Formation of Factor 390 by Cell Extracts of Methanosarcina barkeri

W. M. H. VAN DE WIJNGAARD, P. VERMEY, AND C. VAN DER DRIFT*

Department of Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld, NL-6525 ED Nijmegen, The Netherlands

Received 5 December 1990/Accepted 4 February 1991

Cell extracts of *Methanosarcina barkeri* converted coenzyme F_{420} in an ATP-dependent reaction to the adenylylated derivative factor 390. Although it was reported previously (L. M. Gloss and R. P. Hausinger, BioFactors 1:237–240, 1988) that whole cells were unable to perform this conversion, we observed the conversion in 7 of 11 extracts, all of which were prepared from different batches of cells.

Coenzyme F_{420} , an 8-hydroxy-5-deazaflavin, plays a role as electron carrier in several redox reactions in methanogens (4). It was shown that coenzyme F_{420} was converted to factor 390 (F_{390}) when cells of *Methanobacterium thermoautotrophicum* and *Methanobacterium formicicum* (2, 3) were exposed to oxygen; AMP or GMP was coupled via a phosphodiester bond to the 8-OH group of the deazaflavin (3) to form derivatives which showed an absorbance maximum at 390 nm and which were called F_{390} (F_{390} -A or F_{390} -G, respectively). Conversion of coenzyme F_{420} to F_{390} was recently shown to occur in cell extracts of *M. thermoautotrophicum* (5).

In this study we present results which show that F_{390} formation also occurs in cell extracts of *Methanosarcina* barkeri, although such a formation was not observed earlier with whole cells (2).

M. barkeri MS (DSM 800) was grown on H₂-CO₂ (80:20, vol/vol)-25 mM methanol or 30 mM acetate, and *M. barkeri* Fusaro (DSM 804) was grown on 30 mM acetate, as previously described (6). Cells were harvested anaerobically by continuous centrifugation. Cells were washed twice anaerobically in 10 mM TES buffer [*N*-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid] (pH 7.2) containing 15 mM MgCl₂ and were suspended in an equal volume of this buffer. Cells were disrupted by anaerobic passage through a French pressure cell (Aminco, Silver Spring, Md.) at 138 MPa. Cell debris was removed by centrifugation at 40,000 × g for 30 min. The supernatant was stored at -70° C under an H₂ atmosphere. Cell extracts of *M. thermoautotrophicum* Δ H (DSM 1053) were prepared as described before (5).

Formation of F_{390} was assayed spectrophotometrically at 37°C by recording a 300- to 500-nm spectrum every 2.5 min on a Hitachi U 3200 spectrophotometer. Enzyme activity was expressed as nanomoles of coenzyme F_{420} converted per minute per milligram of protein, using the molar extinction coefficients of coenzyme F_{420} and F_{390} (1, 3, 5). The assay mixture contained 1.5 ml of 50 mM TES buffer (pH 7) with 15 mM MgCl₂, 100 µl of 0.4 mM coenzyme F_{420} , and 100 µl of extract (about 1.5 mg of protein). After 3 min of incubation at 37°C in an open cuvette, 100 µl of 100 mM ATP was added to start the reaction.

Coenzyme F_{420} was purified from boiled extracts of *M*. thermoautotrophicum essentially as described by Eirich et al. (1). F_{390} was isolated from the incubation mixtures when no further absorbance changes occurred (5). The mixture was heated for 2 min at 100°C. After removal of precipitated The formation of F_{390} from coenzyme F_{420} in an extract of methanol-grown *M. barkeri* cells is shown in Fig. 1. The reaction was completely dependent on the addition of ATP. With heat-treated (5 min, 100°C) extract, no coenzyme F_{420} conversion was observed. The conversion of coenzyme F_{420} to F_{390} proceeded at a rate of about 35 nmol/min/mg of protein, whereas under the same conditions an extract of *M. thermoautotrophicum* ΔH showed an activity of 72 nmol/min/mg of protein.

After the reaction had proceeded towards completion, the product formed during the incubation was purified. The product was identified as F_{390} on the basis of its characteristic UV-visible absorption spectrum (3, 5).

The conversion of coenzyme F_{420} to F_{390} could be demonstrated in extracts from *M. barkeri* MS cells grown on methanol (four of seven) as well as in extracts from cells grown on acetate (two of two). F_{390} formation was also

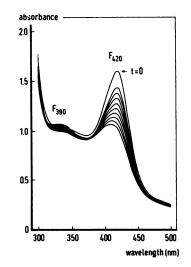


FIG. 1. Formation of F_{390} by an extract of methanol-grown *M*. barkeri MS.

proteins by centrifugation, the mixture was loaded on three in-series-connected Sep-Pak C₁₈ cartridges (Waters Associates, Milford, Mass.), which were activated before use by rinsing with methanol and deionized water (Milli-Q). The cartridges were then rinsed with 2 M NaCl and deionized water. F₃₉₀ was eluted with methanol-water (10:90, vol/vol). The F₃₉₀ solution was freeze-dried and dissolved in deionized water.

^{*} Corresponding author.

observed in an extract from acetate-grown *M. barkeri* Fusaro cells. For reasons not understood, some extracts prepared from methanol-grown cells and the only extract tested prepared from H₂-CO₂-grown cells failed to perform this conversion. Our data suggest that it is worthwhile to reinvestigate formation of F_{390} from coenzyme F_{420} in methanogens earlier reported to be negative in this respect (2).

The research of W. M. H. van de Wijngaard was supported by the Foundation for Fundamental Biological Research (BION), subsidized by the Netherlands Organization for the Advancement of Pure Research (NWO).

REFERENCES

 Eirich, L. D., G. D. Vogels, and R. S. Wolfe. 1978. Proposed structure for coenzyme F₄₂₀ from *Methanobacterium*. Biochemistry 17:4583–4593.

- 2. Gloss, L. M., and R. P. Hausinger. 1988. Methanogen factor 390: species distribution, reversibility and effects of non-oxidative cellular stress. BioFactors 1:237-240.
- Hausinger, R. P., W. H. Orme-Johnson, and C. Walsh. 1985. Factor 390 chromophores: phosphodiester between AMP and GMP and methanogen Factor 420. Biochemistry 24:1629–1633.
- Keltjens, J. T., and C. van der Drift. 1986. Electron transfer reactions in methanogens. FEMS Microbiol. Rev. 39:259–303.
- 5. Kengen, S. W. M., J. T. Keltjens, and G. D. Vogels. 1989. The ATP-dependent synthesis of factor 390 by cell-free extracts of *Methanobacterium thermoautotrophicum* (strain Δ H). FEMS Microbiol. Lett. 60:5-10.
- Van de Wijngaard, W. M. H., C. van der Drift, and G. D. Vogels. 1988. Involvement of a corrinoid enzyme in methanogenesis from acetate in *Methanosarcina barkeri*. FEMS Microbiol. Lett. 52: 165–172.