Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Jun;173(11):3440–3445. doi: 10.1128/jb.173.11.3440-3445.1991

Reconstitution of the ethanol oxidase respiratory chain in membranes of quinoprotein alcohol dehydrogenase-deficient Gluconobacter suboxydans subsp. alpha strains.

K Matsushita 1, Y Nagatani 1, E Shinagawa 1, O Adachi 1, M Ameyama 1
PMCID: PMC207957  PMID: 1646200

Abstract

The ethanol oxidase respiratory chain of Gluconobacter suboxydan was characterized by using G. suboxydans subsp. alpha, a variant species of G. suboxydans incapable of oxidizing ethanol. The membranes of G. suboxydans subsp. alpha exhibited neither alcohol dehydrogenase, ethanol oxidase, nor glucose-ferricyanide oxidoreductase activity. Furthermore, the respiratory chain of the organism exhibited an extremely diminished amount of cytochrome c and an increased sensitivity of the respiratory activity for cyanide or azide when compared with G. suboxydans. The first-subunit quinohemoprotein and the second-subunit cytochrome c of alcohol dehydrogenase complex in the membranes of G. suboxydans subsp. alpha were shown to be reduced and deficient, respectively, by using heme-staining and immunoblotting methods. Ethanol oxidase activity, lacking in G. suboxydans subsp. alpha, was entirely restored by reconstituting alcohol dehydrogenase purified from G. suboxydans to the membranes of G. suboxydans subsp. alpha; this also led to restoration of the cyanide or azide insensitivity and the glucose-ferricyanide oxidoreductase activity in the respiratory chain without affecting other respiratory activities such as glucose and sorbitol oxidases. Ethanol oxidase activity was also reconstituted with only the second-subunit cytochrome c of the enzyme complex. The results indicate that the second-subunit cytochrome c of the alcohol dehydrogenase complex is essential in ethanol oxidase respiratory chain and may be involved in the cyanide- or azide-insensitive respiratory chain bypass of G. suboxydans.

Full text

PDF
3444

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ameyama M., Matsushita K., Ohno Y., Shinagawa E., Adachi O. Existence of a novel prosthetic group, PQQ, in membrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria. FEBS Lett. 1981 Aug 3;130(2):179–183. doi: 10.1016/0014-5793(81)81114-3. [DOI] [PubMed] [Google Scholar]
  2. Daniel R. M. The electron transport system of Acetobacter suboxydans with particular reference to cytochrome. Biochim Biophys Acta. 1970 Sep 1;216(2):328–341. doi: 10.1016/0005-2728(70)90224-0. [DOI] [PubMed] [Google Scholar]
  3. Dulley J. R., Grieve P. A. A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal Biochem. 1975 Mar;64(1):136–141. doi: 10.1016/0003-2697(75)90415-7. [DOI] [PubMed] [Google Scholar]
  4. Fukutani H., Ogawa M., Horikoshi N., Inoue K., Mukaiyama T., Nagamine D., Shinagawa K., Tabata M., Hirano A., Mizunuma N. [Effect of recombinant human granulocyte colony stimulating factor (rhG-CSF) in patients receiving chemotherapy--phase I study]. Gan To Kagaku Ryoho. 1989 May;16(5):2005–2012. [PubMed] [Google Scholar]
  5. Matsushita K., Ameyama M. D-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Methods Enzymol. 1982;89(Pt 500):149–154. doi: 10.1016/s0076-6879(82)89026-5. [DOI] [PubMed] [Google Scholar]
  6. Shinagawa E., Matsushita K., Adachi O., Ameyama M. Evidence for electron transfer via ubiquinone between quinoproteins D-glucose dehydrogenase and alcohol dehydrogenase of Gluconobacter suboxydans. J Biochem. 1990 Jun;107(6):863–867. doi: 10.1093/oxfordjournals.jbchem.a123139. [DOI] [PubMed] [Google Scholar]
  7. Thomas P. E., Ryan D., Levin W. An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem. 1976 Sep;75(1):168–176. doi: 10.1016/0003-2697(76)90067-1. [DOI] [PubMed] [Google Scholar]
  8. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES