with
alcohol addiction, when exposed to alcohol cues, have increased
brain activity in the prefrontal cortex and anterior thalamic
regions, which are associated with regulation of emotions,
attention and appetitive behaviour. The most recent study on
this issue has shown a significant role of the thalamus in
processing cue-related information and in controlling alcohol-
related behaviour.22 The reduction of GM volumes found in this
study may suggest functional insufficiency of thalamic regions
that are responsible for altered behavioural patterns occurring in
patients with alcohol addiction.

The analysis of our data suggests alcohol-induced alterations
of the posterior hippocampus as well. Although previous
neuropathological studies failed to prove alcohol-associated
neurodegeneration of the hippocampus in human brains,11

animal models have demonstrated that binge drinking of
ethanol can produce necrotic neurodegeneration in the areas of
the brain most closely associated with the hippocampus.23 Our
findings support the hypothesis of involvement of the
hippocampus in the brain of patients with alcohol addiction.
There exists ample evidence of possible mechanisms underlying
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Figure 1 Areas of significant grey and white matter decrease in patients with alcohol addiction relative to healthy controls. Results are illustrated as
statistical parametric map blobs superimposed on the slices of a T1-weighted mean picture in standard stereotactic space from all 44 study participants. The
left side of the figure is the left side of the brain. Threshold was set at p.3.31 (peak). (A) Thalamus, insula; (B) middle frontal gyrus, precentral gyrus; (C)
cerebellum; (D) brainstem; (E) dorsal hippocampus.
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the effect of alcohol on the hippocampus. The hippocampus is
the area with the greatest increase in lipofuscin deposition in
neurons as a result of chronic alcohol consumption.24 Further,
the fatty acid ethyl esters produced in the brain from ethanol
are known to be particularly damaging to the hippocampus.25

Our data are further consistent with the previous findings on
involvement of frontal cortical areas in the brain of patients
with alcohol addiction. Numerous neuropsychological studies
demonstrated substantial deficits in frontal executive functions
in patients with alcohol dependence.6 26 27 Our results suggest
substantial volume reduction in the middle frontal gyrus and
precentral gyrus, although no changes were detected in other
frontal regions. These findings support previous reports on
decreased glucose metabolic rates in middle frontal regions in
patients with alcohol addiction 28 and a reduction of c
aminobutyric acid A/benzodiazepine receptors in superior
medial parts of the frontal lobes.29

A significant decrease in WM volumes in the pons and
cerebellum in the our study is consistent with the previous results
that have shown the alcohol-associated degeneration of pontine
and cerebellar WM in patients with alcohol addiction,7 30 31

whereas in healthy subjects these regions have been shown to
remain stable across the entire age span in both men and
women.32 The significant decrease in periventricular WM found in
our study is also consistent with previous data; however, the
analysis and interpretation of these changes in VBM studies is
difficult because of the possible bias due to partial volume effects.

Even low-to-moderate consumption of alcohol was associated
with brain atrophy in a study of middle-aged men.5 Ethanol can
increase the release of arachidonic acid from cell membranes and
cause oxidative stress in the brain by increased cyclo-oxygenase
activity. Furthermore, hydroxyethyl free radicals derived directly
from ethanol are nearly as damaging as hydroxyl radicals.33 There
is also evidence from animal studies that alcohol causes cell
death. Rats fed a liquid diet containing moderate amounts of
ethanol for 6 weeks had a 66.3% decrease in the number of new
neurons and a 227–279% increase in cell death in the dentate
gyrus as compared with rats fed an alcohol-free diet.34

In general, our data support the previous assumption that the
regional reduction of GM volumes may result from alcohol-
induced neuronal loss, whereas global brain shrinkage might be
caused by loss of WM.1 Furthermore, our results support
previous findings on alteration of selected regions of the frontal
cortex and cerebellum in patients with alcohol addiction and
suggest the involvement of the anterior thalamus, posterior
hippocampus, insular cortex and periventricular WM in
alcohol-associated brain damage. A causal relationship between
alcohol consumption and regional brain atrophy still demands
further research, whereas VBM seems to represent a tool of
choice for in vivo detection of the brain areas predisposed to
alcohol-induced damage.
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