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T
he typical complexities of time-varying exposures, and by extension doses, generally require the

creation of summary exposure measures. When addressing the question of the appropriate form

of the summary measure of exposure, one is made aware of the strengths and limitations of

whichever exposure classifications are available. An essential consideration in the choice of a

summary measure of exposure is the time pattern of the effects of exposure. For some exposures and

outcomes the effects may be almost instantaneous (for example, acute toxicity), whereas in other

instances (for example, occupational cancer) it may take many years for the clinical effects of

exposure to occur and be observed. These temporal dynamics can lead to serious exposure

misclassification if ignored or misunderstood.

Taking account of biological variability when studying the effects of a chemical exposure is not a

new idea. Important contributions to this field were made by Roach in the 1960s and 1970s.1 2 Roach

showed how the rate of clearance of a chemical from the body could interact with the environmental

variability of the exposure to determine the toxic effects.2 3 These ideas were further developed into a

comprehensive biologically-based perspective on exposure sampling by Rappaport and colleagues.4–6

Smith and colleagues also raised these issues in the 1980s, particularly focusing on the limitations of

standard but overly simplified metrics like cumulative exposure.7 8

In this article we present concepts and methods that may be useful in the modelling of exposure–

risk relations in occupational epidemiology, and especially in the formulation and application of

quantitative summary measures of exposure or dose.9 We also present several examples from the

recent literature which illustrate these points.

FROM EXPOSURE TO DOSE: DEFINITIONSc
In almost every epidemiological study, exposure is a complex, time-varying quantity that must

be summarised before it can be used for exposure–response modelling. Thus, for worker i in a cohort

exposed for a fixed time interval to a potentially hazardous agent, the exposure history of that

worker from the beginning of exposure until the event of interest—the onset of some

physiological dysfunction, disease diagnosis or death—at time T can be summarised in a vector as

follows:

where xit is the exposure level for worker i in time periods t = 1,2,3...ni, and ni is the number of time

periods of exposure of the worker i prior to T. Most summary measures of exposure used in

epidemiology are summarised from the vector

For example, cumulative exposure (CE) can be derived from the exposure vector:

Exposures must enter a target organ and reach critical concentrations before injury can occur. For a

subject with an ongoing exposure, there is a profile of tissue concentrations (burdens) varying over

time in a way that is analogous to an exposure profile:
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where bit is the tissue burden for worker i in time periods

t = 1,2,3...ni, and ni is the number of time periods of exposure

of the subject i prior to T. The dose (D), analogous to

cumulative exposure, is therefore the time integral of the

burden vector:

Burden and dose are sometimes directly measurable using

biomarkers (for example, in vivo x ray fluorescence measure-

ment of cadmium in the kidney cortex), but in most studies this

is not feasible or economical.

SUMMARY MEASURES OF EXPOSURE
Cumulative exposure, the time integral of exposure intensity

(equation 2), is a commonly used summary measure in

occupational epidemiology. There are good reasons for this.

First, taking the example of an inhaled dust with the lung as

the target organ, cumulative exposure will be proportional to

dose in the target organ if one assumes that ventilation rates

are constant over time and similar among members of the

cohort, and that the fraction of the inhaled particles deposited

is also roughly constant over time and among subjects.7 Second,

target organ dose is often assumed to be directly proportional to

biological damage and disease risk. This appears to be a valid

assumption for a wide variety of disease mechanisms, although

we will discuss some exceptions later. Third, cumulative

exposure has been shown to correlate strongly with disease

risk in a wide variety of exposure–response associations.10

Other common summary measures of exposure include the

average, duration of exposure, and ‘‘peak’’ exposure (table 1).

Each of these will be appropriate for certain exposure–disease

processes, but not for others. To understand this fit of exposure

metric to disease process, it may be helpful to consider that the

‘‘black box’’ between exposure and disease involves two linked

dynamic processes: the exposure–dose relation, and the dose–

response relation, and that what is typically measured epidemio-

logically is the exposure–disease relation. Before selecting a

summary measure of exposure for an epidemiological study, it is

important to consider these two steps, and if possible, to have

explicit hypotheses about the nature of these two relations as a

means of minimising exposure misclassification.

To illustrate, consider a study of occupational exposure to

power frequency electromagnetic fields and risk of brain cancer.

Because of low cost microelectronics, it is relatively inexpensive

to conduct a fairly extensive exposure assessment for such a

study. A number of large scale studies have been conducted in

which personal measurements were obtained for cases and

controls, or on representative samples of workers in various

jobs.11 12 The ability to collect large numbers of measurements,

including continuous profiles of intensity over periods of time,

is not a common situation in occupational epidemiology, in

which it is often the case that relatively few measurements are

available, and each one entails substantial time and economic

costs for collection and analysis. Availability of large quantities

of exposure data highlights the challenge of selecting among

the most appropriate exposure metric from options that might

include cumulative exposure, duration, average intensity, peak

and various time-specific measures of each of these. Choosing

the most suitable metric is easiest when there is a strong

hypothesis about the biological mechanism by which the agent

(in this case electromagnetic fields) may act, although

exploratory exposure/response analyses involving alternative

metrics may be necessary in the absence of mechanistic

knowledge.13

If cumulative exposure is assumed to be proportional to risk,

then it follows that subjects with very different patterns of

exposure over time may have the same risk, as long as the

products of each subject’s average intensity and total duration

of exposure are the same. This assumption holds well for

cumulative damage processes—those in which each unit of

dose induces tissue or cell injury, and hence increases risk, by a

constant amount. For example, it is approximately true that

each ‘‘pack-year’’ of smoking (a cumulative exposure measure:

the number of packs of cigarettes smoked per day multiplied by

the number of years of smoking) causes a fixed amount of loss

in pulmonary function. Fibrotic diseases caused by environ-

mental toxins—for example, the pneumoconioses—seem to

follow this pattern. Most models used in cancer epidemiology

make the assumption of proportionality of risk with cumulative

exposure. Asbestos and lung cancer is one such example.

The choice of summary measure of exposure is essentially an

exercise in choosing weights: how much weight to attribute to

each component of the exposure profile, such that the summary

measure will be proportional to risk. There are two general

approaches to this choice of weights. First, one can choose

weights based on an explicit biological model. Alternatively,

one can employ an empirical weighting scheme, in which no

Table 1 Common summary measures of exposure

Summary measure of exposure Representative physiological processes

Name Description Description Example

Average exposure Arithmetic or geometric
mean of past exposures

Slowly or partially
reversible effects

Pulmonary irritants and FEV1

Cumulative exposure Product of intensity and
duration

Cumulative, irreversible
effects

Silica and silicosis

Duration of exposure Start of exposure to onset
of disease

As for cumulative
exposure

‘‘High’’ noise exposure and
hearing loss

Peak exposure Various measures of short
term, high exposure periods

Reversible, inflammatory
processes

Strain on lower back and back
pain
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explicit biological motivation exists for the chosen model form.

Instead, the epidemiological data are used to find the ‘‘best’’ or

‘‘most likely’’ weights, based on statistical fit properties. In

practice, a hybrid approach is often used in which model

selection involves choosing the best fit from among a set of

candidate models that have prior biological rationale.

An additional challenge that epidemiologists face when

choosing among alternative measures of exposure or dose is

that often measures that may have very different biological

significance are, in the study data, highly correlated. In such

cases, it is difficult or impossible to find evidence that one

metric is clearly better than another. This problem has often

been encountered when investigators attempt to study peak

exposures—jobs or individuals with high peak exposures often

have high mean or cumulative exposures as well.14–16

DOSIMETRIC MODELLING
Not all disease processes are characterised by a direct

proportionality between a simple summary measure (table 1)

and risk.17–19 When the degree of response of an individual to a

given unit of dose is variable over time, then a more complex

way to summarise the exposure history will be needed. In

particular, if the proportionality parameter which describes the

risk of disease per unit of dose (or exposure) is itself

determined by the individual’s history of exposure (and by

the history of response to that exposure), then the appropriate

exposure–risk model will be non-linear or dynamic. Suppose for

example that previous exposure to a toxic substance has

inhibited normal clearance or repair processes in a target tissue;

in this case later units of exposure would be predicted to be

more injurious than earlier ones.20 21 Alternatively, suppose that

a particular workplace exposure triggers a mutation which

modifies the toxicity of the agent. Such an acquired suscept-

ibility exemplifies another non-linear pathological process.22

Asthma is representative of another type of process: the

asthmatic exhibits an extreme sensitivity to an agent because

of an immunological response mechanism not present in that

individual before the development of asthma. If the asthma

was caused by a toxic exposure, then the incremental response

to a unit of exposure after asthma onset will be much greater

than in the same individual before onset.23 Finally, disease

processes in which effective repair mechanisms are stimulated

by injury would be expected to exhibit non-linear behaviour.

When disease risk is not thought to be proportional to dose,

then cumulative exposure may not be an appropriate summary

measure of exposure. In these situations, it may be preferable to

develop an alternative exposure measure which better reflects

what is known about the exposure–risk relation.8 17 For

example, the risk of a disease involving immune sensitisation

may be better reflected by an index which quantifies the

occurrence of short intense peaks of exposure than by average

or cumulative exposure measures. There is evidence that

beryllium sensitisation may have this behaviour.24 Measures

of exposure which are constructed using explicit hypotheses

about the exposure–dose and/or dose–risk relations are called

dose metrics, and the process of developing these measures is

called dosimetric modelling.

Dose metrics can be used in epidemiological analyses in the

same ways that summary measures of exposure are used. The

dosimetric model describes for each subject his/her exposure

profile, as modified by the hypothesised physiological processes

leading up to the time of disease onset. It could also include

factors which interact biologically with the exposure–response

process (effect modifiers) such as might occur if smoking

decreases the pulmonary clearance of a toxicant under study.

Dosimetric models nearly always involve some quantitative

parameters such as a clearance rate for the agent, or the rate of

repair of tissue damage, whose values must be specified before

the model can be used to estimate a dose metric. One can think

of these parameters simply as weights which, when applied to

the exposure data, yield quantities more closely associated with

outcome than the original exposure data themselves. But if

these parameters can be viewed as having some physiological

significance, then their quantitative estimation and interpreta-

tion are made easier. There are two approaches to parameter

quantification: one can either estimate them based on previous

epidemiological studies, experiments, studies with laboratory

animals, etc, or one can estimate them directly from the data

generated from the epidemiological study being conducted. If

the latter approach is used, the epidemiological dataset must be

fairly large, and the number of unknown parameters small and

not too strongly correlated with each other. For example, eight

or nine parameters could probably not be estimated reliably

from a few hundred subjects.

A dosimetric model of lead in bone and
neurobehavioural function
A recent example illustrating application of a dosimetric model

in occupational epidemiology was an investigation by Links and

colleagues.25 They estimated a measure of the ‘‘effective dose’’

of lead in the brain for an epidemiological study of 535 former

organolead workers. They first assumed that the area under the

time–tissue burden curve (dose, as defined above in equation 4,

but called ‘‘area under the curve’’, or AUC by Links et al) would

be proportional to measures of tissue damage, as reflected in

performance in a battery of 16 neurobehavioural tests. They

then estimated the AUC for each participant in the study and

examined its fit to the results of the neurobehavioural tests in

regression models. Using a one-compartment toxicokinetic

model,26 27 the investigators estimated individual doses based

on a single tibial bone lead concentration measure and dates of

employment for each participant

The dosimetric modelling had the following main steps. For

each worker, a measure of bone lead concentration made years

after the cessation of exposure was available. These measure-

ments were made non-invasively by measuring lead in the tibia

with x ray fluorescence. A blood lead measurement was also

taken at the same time. The clearance half time of lead in bone

was estimated to be 27 years, based on previous studies, and

because exposure had ceased years before the bone lead

measurements, it was possible to back-extrapolate from the

current tibial lead concentration to a peak tibial lead

concentration at the date of termination of exposure.

The relative performance of the four different metrics in

predicting neurobehavioural function was investigated. The

four metrics were: current blood lead, current tibial lead, peak

tibial lead and tibial dose, or AUC. The workers were tested on

the neurobehavioural test battery at two time points, four years

apart, and the change in performance over four years was the

outcome variable. The four different personal lead measures
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were separately regressed against each of the 16 different

neurobehavioural tests, to evaluate the relative performance of

each. The AUC appeared to be more strongly associated with

the neurobehavioural test results than the other three measures

(table 2). Comparing the current exposure metrics—current

blood and tibial lead concentrations—to the metrics which

reflect the history of exposure—peak tibial lead concentration

and AUC—there was a tendency for stronger associations

(larger negative regression coefficients) with the latter (table 2).

The comparative fits of the alternative metrics provide

insights into the temporal dynamics of lead’s effects on

neurological function. If a measure of recent or current

exposure (blood lead concentration) were more strongly

associated with the outcome measures, this would argue for

an acute reversible damage process, and a short residence time

of lead in the brain. This might suggest that the neurobeha-

vioural effects were largely due to recent releases of lead from

bones, as the clearance half time of lead in blood is about

30 days, and the cohort members had not been exposed for

years. The association with AUC in contrast reflects the

dynamics of uptake, clearance and progressive damage from

the accumulation of irreversible effects as well as continuing

decrements from ongoing releases of lead from bone. Personal

estimates of exposure intensity for each participant during his

working life would have been useful, but their absence did not

prevent some important insights into the biological basis for the

neurobehavioural deficits observed among these former lead

workers.

A dosimetric model of ergonomic stressors and low back
pain
Another good example of the application of a simple dosimetric

model is provided by a study by Krajcarski and Wells28 29 on risk

of lower back pain in automobile assembly workers. The

investigators gathered a large amount of information on

ergonomic stressors and symptoms among a cohort of workers

engaged in repetitive tasks characterised by a short work cycle

on a production line.30 31 A detailed analysis of each task

performed in each job was conducted to estimate ergonomic

exposures relevant to risk of lower back injury. These included

compression and shear forces at several different points along

the spine, as well as peak and static moments (N?m).

Estimating these exposures was a very time- and labour-

intensive process for the investigators, involving video taping

each task, and then extracting from the video images the input

data for a two-dimensional biomechanical model which then

produced the estimated forces. For the substudy described here,

the data were analysed for a sample of 34 cases of new onset

lower back pain and 34 controls from the same plant. A single

exposure, the L4/L5 extensor moment, was chosen because of

previous studies suggesting that it may be an important

predictor of back pain. These exposure data were used to

produce two summary measures of exposure for each of the 68

participants: the integrated moment (N?m?s/shift) across a

work shift (a measure of cumulative exposure), and the peak

moment (the highest estimated L4/L5 extensor moment during

the work shift).

Krajcarski and Wells also calculated a dose metric from these

exposure data using a single compartment model. They

hypothesised that the association between spine forces and

back pain would be more accurately estimated if the time-

varying patterns of force and rest periods over the work shift

were properly integrated. The metric they estimated had

arbitrary units, but was hypothesised to be proportional to

the degree of injury in the lower back caused by the forces

exerted on the spine during work. Their model produced a dose

metric which was a weighted function of the exposure data,

with a single unknown parameter. The value of this parameter,

which can be thought of as a recovery half-time, could be

chosen a priori on the basis of experimental studies on the

injury and repair processes of the soft tissues of the lower back.

For example, a variety of different physiological processes

associated with muscle fatigue have recovery times of about

5000 seconds (1.4 h) including intramuscular pH changes and

lactic acid removal. The automobile assembly work typical of

this study population produced patterns of exposure—the L4/L5

extensor moment—characterised by short bursts of high force

separated by periods of rest. In contrast, a dose metric assuming

Table 2 Associations of neurobehavioural tests with various lead exposure/dose metrics.
From a cross-sectional study of 535 former lead workers (adapted from Links et al25)

Neurobehavioural measure*

Current PbB� Current PbT Peak PbT AUC dose metric

b` p Value1 b p Value b p Value b p Value

Wechsler block design 0.161 0.23 20.058 0.72 20.223 0.18 20.213 0.22
Wechsler symbol digit 20.187 0.14 20.133 0.32 20.038 0.79 0.058 0.68
Symbol digit 20.012 0.91 20.099 0.32 20.206 0.05 20.225 0.04
Serial digit learning 20.160 0.23 20.020 0.90 20.104 0.52 20.149 0.37
Rey figure copy 20.001 0.99 20.030 0.74 20.138 0.14 20.170 0.08
Rey figure recall 20.174 0.05 20.077 0.39 20.174 0.07 20.196 0.04
Rey auditory learning, immediate
recall

0.049 0.77 20.255 0.15 20.571 ,0.001 20.671 ,0.001

Rey auditory learning, delayed recall 20.055 0.32 20.128 0.02 20.149 0.01 20.134 0.02

*Selection from a battery of 16 tests. All tests scored so that a worsening of performance with increasing exposure is
indicated by a negative sign.
�Dose metrics: current PbB, current blood lead concentration, at time of testing; current PbT, current tibial lead
concentration, at time of testing; peak PbT, highest estimated tibial lead concentration, back-extrapolated using a one-
compartment model and an average clearance half time of 27 years; AUC dose metric, area under the time-
concentration curve for tibial lead.
`Regression coefficient, adjusted for age, education and baseline score, and standardised so that all b represent change
in score per standard deviation change in exposure/dose metric.
1p Value testing H0: b= 0. Large coefficients relative to their standard errors indicated in bold italics.
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a recovery time of 5000 seconds and generated from a typical

exposure profile over a work shift shows a steady accumulation

of damage, with little or no repair over rest breaks. The

investigators evaluated a wide range of different values of the

recovery time parameter t, rather than choosing one a priori. A

logistic regression model was used to estimate the strength of

the association between the dose metric and lower back pain.

This exercise was then conducted twice; once for the integrated

metric for the entire work shift and once for the highest

attained value of the metric—analogous to the peak moment or

exposure.

The fit of the dose metrics in the logistic regression models

for back pain can be compared to similar models using the

exposure measures, integrated and peak moment (table 3).

When a short recovery time (2 seconds) was chosen, peak dose

metric showed a stronger association (higher odds ratio) with

risk than the peak exposure data. The dose metric with a long

recovery time (5000 seconds) was only slightly more strongly

associated with risk than the integrated moment data (that is,

cumulative exposure), suggesting that its performance was not

much different from cumulative exposure.

The model also allowed an investigation of alternative

assumptions about the recovery time. This can be thought of

as a kind of sensitivity analysis, and also as a way of using

epidemiological data to provide information about a biological

process, the recovery time following strain. For values of the

recovery parameter t, ranging from 1 to 100 000 seconds, the

dose metric was calculated for each of the 68 participants, and

then each resulting set of dosimetric data was fit to the case

control data to calculate an odds ratio (fig 1). These odds ratios

were then plotted against the varying values of t to yield a

continuous trend. The two peaks in this figure suggest that two

very different physiologic processes are at work—one quite

short (about 2 seconds) and the other on a much longer time

scale (about 1000 seconds). Such information may be useful for

improving understanding of pathophysiological mechanisms

underlying repetitive strain injuries.

The preceding two examples illustrate models in which it was

necessarily assumed that critical model parameters, such as

clearance and physiological recovery times, were constant

among all members of the population. It would be desirable

to be able to relax this assumption, when data permit. The

following example illustrates the use of data on individual risk

modifiers to estimate dose metrics that will vary among cohort

members with the same exposure experience.

A dosimetric model of dioxin exposure and lung cancer
A cohort study conducted by Fingerhut and colleagues found

increased all-cause cancer as well as lung cancer mortality

among workers at 12 US chemical plants where dioxin

exposure occurred.32 Salvan and colleagues used serum TCDD

(2, 3, 7, 8-tetradichlorodibenzo-p-dioxin) data collected at a

single point in time on a subset of these workers, combined

with occupational history data, to estimate a lifetime dioxin

dose (part per trillion-years) for the members of this cohort.33 34

It was hypothesised that body fat would be inversely propor-

tional to bodily clearance of dioxin. The model had the form of

a single compartment pharmacokinetic model assuming linear

kinetics. Individual body mass index data were available for

about 80% of the cohort, and were used to estimate per cent

body fat and its rate of change over time among cohort

members. The clearance parameter of the one compartment

model was allowed to vary among individuals and within

individuals over time, determined by time-dependent indivi-

dual per cent body fat estimates. The investigators used the

resulting individual serum TCDD dose estimates in a cohort

mortality analysis to estimate the cancer rate ratios comparing

those with doses based on only ‘‘background’’ dioxin exposure

(assumed to be 7 parts per trillion-years) to those with doses up

to 1000 times this level. The results suggest a strong association

between dioxin dose and lung cancer, and because this analysis

used serum TCDD doses and not simply the exposure data, the

results may be more readily generalised to other populations for

which serum doses were either measured directly, or estimated

with a dosimetric model.

CHOOSING THE BEST EXPOSURE/DOSE METRIC
Epidemiological studies can be expensive and time-consuming,

especially when a careful exposure assessment has been

performed. When the time comes to analyse the data, it is

hard to justify selecting just one measure of exposure or dose—

in practice, several different measures are generally tested. How

then, are we to choose among the various associations that

result from this repeated analysis? What are the criteria for

choosing the ‘‘best’’ measure of exposure?

First, the better indices will usually yield better statistical fits

to the epidemiological data.35 It is tempting to think that the

better index will yield a stronger association with outcome (as

in greater slope or higher relative risk), but this method has

been shown to potentially lead to bias.36 There is also the

problem that different indices often have different scales, such

that they cannot be directly compared. Goodness of fit will

often be evaluated with a likelihood statistic, such as the 22-

log likelihood, or the deviance. In linear models, an overall F

statistic is preferable to the R2 as a measure of fit, because the

latter is quite sensitive to changes in extreme values. An

additional problem is that if the exposure estimates derived

from the various plausible models are strongly correlated with

each other and/or are measured with significant misclassifica-

tion, then an ‘‘inferior’’ model may show a better statistical fit

than a ‘‘superior’’ model in a particular dataset. Thus, the

decision as to which model is most appropriate to use should

not be based solely on statistical performance.

Table 3 Comparison of low back pain risk estimates (odds
ratios) for different exposure/dose metrics from a case–
control study among automobile assembly workers

Peak vs
cumulative
measure Exposure/dose metric Odds ratio* 95% CI

Peak Exposure (% MVE)� 1.5 (1.0 to 2.6)
Dose metric (t= 2 s) 2.2 (1.1 to 4.7)

Cumulative Exposure (N?m?s/shift) 1.9 (1.0 to 3.9)
Dose metric (t= 5000 s) 1.9 (1.1 to 3.8)

*Odds ratios compare risk for the 75th versus the 25th percentiles of the
distribution of the exposure/dose measure.
�Peak exposure expressed as percentage of the maximum voluntary
extensor moment (gender specific).
Exposure is extensor moment at L4/L5. Dose metric from a first order system
with recovery time constant (?) of 2 or 5000 seconds (adapted from
Krajcarski et al29).
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In particular, there may be reasons to choose one exposure

index or dose metric over another, even if it is not clearly

superior in statistical performance. Ease of interpretation and

comprehension may be additional considerations. Also, mea-

sures which are more easily generalisable across exposure

settings are advantageous, if the objective is to make predic-

tions about risk. A dose metric may be preferable to an

exposure index if there are several routes of exposure, and one

wants to estimate risk via all routes combined. Also, if one

wants to be able to use the results to make predictions about

risks resulting from quite varied exposures (different time

patterns or routes), then a dose metric may be desirable.

A dosimetric model may provide an explicit method for

considering interactions among different exposures. For exam-

ple, Smith constructed a dosimetric model for silica and lung

fibrosis which explicitly incorporated the effect of smoking on

particle clearance from the airways.37 This may be preferable to

the standard approach of including smoking as an independent

covariate in the epidemiological model.

CONCLUSIONS
Dosimetric modelling may be useful to improve the sensitivity of

epidemiological models. However, it will never make up for

deficiencies in the measurement of exposure; bad exposure data

cannot be improved by estimating dose. Further, one must be

careful that errors in exposure estimation are not hidden by

feeding them into a dosimetric model, removing the risk analysis

a further step from the raw exposure data. That said, there are

several important motivations for dosimetric modelling. First, in

some situations it may improve study validity and precision by

weighting exposure data in a way that improves the fit of

epidemiological models. This is especially likely to occur when

studying non-linear exposure-risk relations, and may allow

greater sensitivity in the detection of new, previously unidentified

hazards. Epidemiologists can study exposures which confer fairly

large risks without the need for dose modelling; even if the use of

simple exposure measures introduces substantial misclassifica-

tion, the risk may still be detectable. A second, related motivation

is that dosimetric modelling may allow epidemiologists to

investigate new mechanistic hypotheses formally in ways that

are not possible with simple measures of exposure. Also,

dosimetric models make it easier to extrapolate results, particu-

larly when multiple routes of exposure are involved. Despite these

potential advantages, dosimetric modelling should not be a

substitute for conventional exposure–response analysis. It may be

a logical next step, after the exposure data have been used to their

fullest to quantify exposure–risk associations. At that point,

dosimetric modelling may be useful for all of these reasons.

A serious deterrent to dosimetric modelling is the need for

additional assumptions about the structure of the model, and

the values of its parameters. It is important to remember,

however, that if one chooses a simple summary measure of

exposure, one is substituting implicit assumptions for explicit

ones (about the proportionality between the exposure and dose,

for example), and the same misclassification will result in

either case if the assumptions are incorrect.

Dosimetric modelling has great potential for risk identifica-

tion and dose–response characterisation. Further applications

in occupational epidemiology should be encouraged where

adequate exposure data are available.
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make it easier to extrapolate results from one population to
another.

Figure 1 Odds ratios from models of low back pain risk among
automotive assembly workers, using dose metrics with varying recovery
time parameters (adapted from Krajcarski et al29).
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