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Many flagellar proteins are exported by a flagellum-specific export pathway. In an initial attempt to
characterize the apparatus responsible for the process, we designed a simple assay to screen for mutants with
export defects. Temperature-sensitive flagellar mutants of Salmonella typhimurium were grown at the
permissive temperature (30°C), shifted to the restrictive temperature (42°C), and inspected in a light
microscope. With the exception of switch mutants, they were fully motile. Next, cells grown at the permissive
temperature had their flagellar filaments removed by shearing before the cells were shifted to the restrictive
temperature. Most mutants were able to regrow filaments. However, flhA,fliH, fliI, and fiN mutants showed
no or greatly reduced regrowth, suggesting that the corresponding gene products are involved in the process
of flagellum-specific export. We describe here the sequences offliH,fliI, and the adjacent gene,flij; they encode
proteins with deduced molecular masses of 25,782, 49,208, and 17,302 Da, respectively. The deduced sequence
of Fliu shows significant similarity to the catalytic 0i subunit of the bacterial FOF, ATPase and to the catalytic
subunits of vacuolar and archaebacterial ATPases; except for limited similarity in the motifs that constitute the
nucleotide-binding or catalytic site, it appears unrelated to the ElE2 class of ATPases, to other proteins that
mediate protein export, or to a variety of other ATP-utilizing enzymes. We hypothesize that FliI is either the
catalytic subunit of a protein translocase for flagellum-specific export or a proton translocase involved in local
circuits at the flagellum.

The bacterial flagellum is a complex structure comprising
intracellular, envelope-spanning, and extracellular compo-
nents. In Salmonella typhimurium, it is encoded by about 40
genes (39).
Of those flagellar proteins located within the cell envelope

or outside the cell, only the outer-ring (P and L) proteins
appear to be exported by the primary signal peptide-depen-
dent pathway (33, 36, 42). The rest (four rod proteins, a hook
protein, three hook-associated proteins, and the filament
protein, flagellin) are thought to be exported by a unique,
flagellum-specific pathway (30, 34, 38, 59), travelling through
the hollow core of the nascent structure (70) and assembling
at its distal end (19, 37) (Fig. 1). The process must be a highly
organized one, in which protein subunits are incorporated
into the growing flagellum in the correct order and stoichi-
ometry (45). The export apparatus obviously must be selec-
tive in the proteins it recognizes for export. It may also have
to supply energy for the process. Given that the physical
path for export is through the nascent structure, it seems
likely that the export apparatus is located at the flagellar base
(Fig. 1).

Essentially nothing is known about this apparatus; specif-
ically, its genetic origin and biochemical composition are
completely unknown. We describe here initial attempts to
identify its components genetically by use of temperature-
sensitive mutants. From these experiments, we have identi-
fied three, possibly four, S. typhimurium genes that may be
involved in the export process.
For two of these (fliN and, in Escherichia coli, flhA), the
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DNA sequences are known (50, 51, 65). We present here the
gene sequences and deduced amino acid sequences of the
other two, fliH and fliI. The FliI protein displays significant
sequence similarity to components of proton-translocating
FoF1 ATPase and other related enzymes.

MATERIALS AND METHODS

Bacterial strains. Most of the temperature-sensitive fla-
gellar mutants of S. typhimurium were spontaneous mutants
of wild-type strain ST1 (43); others were kindly supplied by
S. Yamaguchi and are derivatives of wild-type strain
SJW1103. They are listed in Table 1, along with the functions
and locations of the known gene products.
Temperature shift and shearing protocols. A given mutant

was allowed to swarm on a soft tryptone agar plate at 30°C
(the permissive temperature). It was then grown in tryptone
broth at 30°C to the early log phase; typically, more than
80% of the cells were motile. The culture was placed on ice,
passaged 50 times through a hypodermic needle (26 gauge,
3/8 in. [1 in. = 2.54 cm]) to shear off the flagellar filaments,
and immediately placed at 42°C (the restrictive temperature)
along with an unsheared control culture. As a further con-
trol, a portion of the sheared cells was placed at 30°C. After
25 min, both cultures were examined and the percentages of
motile cells were scored.

Plasmids. The plasmids used to sequence the fliH,fliI, and
fliJ genes of S. typhimurium were pMH21 and pAMH3 and
deletion derivatives (32, 50).
DNA sequencing. DNA sequencing was carried out on

fragments cloned into bacteriophage M13 by using the dide-
oxy-chain termination method (75) and conventional proto-
cols as previously described (42). Deletions of restriction
fragments were obtained by the single-strand sequential

3564



S. TYPHIMURIUM FLAGELLAR FILAMENT REGROWTH 3565

TABLE 1. Temperature-sensitive flagellar mutants of
S. typhimurium used in this study

Straina Genotype Location of gene product Reference

MY617 fliF Basal-body M ring 43

MY629 flgC Basal-body rod 43

MY609 flgG Basal-body rod 44

MY601 figE Hook 44

MY648 flgK Hook-filament junction 43

MY638 flhA Unknown 43
MY654 43
SJW2201 89

SJW2257 fliE Basal body 89

MY671 fliH Unknown 44

MY644 fliI Unknown 43

SJW2197 fliP Unknown 89

MY621 fliO Unknown 44

MY630 fliG Flagellar switch 43
MY650 43
SJW2198 89
SJW2221 89

SJW2284 fliN Flagellar switch 89

a MY strains are derivatives of strain ST1 (3), and SJW strains are
derivatives of SJW1103 (23). Both parental strains are wild type for motility at
the permissive and restrictive temperatures used.

method (11) by using the CYCLONE I Biosystem (Interna-
tional Biotechnologies, Inc., New Haven, Conn.); both
strands were sequenced in their entirety. Sequence analysis
and comparisons were carried out by using the personal
computer package DNANALYZE (Gregory Wernke, Uni-
versity of Cincinnati Medical School). Comparisons with the
NBRF protein data base (version 25.0, June 1990) and
extractions of DNA sequences from the GenBank data base
(version 64.0, June 1990) for translation into the correspond-
ing protein sequences were carried out at the Biomedical
Computing Unit at Yale University.

Nucleotide sequence accession number. The DNA sequence
reported in this study has been deposited in GenBank under
accession no. M62408.

RESULTS

Proposed protocol for detection of export-defective mutants.
Many mutants (representing at least 21 different genes) have
no detectable flagellar structure by electron microscopy (43,
85, 86). This makes it difficult to distinguish between defects
in early structural components and defects in the assembly
of later components. For example, if a mutant were unable
to assemble the basal body, one would be unable to test its
ability to export the components of the major external
structures, namely, the hook and filament. If, however, all of
the early components were already in place one might be
able to make such a test. We decided, therefore, to examine
our collection of temperature-sensitive mutants (Table 1) for

filament cap (FliD)
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(FlgK) junction
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FIG. 1. Diagram of the flagellum of S. typhimurium. Many
flagellar proteins, including those that make up the rod, hook, hook-
filament junction, filament, and filament cap, are external to the cell
membrane and (except for the rod) the outer membrane. They are
exported by a flagellum-specific pathway which does not involve
signal peptide cleavage. The protein subunits are believed to travel
down a hollow core in the nascent structure itself before they
assemble at the distal end. The export apparatus is very poorly
understood but is likely to be at the flagellar base, must be able to
distinguish flagellar proteins that are to be exported (solid circles)
from other molecules that are not (open circle), and may require
energy (E). Known gene products located in various substructures
are shown. Structures that have been identified by electron micros-
copy are indicated by solid outlines; those that are known on genetic
and biochemical grounds only are indicated by shaded outlines.

evidence of defective export. The protocol (Fig. 2) involved
growing cells at the permissive temperature, shearing their
filaments off, shifting them to the restrictive temperature,
and monitoring whether the cells were able to regrow their
filaments and recover motility (Table 2). Shearing left the
cells completely immotile, and the cells possessed no fila-
ments of sufficient length to be detected by high-intensity
dark-field light microscopy (61). At the permissive tempera-
ture, the first signs of motility were evident within about 5
min, indicating that it was a result of filament regrowth
rather than de novo synthesis of the entire organelle and that
the shearing protocol did not cause irreparable damage to the
flagellar structure.
Mutants with defects in hook basal-body genes. Mutations

in various known hook-basal-body genes all produced sim-
ilar phenotypes (Table 2): unsheared control cells remained
motile when placed at the restrictive temperature, and
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FIG. 2. Protocol used to screen temperature-sensitive flagellar
mutants for defects in flagellum-specific export. Cells grown at the
permissive temperature of 30°C (A) were flagellated and motile. A
portion of the cells were simply shifted to the restrictive temperature
of 42°C and inspected to see whether they remained motile (C),
became paralyzed (D), or lost their flagella (E). Another portion of
the cells (B) had their flagella sheared immediately prior to the
temperature shift. After 25 min, they were inspected to see whether
they had regrown flagella and were motile (F), had regrown flagella
but were paralyzed (G), or had failed to regrow flagella (H). Genes
giving rise to category H behavior may be involved in the flagellum-
specific export pathway.

sheared cells recovered motility within the 25-min period.
This phenotype was displayed by mutants defective in the
M-ring gene (fliF), rod genes (flgC and flgG), hook gene

(flgE), and a gene (fliE) that encodes a basal-body protein
(68) whose location in that structure is not known. A partial
exception was an flgK mutant strain in which less than half
of the cells recovered motility;flgK encodes a protein at the
hook-filament junction. We did not have a temperature-
sensitive mutant defective in the flagellin gene but presume
that such a mutant would be unable to regrow its filaments.
Mutants defective in genes of unknown function. Of the

flagellar genes whose function is currently unknown, we had
temperature-sensitive mutants representing flhA, fliH, fliI,
fliP, and fliO. Unsheared cells of all of these mutants
remained fully motile when placed at the restrictive temper-
ature. Sheared cells offliH andfliI mutants exhibited greatly
reduced recovery of motility. Sheared cells of two flhA
mutants remained completely immotile after incubation at
the restrictive temperature; a third flhA mutant recovered
motility normally, indicating that different alleles can vary

substantially in thermolability. Sheared cells offliP and fliO
mutants recovered motility normally at the restrictive tem-
perature.

TABLE 2. Motility of temperature-sensitive mutants after shift to
the restrictive temperature

Motilitya
Strain Genotype

Unsheared Sheared

MY617b fliF ++++ ++++
MY648 flgK ++++ +++
MY638, MY654 flhA ++++ -C

SJW2201 flhA ++++ ++++
SJW2257 fliE ++++ ++++
MY671 fliH ++++ ++
MY644 fliI ++++ +
SJW2197 fliP ++++ ++++
MY621 fliO ++++ ++++
MY630d fliG _e -f
SJW2284 fliN -c-c

a Flagella were either sheared immediately before the temperature shift or
not sheared. Motility was recorded 25 min after the temperature shift.
+ + + +, at least 50% and usually more than 80% motile cells; +++, 25 to 50%
motile cells; + +, 10 to 25% motile cells; +, ca. 10% motile cells; -, no motile
cells.

b Results similar to those obtained with the fliF mutant were obtained with
mutants in other genes encoding hook-basal-body components like the rod
(flgC and flgG) and hook (flgE).

' Flagella did not regrow.
d Similar results were obtained with three otherfliG mutants (listed in Table

1).
e Flagella became paralyzed (temperature-sensitive Mot- phenotype). If

the culture was reset to permissive conditions, most cells recovered motility
within 2 min.
f Flagella regrew but were paralzyed (temperature-sensitive Mot- pheno-

type). If the culture was reset to permissive conditions, most cells recovered
motility within 2 min.

g Flagella became paralyzed (temperature-sensitive Mot- phenotype). If
the culture was reset to permissive conditions, the cells remained immotile
indefinitely.

Switch gene (fliG andfliN) mutants. Different mutations in
switch genes can give rise to a nonflagellate (Fla-), para-
lyzed (Mot-), or nonchemotactic (Che-) phenotype; the
mutants used here were of the temperature-sensitive Fla-
phenotype (43). Unsheared cells of these mutants became
immotile when shifted to the restrictive temperature (Table
2); i.e., pre-existing flagella exhibited the temperature-sen-
sitive Mot- phenotype. Abrupt loss of motility upon shifting
to the restrictive temperature has been noted previously for
a temperature-sensitive Mot- fliG mutant (12).

In the case offliG mutants, sheared cells incubated at the
restrictive temperature were immotile but rapidly (in <2
min) acquired full motility as the culture cooled on a micro-
scope slide. Thus, the lack of motility at the restrictive
temperature was a consequence of motor paralysis, not
failure to regrow filaments (cf. reference 12). Sheared cells of
fliN mutants, however, remained immotile indefinitely and
lacked filaments as judged by high-intensity dark-field mi-
croscopy (61); they therefore resembled the export-negative
phenotype of the mutants described above but also shared
with the fliG mutants the feature of temperature-sensitive
paralysis.

Sequence analysis of thefliH,flil, andflij genes. The genes
that yielded the phenotype of temperature-sensitive filament
regrowth (flhA, fliN, fliH, and fliI) have been cloned, and
their products have been identified (32, 51, 65).
For two of them (fiN and E. coliflhA), the gene sequences

are also known (50, 51, 65). The other two (fliH andflil) are
adjacent members of an operon that begins with fliF and
continues with fliGHIJK. The sequences of the first two
genes in this operon in S. typhimurium have been reported in
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FIG. 3. Restriction site and gene map of the insert of S. typhi-
murium DNA in plasmid pMH21, based on the DNA sequence
analysis described in the text (cf. the map based on restriction
digestion and complementation given as Fig. 1 of reference 32). The
insert contains fliH, fliI, and fliJ as the only intact genes.

the context of studies of the flagellar ring and switch struc-
tures, respectively (42, 50). Here we describe the sequences
offliH, fliI, and fliJ. (The sequence offliK, which encodes a

protein involved in hook length control [72, 81], will be the
subject of a separate communication [48].)
Complementation data have shown that the only intact S.

typhimurium genes in plasmid pMH21 are fliH, fliI, and fli
(32), and it is known that the sequence offliG ends about 330
bp after the EcoRI site at the start of the insert (50). A
restriction map of the insert is shown in Fig. 3. Sequence
analysis of the DNA beyondfliG revealed the following (Fig.
4). Overlapping with the 3' end of fliG (ATGTCTAA) is an

open reading frame, ORF1, of 705 bp; ORFi is overlapped at
its 3' end (TGATG) by a second open reading frame, ORF2,
of 1,368 bp; after a gap of 21 bp, ORF2 is followed by a third
open reading frame, ORF3, of 441 bp; ORF3 is overlapped at
its 3' end (ATGA) by a fourth open reading frame, ORF4,
which continues through the HindIlI site at the end of the
insert. We identified ORFi to ORF3 as fliH, fliI, and fliJ,
respectively, by the following criteria. (i) The order and
polarity of the genes correspond to those determined previ-
ously (57). (ii) The gene immediately upstream of ORFi has
been shown to be fliG (50), in agreement with the known
gene order. (iii) The sizes of the deduced products are in
good agreement with apparent values determined by electro-
phoresis (see below). (iv) Restriction site and complementa-
tion data (Fig. 1 of reference 32) are, with one exception,
consistent with the sequence reported here (Fig. 4) in that
there are EcoRI, PstI, and EcoRV sites upstream of ORF1,
within fliG; a PvuII site within ORFi at position 236; MluI,
PvuI, EcoRV, and PstI sites within ORF2 at positions 1307,
1590, 1906, and 2143; a Sail site within ORF3 at position
2479; and a HindIII site downstream of ORF3, within ORF4.
(The location of the first PvuI site reported on the restriction
map ofpMH21 [Fig. 1; reference 32] appears to be incorrect,
since there is no site in thefliH sequence and re-examination
of the restriction patterns failed to reveal one at that loca-
tion; there is, however, a PvuI site upstream offliH, within
fliG [Fig. 3; reference 50; see bp 729 of Fig. 6].) (iii) The open
reading frames were all assessed by the TESTCODE pro-
gram (22) as authentic coding regions at a confidence level of
96% (ORF2) or 99% (ORFi and ORF3).
We have also identified ORF4 as fliK (48).
Translational initiation sites offliH, fliI, and flij. fliH, fliI,

and fliJ are internal to the fliF operon and do not reveal
features associated with initiation or termination of tran-
scription. They all have strong, well-placed consensus ribo-

some-binding sequences (Fig. 4). The overlap between fliG-
fiiH, fliH-flJ, and fliJ-fliK is a feature that is commonly seen
within the flagellar regulon (63) and may reflect translational
coupling. Between the termination codon offliIand the start

S-D
I C6TCT6TCTCA66T66aa-T66T TGATCA6Cr66CACCT
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S-O
701 TT6CATCAC66C666T6TAAA6TCTCT6CC6AT6A666C6TCT6GAC6CCA6C6TC6CCACTC6CT6CAAGA6TT6TGTC6MCT66C66C6CC66A6
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S-D
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1 N I T L P
F11en d I F1iK start

FIG. 4. DNA sequence of the region of the S. typhimurium
chromosome containing the fliH, fliI, and fliJ genes and deduced
amino acid sequences of the gene products. The overlaps with the
preceding gene (fliG; reference 50) and the following gene (fliK;
reference 48) are also shown. The restriction sites shown are
discussed in the text. S-D, potential ribosome-binding site (Shine-
Dalgarno sequence). The asterisks indicate stop codons.

offliJ, there is a noncoding sequence of 21 bp but it contains
no symmetry elements (unlike the sequence between the
flgG and flgH genes of the flgB operon, which contains a
pronounced transcription terminationlike sequence [42]).
The codon usage indices (79) were 0.27, 0.32, and 0.37 for

fliH, fliI, and fliJ, respectively, comparable to those seen for
other flagellar proteins (e.g., references 30, 34, 42, and 50)
and indicating low-to-moderate levels of expression.

Properties of the FilM, Flil, and FliJ proteins deduced from
the gene sequences. The deduced sequences of FliH, Flil, and
FliJ contain 235, 456, and 147 residues, respectively, and
yield molecular masses of 25,782 49,208, and 17,302 Da,
respectively. These values are in good agreement with the
apparent molecular masses (28, 48, and 15 kDa, respec-
tively) determined by gel electrophoresis (32).
The complete gene sequence of E. coli fliH and a partial

(5') sequence for E. coli fliI have been determined by
Matsumura and colleagues (66). The deduced sequence of E.
coli FliH shows 82% identity to that of the S. typhimurium
protein, with the only substantial region of difference in the
region from residues 30 to 56 of the S. typhimurium se-
quence, which contains eight additional residues compared
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with the E. coli sequence; the partial E. coli Flil sequence
(N-terminal 74 residues) shows 92% identity to the S.
typhimurium sequence.
The sequences of FliH, Flil, and FliJ are all fairly hydro-

philic and give no evidence for any membrane-spanning
segments when analyzed by the algorithm of Engelman et al.
(20).
FliH is moderately acidic. The N terminus is especially so,

with the first 50 residues containing 13 D+E residues and no
basic residues. It is also proline rich (8 of the first 39
residues). The protein is predicted (9) to have a considerable
amount of a structure but little 13 structure.

FliT has about equal numbers of acidic and basic residues
distributed fairly evenly throughout the sequence. The sec-
ondary structure is predicted to contain considerable
amounts of both a' helix and 13 sheet.

FliJ has a high proportion of charged residues
(D+E+K+R+H = 32 mol%) fairly uniformly distributed
throughout, with a slight excess of basic charge. Its glycine
and proline contents are low (five and one residues, respec-
tively). Its secondary structure is predicted to be predomi-
nantly a helical.
The charge properties of the three protein sequences are

consistent with their electrofocussing properties, with FliH
focussing at a fairly acidic pH, FliI at a close-to-neutral pH,
and FliJ at a fairly alkaline pH (32).

Similarity between FliT and the 10 and a subunits of the FOF1
proton-translocating ATPase. We compared the deduced
sequences of the FliH, FliI, and FliJ proteins with protein
sequences in the NBRF data base and with sequences of all
flagellar and chemotaxis proteins of S. typhimuriumn and E.
coli to which we had access. The latter, consisting of 43
independent sequences, were FlgBCEFGHIJKL, FlhEAB
CD, FliACDSTEFGHIJKLMNOPQR, MotAB, CheAB
RWYZ, and a representative receptor, Tar (4, 13, 30, 34, 42,
46, 49, 50-52, 56, 58, 64-66, 69, 71, 73, 82-84; this study); the
list excludes only three known flagellar proteins (FlgAD and
FliB) and includes two that have not been described in the
literature (FliS and FliT; reference 49).
Only one significant similarity was found in these compar-

isons: Flil showed significant similarity (Fig. 5) to both the 1
and the ax subunits of the ATP-hydrolyzing F1 portion of the
FoF1 proton-translocating ATPase from E. coli (26, 47, 76)
and a variety of other cells and organelles, such as Bacillus
spp., bovine mitochondria, and maize chloroplasts; F1 13 and
a are themselves related (87), although not highly so (26%
identity). The optimized scores for the alignments (60) of Flil
with F1 1 and a were about 350, while the next nearest
scores were about 50 (essentially the noise level).
The similarity to F1 a and at was first noted by A. Albertini

for the deduced product of a gene (currently termed
flaAorf4) that is almost certainly the functional homolog of
S. typhimurium FliI, since it has 48% amino acid identity and
lies within a cluster of flagellar genes (2).
Alignment and similarity of S. typhimurium Flil was closer

to the catalytic 1 subunit of F1 than to the ao subunit (29%
versus 25% identity). More significantly, optimal alignment
to a required insertion of 13 residues at position 313 (similar
to that required for optimal alignment of the 13 subunit to the
a subunit), whereas no major insertion or deletion was
required in the alignment of 13 (Fig. 5).
More detailed considerations provide further support for

the significance of the similarities. (i) The residues in the two
clusters that are believed to constitute the nucleotide-bind-
ing site of the 13 subunit (termed motifs A and B by Walker
et al. [87]) are strongly conserved in Flil (Fig. 5). (ii) There
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FIG. 5. Alignment of the sequence of Fliu with the a and 13
subunits of the F1 portion of the FoF, proton-translocating ATPase
of E. coli. Numbering of the 13 subunit is for the mature protein after
cleavage of the N-terminal methionine; Fliu ends at V456, whereas
the sequences of the two FoF, ATPase subunits continue. Identities
are indicated by vertical lines, and conservative changes (among
I-L-V-M-F, F-Y, A-G, D-E, H-K-R, N-Q, or S-T are indicated by
dots. (A) and (B) refer to the nucleotide-binding motifs noted by
Walker et al. (87). Residues in the a and 13 subunits that have been
implicated in catalysis, either by mutation or by binding of the ATP
analog pyridoxal 5'-triphospho-5'-adenosine, are indicated along
with the degree of conservation at the corresponding position in Fliu,
as identical (vertical lines), conserved (dots), or nonconserved
(exes). The position indicated by the asterisk is, in the E1E2
ATPases, an aspartate residue and is phosphorylated in the catalytic
cycle. In a and 13, it is not an aspartate, nor does phosphorylation
occur; in Fliu also it is not an aspartate.

are a number of residues in F1 a and 1 that have been shown
to affect ATPase activity or to be the target of covalent
attachment of the ATP analog pyridoxal 5'-triphospho-5'-
adenosine; there are 27 such residues (in at, 1, or both) cited
in references 24 and 78. For these residues, there is 63%
identity among Flil, at, and 1.
The results obtained with the FoF1 ATPase prompted us to

look for similarities to other ATP-driven ion translocases.
The vacuolar and archaebacterial proton translocases are
fairly closely related to each other and more distantly related
to the FoF1 ATPase (5, 6, 14, 15, 41). FliI showed significant
similarity to the catalytic subunit of both of these types of
ATPase, with the regions of highest similarity corresponding
to those seen in the comparison with F1 13. The degree of
similarity was slightly lower than that to F1 13: for example,
28% identity to the Vma-1 protein of the bread mold Neu-
rospora crassa (6) and 24% identity to the a subunit of the
archaebacterium Sulfolobus acidocaldarius (14). Because
the noncatalytic and catalytic subunits of these enzymes are
themselves related (5, 15), there is also similarity between
FliI and the noncatalytic subunits.
The other major class of ion-translocating ATPases is the

E1E2 class, exemplified by the prokaryotic K+ translocase
and the eukaryotic Na+/K+, Ca2+, and plasma membrane
H+ translocases, which show extensive similarity to each
other (28) but very little to the FoF1 ATPase or the vacuolar
and archaebacterial ATPases. Flil was unrelated to the E1E2
ATPases, except for a small amount of similarity at a
position (GSIT at residues 320 to 323 of Flil versus GTIT in
the Kdp protein of the E. coli K+ translocase; 28) where F1
13 and a also show similarity to the E1E2 ATPases. In the
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FIG. 6. Alignment of Fliu with various ATP-binding or -utilizing
proteins in the regions that correspond to nucleotide-binding motifs
A and B noted by Walker et al. (87). Residues that are identical in
Flil and another protein are in boldface, uppercase letters and are

boxed; residues that are conserved (I-L-V-M-F, F-Y, A-G, D-E,
H-K-R, N-Q, or S-T) between Flil and another protein are in
uppercase; residues that are not conserved between Flil and another
protein are in lowercase. Fl d subunit of FoF, ATPase; Fl a, a

subunit of FoF, ATPase; Vma-1, catalytic subunit of vacuolar
ATPase of N. crassa; Arch a, a, or catalytic subunit of the
archaebacterium S. acidocaldarius; HisP, ATP hydrolyzing subunit
of the histidine uptake system of S. typhimurium; AdKin, bovine
adenylate kinase. The latter two proteins were chosen as illustrative
examples of ATP-utilizing enzymes generally, in contrast to the four
above, which are related proteins within ATP-driven proton trans-
locases.

E1E2 ATPases, there is an aspartate three residues upstream
which is phosphorylated during the catalytic cycle. FliI, like
F1 (, does not have an aspartate at that position.

Variants of motifs A and B are present in many ATP-
utilizing enzymes. However, the degree of agreement be-
tween these motifs in Fliu and the FoF1 and related ATPases
is generally stronger than that between Flil and ATP-
utilizing proteins generally, as can be seen from the explicit
sequence comparisons in Fig. 6. We were unable to achieve
significant overall alignments between Flil and any of sev-

eral such proteins we examined. These included bovine
cyclic AMP-dependent protein kinase (80), bovine adenylate
kinase (53), E. coli homoserine kinase (10), E. coli RecA
(74), S. typhimurium HisP (29), and E. coli CheA (a protein
kinase in the chemotaxis sensory transduction system) and
its substrates CheB and CheY (27). We conclude that Flil is
specifically related to subunits of the FoF1, vacuolar, and
archaebacterial ATPases and not just generally related to
nucleotide-binding or nucleotide-utilizing proteins as a

whole.
The FoF1 ATPase is a large multienzyme complex, with

the F1 component consisting of three (x subunits, three e
subunits, and one each of the -y, 8, and E subunits and the Fo
component consisting of one a subunit, two b subunits, and
around 10 c subunits. We compared all known flagellar
protein sequences with the sequences of these subunits but
failed to find any similarities strong enough to be considered
significant. Specifically, although F1 a and are related, no

flagellar protein showed sufficient similarity to either FliI or

F1 a to suggest that it is a homolog.
Given the indications that FliT is involved in export of

flagellar proteins, we examined the sequences of the com-

ponents of the primary cellular pathway for protein export;
neither Flil nor any of the other flagellar proteins showed
significant similarity to SecA, SecB, SecE, or SecY (7, 16,
55, 77). Nor did they resemble a group of other proteins
which have been implicated in ATP-driven protein or pep-

tide transport: the HlyB protein of E. coli (21), the McbF
protein of E. coli (25), the STE6 protein of Saccharomyces
cerevisiae (54, 67), or the human MDR1 protein (8).

DISCUSSION

Pre-existing flagella still function following temperature
shift. With most of the temperature-sensitive mutants we
tested, the flagella remained intact and continued to rotate
following a temperature shift. The mutant genes included
several that encode known components of flagellar struc-
ture, such as the M-ring, rod, hook, and hook-filament
junction proteins. Together, they make up a large multisub-
unit complex known from biochemical studies to be able to
withstand extreme conditions (1). Apparently, temperature-
sensitive components of this complex maintain structure and
function at the restrictive temperature once incorporated.
The only proteins that differed from the above description

were switch proteins FliG and FliN, which no longer per-
mitted flagellar rotation at the restrictive temperature (cf.
reference 12). On the basis of intergenic suppression data
(90), the flagellar switch is believed to be a structure periph-
eral to the cell membrane and may therefore be relatively
unconstrained by other flagellar components, with the result
that a shift to the restrictive temperature causes loss of its
ability to enable flagellar rotation.
flhA, fliH, fliI, and fliN mutations affect filament regrowth.

As was described above, mutations in these genes totally or
partially prevented regrowth of flagellar filaments at the
restrictive temperature. This loss of function therefore indi-
cates that the gene products are involved at some stage in the
overall process of assembly of external components.
A temperature-sensitive mutation in the structural gene

for an exported component that had been sheared off would
certainly be expected to result in failure of regrowth. Thus,
a temperature-sensitive flagellin would presumably fail to
assemble into a filament at the restrictive temperature even
if exported successfully. However, this cannot be the expla-
nation for the failure of regrowth in the flhA, fiiH, fliI, and
fliN mutants, since their products are not present in the
external flagellar structure, which has been carefully char-
acterized in terms of protein composition and genetic origin
(40). Nor can the results be explained in terms of the process
of incorporation of flagellin into a filament, since the only
proteins needed for this process are the three hook-associ-
ated proteins (31, 35, 40), which are not encoded by the
genes in question.
The process of flagellar assembly has been analyzed in

terms of which genes are necessary to reach a substructure
of a given complexity. flhA, fliH, and fliI were all found by
Suzuki and coworkers (85) to be needed for the earliest
detected flagellar structure, an inner-ring-rod complex (fZiN
mutants were not included in the study). A recent study (43)
has shown further that flhA, fliI, and fliN participate after
M-ring assembly and before assembly of the first external
structure, the rod (fiiH mutants were not included in that
study). Thus, the position of these genes in the assembly
pathway is consistent with a role in the process of flagellum-
specific export.
The export apparatus, like the switch complex, is likely to

be a peripheral structure and to be less constrained for that
reason. The thermolability of the FlhA, FliH, Flil, and FliN
proteins could involve a relatively subtle structural change
or one as drastic as dissociation from the flagellar apparatus.
Whatever the nature of the event, it affects only the process
of filament regrowth and not (except for switch mutants)
other aspects of motor structure and function, which were
normal.

In the case of fliN, we suspect that the role in enabling
filament regrowth is an indirect one. Mutant phenotype and
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intergenic suppression data (90, 91) clearly suggest a func-
tion in motor energizing and switching and a location ex-
posed to the cytoplasm. FliN may physically interact with
the export apparatus and, if defective, may affect its struc-
tural integrity.

This study has provided the first clues concerning the
genes that may be involved in the flagellum-specific export
process. However, with the exception offliI (see below), it is
premature to speculate on what specific roles these genes
and their products play.
The sequence of FliI indicates that it is a subunit of an

ATPase. The sequence similarity between Fliu and the FoF,
ATPase ,3 subunit and other related proteins is clearly
significant, especially when one takes into account the
location of the regions of highest similarity, which include
the two elements of the nucleotide-binding site and other
residues that are important in catalysis. Fliu, F1 P, and the
catalytic subunits of the vacuolar-archaebacterial ATPases
are roughly equally related, suggesting that they all diverged
from a common ancestral protein at about the same time.
The degree of similarity is not high enough to justify consid-
eration of the enzymes as members of a common class. It
seems more appropriate to regard them as falling into three
different but related classes, all quite remote from the E1E2
ATPases.

Since the proteins that Flil resembles are all subunits of
ATP-driven proton pumps (or, in the reverse direction,
proton-driven ATP synthases), it seems likely that Fliu
participates in some related type of process and not in a
totally different kind of ATP-requiring process.
What might the role of Fliu be? If it is a component of an

ATP-driven proton translocase, then it must be one which is
intimately linked to the flagellum, since the phenotype offliI
mutants is nonflagellate. There is a large body of evidence
that indicates that the flagellar motor is driven by the cell's
proton motive force (62). However, Eisenbach and Wolf (18,
88) have found that cells can rotate their flagella in the
absence of a proton motive force, provided respiration or
ATPase activity from endogenous energy sources is possi-
ble. They suggest that there might be dedicated electron
transport chains and ATPases that are capable of injecting
protons directly into the flagellar motor; in support of this
hypothesis, they report that preparations of vesicles with
flagella associated with them have higher respiratory and
ATP hydrolysis rates than the vesicle population generally.
Conceivably, Fliu might be part of such a flagellum-specific
ATP-driven proton translocase whose function is to rotate
the flagellar motor. Recall, however, that the fliI mutant
could rotate its flagella normally at the restrictive tempera-
ture. Thus, there is no evidence that FliI plays a role in
motor rotation, at least under our conditions.

In view of the finding, described in the first part of this
report, that a defect in Fliu blocks filament regrowth, we
consider it possible that Flil is part of an ATP-driven protein
translocase responsible for export of flagellar proteins via
the flagellum-specific export pathway. A related hypothesis
would be that FliI is part of an ATP-driven proton translo-
case (or proton-driven ATP synthase) that is directly asso-
ciated with the flagellum and that the interconverted energy
is used for the flagellum-specific export process.

Regardless of its function, FliT is probably (like F1 P) only
one component of a multisubunit complex. The failure to
find any obvious homologs to the other components of the
FoF1 ATPase could mean that there are homologs but the
sequences have diverged too far for similarities to be recog-
nized. Alternatively, the subunit composition of the Flil-

containing complex may be entirely different; for example, it
may not need the participation of an a-type subunit. And of
course one would not expect to find any close homolog of the
Fo component of the proton translocase if FliI were in fact
part of a protein translocase.

In the absence of clues based on sequence, other means of
identifying components that interact with FliI will be
needed, such as intergenic suppression analysis or coimmu-
noprecipitation. Also, although the sequence similarities
seem compelling, it is obviously necessary to test experi-
mentally whether FliT binds nucleotides and hydrolyzes
them. It may not be possible to demonstrate catalytic
activity of Flil in isolation; in the case of the FoF1 ATPase,
for example, the minimal structure capable of appreciable
ATP hydrolysis rates is not 1B but the a3P33y complex (17).
Assuming that ATP hydrolytic activity can be shown for Fliu
or a FlI-containing system, the next challenge will be to
determine what the energy generated is used for.
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