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Abstract
Background: High content screening (HCS) is a powerful method for the exploration of cellular
signalling and morphology that is rapidly being adopted in cancer research. HCS uses automated
microscopy to collect images of cultured cells. The images are subjected to segmentation
algorithms to identify cellular structures and quantitate their morphology, for hundreds to millions
of individual cells. However, image analysis may be imperfect, especially for "HCS-unfriendly" cell
lines whose morphology is not well handled by current image segmentation algorithms. We asked
if segmentation errors were common for a clinically relevant cell line, if such errors had measurable
effects on the data, and if HCS data could be improved by automated identification of well-
segmented cells.

Results: Cases of poor cell body segmentation occurred frequently for the SK-BR-3 cell line. We
trained classifiers to identify SK-BR-3 cells that were well segmented. On an independent test set
created by human review of cell images, our optimal support-vector machine classifier identified
well-segmented cells with 81% accuracy. The dose responses of morphological features were
measurably different in well- and poorly-segmented populations. Elimination of the poorly-
segmented cell population increased the purity of DNA content distributions, while appropriately
retaining biological heterogeneity, and simultaneously increasing our ability to resolve specific
morphological changes in perturbed cells.

Conclusion: Image segmentation has a measurable impact on HCS data. The application of a
multivariate shape-based filter to identify well-segmented cells improved HCS data quality for an
HCS-unfriendly cell line, and could be a valuable post-processing step for some HCS datasets.

Background
Anticancer drug development is a highly complex process
that explicitly models cancer cell growth in the laboratory.
These cell models, usually tumor cell lines adapted to cul-
ture in vitro from human tumor samples, are chosen for
use in pathway and target based research because of par-
ticular properties these lines retain, including the charac-
teristics of the tissue of tumor origin, hormone

responsiveness and genetic alterations that result in spe-
cific pathways becoming constitutively activated [1]. As
such, certain cell lines are used in specific drug develop-
ment programs because they appropriately model specific
aspects of cellular signalling or tumor biology. One exam-
ple is the breast carcinoma line SK-BR-3, in which the
PI3K pathway is constitutively activated by both EGFR
and the related Her-2neu receptor [2-4]. This cell line is val-
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uable to the study of inhibitors of the EGFR receptor fam-
ily and the PI3K/AKT pathway.

High content screening (HCS) refers to the image-based
analysis of cellular morphology [5]. In a typical experi-
ment, monolayer cell cultures are fixed, stained with
organelle- or cellular-component-specific fluorescent
markers, and then imaged by automated microscopy.
Images are "segmented" to identify cells or sub-cellular
structures, and morphological "features" (such as fluores-
cent intensity, object shape, size and texture) are com-
puted from each segmented object. The term "high
content" refers to the very large volume (and potentially
rich) datasets that can be generated by this approach. For
example, an experimental protocol with 4 distinct fluores-
cent markers that computes 50 features per fluorescent
marker will produce 200 feature measurements per cell,
for each of ~105 cells in a single culture plate, yielding ~2
× 107 data points. HCS is gaining rapid acceptance as a
methodology for quantitating cellular morphology in vitro
[6-10].

The application of HCS to some important cell types can
be restricted by limitations in the segmentation step of the
analysis. In this step, microscopic images are processed by
segmentation algorithms to locate and define cells or sub-
cellular structures in a background of instrumentation
noise and any non-cellular objects (debris, artefacts, etc.)
that may appear in an image [e.g. [11]]. Segmentation
algorithms work best on cell types where individual cells
are uniform in size and shape, and grow in a regular non-
overlapping pattern, because such cells are easier for the
algorithms to distinguish from non-cell background.
However, many clinically relevant human tumor cell lines
such as SK-BR-3 grow in more complex patterns. For these
"HCS unfriendly" cell lines, image segmentation is less
successful, and errors in segmentation can occur fre-
quently. For example, neighbouring cells may be inappro-
priately identified as a single object, or a cell body may be
"over-segmented" or fragmented into several distinct
objects. Errors in segmentation cause multiple or partial
cells to be inappropriately designated as single cells, and
can therefore distort downstream analyses of cellular fea-
tures that are derived from the segmented objects. This is
especially true in the context of a typical HCS screen,
where hundreds or thousands of images are segmented,
and it is not feasible for investigators to visually review all
the acquired images.

Novel cell segmentation algorithms are under constant
development, and have the potential to reduce segmenta-
tion errors. However, commercial HCS systems that are in
use today typically use a repertoire of well-understood
segmentation algorithms. This makes commercial systems
powerful and easy to use, but limits the ability of users to

incorporate novel image segmentation methods into their
analysis processes.

To investigate segmentation issues in the context of com-
mercial HCS informatics systems, we sought to determine
if segmentation errors were common for the clinically rel-
evant cell line SK-BR-3, if such errors had a measurable
effect on the data, and if we could improve data quality by
identifying and removing poorly segmented objects from
datasets generated by a commercial HCS system.

Results
Poorly segmented objects are identified by human review 
of images
To provide a reference set of well- and poorly-segmented
cells, we undertook human review of composite cell
images from a selection of wells treated with CCI-779,
HKI-272, PP3, SB 203580, Trichostatin A, or DMSO vehi-
cle. For each image, we recorded cells that were well-seg-
mented, and those that were poorly-segmented. Criteria
for "good" segmentation were:

1. The cell perimeter defined in channel 1 was complete
and reasonably conformed to the perimeter observed by
eye in channel 1.

2. The nuclear perimeter defined in channel 2 was com-
plete and enclosed in the surrounding channel 1 cell
body.

Each of the four authors of this report independently
reviewed about one-quarter of the total images. Typical
examples of well- and poorly-segmented objects are
shown in Figure 1. The well segmented objects tended to
be circular or ellipsoidal in shape, with regular perimeters
(Figure 1b, 1c), while the poorly segmented objects
tended to be irregular shaped partial cell bodies (Figure
1d), often with no identified nuclear region (Figure 1e).

In total, 2019 segmented cells were classified by human
review: 719/2019 were considered well-segmented, and
1300/2019 poorly-segmented. The fact that 64% of the
segmented objects were classed as poorly-segmented was
striking, and suggested that segmentation errors might be
introducing substantial noise and/or bias into our HCS
data for this cell line. Further evaluation of other SK-BR-3
cultures confirmed that approximately one-half of seg-
mented objects were of poor quality, so this finding was
not atypical.

The set of 2019 human-reviewed segmented cells was split
by a one-time random division into a training set of 1009
training cases and 1010 test cases. The feature data calcu-
lated by the Cellomics software for these segmented
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objects was then used for training and validation of classi-
fiers to distinguish well- and poorly-segmented cells.

Training of classifiers to distinguish poorly-segmented cells
Using only the 1009 segmented cells in the training set,
we built classifiers to identify poorly-segmented cells. The
training data set consisted of the 116 image features that
were computed by the Cellomics software for all of the
1009 training cells. We evaluated a linear discriminant
(LDA) classifier, and two support-vector machine (SVM)
classifiers, with either linear (SVM-linear), or radial-basis
function (SVM-RBF) kernels. For each of these classifiers,
we executed five-fold cross validation within the training
set to assess classification success, for 1–100 classifying
features, selected by a t-test comparing well- and poorly-
segmented cells. For each classifier, the smallest number
of features that gave a 5-fold cross-validation accuracy
within one standard error of the maximum achieved accu-
racy was identified. Table 1 shows these "one-SEM" accu-
racies of all 3 classifiers in cross-validation, and the
corresponding number of features. The accuracies of the
LDA, SVM-linear, and SVM-RBF in this cross-validation
were 79.5–81.5%, so all 3 models performed very simi-
larly. Figure 2 shows the 5-fold cross validation accuracy
of the SVM-RBF classifier, for 1 to 100 features. The 7-fea-
ture model performance was within one standard error of
maximum. Performance in cross-validation reached a pla-

teau for larger feature numbers. The gamma and cost
parameters of the 7-feature SVM-RBF model were opti-
mized by grid search and 10-fold cross validation in the
training set (final parameter values were gamma = 0.333,
cost = 1).

Table 1: Performance of classifiers on training and test sets

5-fold cross-
validation

Independent 
test set

Classifier Features Accuracy Accuracy

LDA 19 79.5% 78.7%
SVM-linear 25 80.1% 78.9%
SVM-RBF 7 81.5% 80.9%

LDA, SVM (linear kernel), and SVM (radial basis kernel) classifiers 
were first assessed by 5-fold cross validation accuracy for a range of 
model sizes. The minimum number of features that gave a cross-
validation accuracy within one SEM of the maximum accuracy for all 
model sizes was determined, and is shown in the first column of the 
table, along with the corresponding cross-validation accuracy. Once 
the optimal parsimonious model size (number of features) was 
determined from cross-validation, the classifiers were applied to the 
independent test set; the test-set accuracy is shown in the right-
most column of the table.

Image segmentation is imperfectFigure 1
Image segmentation is imperfect. (a) Representative composite image from the training image set. Bounding boxes determined 
from cell-body stain are indicated for segmented objects that were classed by human review as either poorly segmented (red 
boxes) or well segmented (blue boxes). Letters (b-e) indicate individual segmented objects. Nuclear stain (DAPI) is blue; Cell 
body (CMFDA) is green; Actin is red. (b-c) Magnified images of well-segmented objects containing a complete nucleus and 
cytoplasmic region. Green outlines indicate segmented nuclei; blue outlines delimit the segmented cell body. (d-e) Magnified 
images of poorly-segmented objects containing partial cell bodies and nuclei.
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Testing of classifiers on independent test cells
When training of the classifiers was complete, we tested
the final trained LDA, SVM-linear, and SVM-RBF models
on our test set of 1010 segmented cells. These cells were
not used for model training, and therefore represented an
independent validation dataset for our models. Perform-
ance of the models on the test set was generally consistent
with the cross-validation results. In particular the SVM-
RBF classifier gave 80.9% accuracy (Table 1). The confu-
sion matrix in the test set for the SVM-RBF classifier indi-
cated that classification of poorly segmented objects was
somewhat higher than that for well-segmented objects
(Table 2). Since the SVM-RBF classifier gave the highest

overall accuracy with the minimal number of features, we
selected that classifier for further analysis.

Several of the most powerful discriminant features are 
shape descriptors
The 116 morphological features that we included in our
analysis were generated by the Cellomics Morphology
Explorer application and included measures of total
intensity, average intensity, object size, object shape, and
object texture. The seven features selected for the SVM-RBF
classifier included 2 nuclear intensity measures
(AvgIntenCh2, TotalIntenCh2), and one cell body texture
measure (EntropyIntensityCh1). However, more than
half (4 of 7) of the model features were cell-body shape
measures (ConvexHullAreaRatioCh1,
ConvexHullPerimRatioCh1, FiberWidthCh1, and
ShapeP2ACh1). Review of the P2A and ConvexHullArea-
Ratio features for the training cells indicated that the well-
segmented objects tended to have lower values than
poorly-segmented objects for both these features (Figure
3). These lower values indicated that well-segmented
objects tended to be more circular, with fewer bumps or
protrusions, compared to the poorly-segmented objects.
This was generally consistent with our visual observations
of these objects (e.g. Figure 1).

Once we established that the classifier could mimic the
human definition of well- and poorly-segmented objects,
we applied it to experimental data to determine if identi-
fying and removing poorly-segmented objects could
improve the quality of our HCS readouts for SK-BR-3 cells.
To assess data quality we focussed on two aspects of the
data: DNA content distributions in control cells, and mor-
phological feature readouts from control and perturbed
cells.

DNA content of well-segmented cells is free of debris signal 
and consistent with the expected log-phase distribution
Our vehicle-treated cultures were in log-phase growth.
Therefore we expected the distribution of DNA content
per cell to follow the classical bi-modal distribution with
a major peak at 2N DNA content corresponding to G0/G1
cells, a minor peak at 4N containing G2/M phase cells,
and subset of S-phase cells between 2N and 4N DNA con-
tent. We examined the histograms of total intensity in
Channel 2, which measured DNA content, for objects
classified as poorly-segmented, compared to that of those
classed as well-segmented. The poorly-segmented objects
showed a prominent "debris" peak at very low DNA con-
tent, and a broad distribution of higher DNA contents. In
contrast, well-segmented objects had little or no debris
population, a sharper G0/G1 peak, and reduced spread of
large DNA content objects beyond the G2/M peak (Figure
4). We confirmed by visual inspection of images that the
"debris" peak contained cell fragments or artefacts, the

Cross validation indicates a small number of morphological shape features are sufficient to distinguish well- and poorly-segmented objectsFigure 2
Cross validation indicates a small number of morphological 
shape features are sufficient to distinguish well- and poorly-
segmented objects. Five-fold cross validation was executed 
on the training set, including feature selection in each round 
of training. Fraction of correctly classified training cases 
(from a total of 1009) is shown as a function of the number 
of morphological features in the SVM-RBF classifier. The 
open circles indicate mean accuracy; the red lines delimit one 
standard error around the mean. The green horizontal line 
marks the accuracy for 7 features, which was the minimal 
number of features for which the accuracy was within one 
SEM of the maximum.
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Table 2: Test set confusion matrix for the SVM-RBF classifier

True Class

Predicted Class PS WS

PS 549 78
WS 115 268

Of 1009 test cases, 80.9% were correctly classified by the SVM-RBF 
classifier. The confusion matrix shows that accuracy of classification 
for poorly segmented (PS) objects was somewhat better than that for 
well-segmented (WS) objects.
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G0/G1 peak contained singlet cells, and the G2/M peak
contained both G2 and M phase cells (data not shown).

Morphological feature variability is maintained in the well-
segmented population
If the well-segmented cell population is to be selected for
experimental analysis, it is important that this population
be a representative sample of the cells of biological inter-
est, and not an inappropriately homogeneous subset of
cells with atypical morphology. To assess the heterogene-
ity of well-segmented cells, we compared the variation in
morphological feature values within the well-segmented
and poorly-segmented populations of vehicle-treated con-
trol cells.

The absolute value of the coefficient of variation (ACV) of
each of the 116 morphological features was calculated, for
both well- and poorly-segmented populations. Data from
7 representative wells was used, so that each ACV was esti-

mated from a reasonably large population of approxi-
mately 3300–4000 cells. The ACVs of each of the 7
features that were used to define the well-segmented pop-
ulation were reduced within that population, as expected
(Figure 5). The median CV of all 116 cell features was
125% in the poorly-segmented population, and 142% in
the well-segmented population. The number of features
with smaller variation in the well-segmented population
was 57 of 116 (49%). Hence, there appeared to be no
inappropriate reduction in the overall heterogeneity of
the well-segmented population, compared to the poorly-
segmented population.

Dimension and shape features of the cell body are most 
sensitive to poor segmentation
The features used by the classifier to define well- and
poorly-segmented cells were intensity, cell body object
shape, and texture features. We expected that other fea-
tures would be more or less sensitive to poor cell segmen-
tation, according to their individual characteristics. For
example, we speculated that texture features might be less
sensitive to cell body segmentation than object shape fea-
tures. To test this, we fitted the dose responses of all fea-
tures to the subset of compounds that showed significant
dose responses by ANOVA, in at least some features. We
carried out this fitting twice: first using only poorly-seg-
mented objects as determined by our classifier, and then
using only the well-segmented objects. We then calculated
a measure of the error-weighted discrepancy between the
poorly-segmented object dose response and the well-seg-
mented dose response, and categorized each compound-
feature combination, as either "sensitive" to segmentation
(if the discrepancy was larger than the grand median) and
"resistant" (if the discrepancy was smaller than the grand
median).

We found that there was a wide range of sensitivity to cell
body segmentation among the compound-feature combi-
nations. "Sensitive" compound-features showed very dis-
crepant dose responses in well- versus poorly-segmented
cells (e.g. Figure 6a,b) while "resistant" compound-fea-
tures showed consistent responses regardless of segmenta-
tion status (e.g. Figure 6c,d).

To clarify the varying sensitivity of features to cell body
segmentation, we tabulated the number of drug-feature
combinations in each channel that were either sensitive or
resistant to segmentation, and grouped features by their
type, where type was either dimension, intensity, shape,
or texture (Table 3). From this tabulation, two clear trends
emerged.

First, the nuclear staining in Channel 2 tended to be more
resistant to Ch1 segmentation quality than Channels 1, 3
or 4 (Table 3). The fraction of sensitive compound-feature

Shape parameters of poorly-segmented (PS) and well-seg-mented (WS) cellsFigure 3
Shape parameters of poorly-segmented (PS) and well-seg-
mented (WS) cells. Data for 50 training cells is shown. Well-
segmented objects tended to be more circular and less varia-
ble in shape than poorly-segmented objects.
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DNA content of poorly-segmented (PS) and well-segmented (WS) objectsFigure 4
DNA content of poorly-segmented (PS) and well-segmented (WS) objects. Each plot is a histogram of total DNA content from 
a single representative DMSO vehicle-treated well (F13, G13, or H13). The left column shows DNA content of poorly-seg-
mented objects; well-segmented objects from the same wells are shown in the right column. The number in parentheses above 
each plot indicates the total number of objects included in the histogram. The red curve is a smoothed fit to the observed dis-
tribution. The blue lines were placed at the mode of the fitted distribution (the presumptive G0/G1 peak), and at twice the 
mode (the expected location of the G2/M peak). Note the poor estimates of the location of the G0/G1 peak in the poorly-seg-
mented-class histograms, due to the large debris peak at small DNA content.
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combinations was 5% in Channel 2, versus 46–58% in
Channels 1, 3 and 4. This was not surprising, since DAPI
staining of nuclear regions in Channel 2 tended to be
robust and largely independent of the segmentation of the
cell body in Channel 1. Conversely, the size of the regions
that were segmented in channels 3 and 4 depended
strongly on the delineation of the cell body in Channel 1,
and this dependence seems to be reflected in the sensitiv-
ity of Channel 3 and 4 features to cell body segmentation
in Channel 1.

Secondly, within Channel 1, dimension and shape fea-
tures tended to be more sensitive to cell segmentation
than did intensity or texture features (Table 3). Specifi-
cally, 94/110 dimension features were sensitive and 27/60
shape features were sensitive, whereas only 18/50 inten-
sity features and 6/20 texture features were sensitive. Since
4 of the 7 features in our SVM-RBF classifier were shape
features (ConvexHullAreaRatio, ConvexHullPerimRatio,
P2A, and FiberWidth in Ch 1), it makes intuitive sense
that Ch1 shape features should be very dependent on seg-
mentation class. Conversely, intensity and texture fea-

tures, although they are calculated using the segmented
regions from Channel 1, are not inherently dependent on
cell shape. Therefore it appears sensible that they should
be less sensitive to the quality of segmentation of the cell
body in Channel 1.

Observable morphological changes are captured by 
analysis of the well-segmented cell population, but not the 
poorly-segmented population
Given the sensitivity of some morphological feature meas-
urements to segmentation (e.g. Figure 6a,b), we next
asked if limiting analysis to well-segmented objects could
enhance our ability to detect true morphological changes
in the cell body of compound-treated cells.

For the 17AAG-treated cells of Figure 6a–b, we reviewed
the raw cell images in Channel 1, for low- and high-dose
treated cells. Representative field images confirmed that
cells treated with high-dose (35nM) 17AAG tended to be
rounder than at low dose (0.02 pM; Figure 7a,b). This was
consistent with the observed decrease in perimeter-to-area
ratio in Channel 1 (Figure 6a), but this morphological
change was not captured by the same feature among
poorly-segmented cells (Figure 6b). Hence, an observable
change in shape of cells at high-dose 17-AAG was cap-
tured by analysis of the well-segmented cell population,
but not by the poorly-segmented population.

Next, we asked if morphological changes in a non-cell
body channel were also better captured by analysis of the
well-segmented cell population. We selected
SpotFiberCountCh3, a count of the number of actin fibers
in the cell body. This was a segmentation-sensitive feature
that had a statistically significant dose-response to Her-
bimycin in the well-segmented cell population (p = 2.5 ×
10-9), but an attenuated dose-response for the same treat-
ment among the poorly-segmented population (Figure
8a,b). We reviewed representative field images for low-
and high-dose treated cells, and found that actin fiber
structures were more frequent in cells treated with low-
dose Herbimycin, compared to high-dose Herbimycin
(Figure 9a,b). This was consistent with the statistically sig-
nificant downward trend in SpotFiberCh3 among the
well-segmented cell population (Figure 8a), but this mor-
phological change was not as strongly reflected in the
poorly segmented population (Figure 8b).

Discussion
Our review of segmented images of SK-BR-3 cells demon-
strated that a large number (more than one-half) of the
segmented objects in these images were of questionable
quality. These objects were either partial cell bodies, or
groups of multiple cells that had been inappropriately co-
segmented. Our training cell images suggest some likely
causes of this poor segmentation. First, SK-BR-3 cells

Variability in the well- and poorly-segmented populationsFigure 5
Variability in the well- and poorly-segmented populations. 
The absolute value of the coefficient of variation (ACV) was 
computed for each of the 116 morphological features, within 
well- and poorly-segmented populations from a representa-
tive set of DMSO-vehicle treated cultures. Each population 
contained approximately 3300–4000 cells. Features were 
sorted by their ACV in the well-segmented population for 
display purposes. The red line labelled "w" indicates ACV for 
features in the well-segmented population; the black line 
labelled "p" is ACV of the same features in the poorly seg-
mented population. The asterisks indicate the 7 features that 
were used in the SVM-RBF classifier. The overall similarity in 
ACV between the two populations indicates that the well-
segmented population retained significant biological variation 
of interest.
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tended to grow in closely spaced overlapping clusters of
cells. This growth pattern makes segmentation intrinsi-
cally difficult, and tended to cause to under-segmentation
(inappropriate merging of multiple cells). Second, it is
possible that we had non-optimal image segmentation
algorithm or parameter settings in our software. Non-
optimal algorithms or parameters could explain over- or
under-segmentation (inappropriate division of single
cells into multiple objects). However, we used test images
to optimize our segmentation parameters for our experi-
ments, so our parameter settings should represent reason-
able choices. Finally, variation in image quality in this
large screening dataset may have adversely affected our
image segmentation quality for some images. We did
observe some images that were of variable intensity, or
had poor focus. We expect that a combination of all three
of these causes (cell growth properties, limitations of our
segmentation algorithms, and variable image quality)
contributed to some extent to poor segmentation in our
dataset.

The segmentation challenges we observed are likely to be
present in other HCS datasets, not just ours. For example,
we expect that SK-BR-3 cells are not unique in their "HCS-
unfriendly" morphology. Other clinically relevant cell
lines also grow in similar patterns and therefore they may
also be challenging for current segmentation algorithms.
On the other hand, it is important to note that there are
cell lines that grow in more regular patterns. For example,
HeLa cells are regularly shaped and at appropriate densi-
ties can be relatively easy to segment. When we applied
our shape-based classifier to HeLa cultures, the fraction of
poorly segmented objects was much lower than in SK-BR-
3 (approximately ~10% versus > 50%, data not shown).
This demonstrates that the magnitude of the segmenta-
tion problem is very dependent on the cell type.

To address segmentation challenges in our SK-BR-3 cells,
we developed a post-processing filtration step that incor-
porated a multivariate object shape classifier. An obvious
alternative to our method of post-filtering of segmented

Examples of segmentation-sensitive and resistant cell-body featuresFigure 6
Examples of segmentation-sensitive and resistant cell-body features. Panels (A, B) show dose response of the KS statistic to the 
compound 17AAG, for the P2A feature in Channel 1, computed using only well-segmented cells (A), or only poorly segmented 
cells (B). A substantial difference is seen between the two responses for this "sensitive" feature. Panels (C, D) show dose 
response of KS statistic to the compound 5-FU, for the Average Intensity feature in Channel 3, computed using only well-seg-
mented cells (C), or only poorly segmented cells (D). The two dose responses are similar for this "resistant" feature.
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objects would be to improve the image segmentation
algorithm itself, so that more objects are correctly seg-
mented to begin with. Such an approach is certainly logi-
cal and should be pursued. But in practice, we and many
other HCS users use segmentation algorithms that are part
of software packages with limited scope for modification.
Hence, until routine segmentation can be made more
robust for cell lines like SK-BR-3, our approach appears to
have practical utility for users of commercial HCS systems.

Visual inspection of images from SK-BR-3 cultures sug-
gested that well-segmented objects tended to have similar
shapes and intensities. Cross-validated feature selection
and our independent test set confirmed that 7 image fea-
tures (2 intensity features, 4 cell body shape features, and

1 texture feature) optimally distinguished well- and
poorly-segmented objects from one another in our SVM-
RBF classifier. Of the features in our classifier, the shape
parameters are most likely to have similar distributions in
other cell types, and therefore generalize to the identifica-
tion of well segmented cells in other cell lines. The appli-
cability of our classifier to cell lines other than SK-BR-3
would need to be tested by re-evaluation of the filter on
other cell types.

To further understand the impact of the shape-based filter
on our data, we examined the sensitivity to segmentation
of all our morphological features in each of our four chan-
nels, corresponding to cell body, nucleus, actin, and tubu-
lin. We found that some features showed very different
dose responses to compounds in the well-segmented cell
population, compared to the poorly-segmented popula-
tion, while others showed similar dose responses in either
population. This was not surprising, since different types
of features in different channels reflect very different
measures of cellular morphology. However, the differ-
ences in the sensitivities of features to segmentation were
consistent with the methodology used to calculate those
features. Features that were direct measures of cell body
shape tended to be most different between well- and
poorly-segmented populations, consistent with the pres-
ence of 4 cell-body shape-based features in our classifier.
Nuclear staining quantitation was largely independent of
the cell body channel, and was correspondingly insensi-
tive to segmentation in the cell-body channel. Actin and
tubulin features that were quantitated inside the region
that was segmented in the cell-body channel had interme-

Effect of 17AAG on cell shapeFigure 7
Effect of 17AAG on cell shape. Grayscale images in Channel 
1 are shown. (A) Cells after exposure to low dose (0.02 pM) 
17AAG. (B) After exposure to high dose (35 nM) 17AAG. 
White overlay shows the segmented cell body regions.

Low dose 17AAG

A
High dose 17AAG

B

Table 3: Sensitivity of compound-feature combinations to cell segmentation

Resistant Sensitive Overall Sensitive %

Channel Feature Type

Ch1 arrangement 24 16 58%
dimension 16 94
intensity 32 18

shape 33 27
texture 14 6

Ch2 intensity 19 1 5%
Ch3 arrangement 6 14 47%

intensity 36 14
texture 26 33

Ch4 arrangement 10 20 46%
dimension 7 3
intensity 57 33

shape 2 8
texture 32 28

The dose response of each feature for each drug was fitted by a linear model, using either the well-segmented cell population, or the poorly-
segmented cell population. The discrepancy between the well- and poorly- segmented dose responses was calculated for each drug-feature 
combination, and drug-feature combinations were then binned as either sensitive to segmentation (if the discrepancy was larger than the grand 
median discrepancy) or resistant to segmentation (if the discrepancy was smaller than the grand median).
Page 9 of 13
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:340 http://www.biomedcentral.com/1471-2105/8/340
diate sensitivity to that segmentation. Finally, intensity
and texture features tended to be less sensitive to segmen-
tation than shape or dimension features, indicating that
those features might be more robust than shape features
in cases where cell-body segmentation is poor.

If a shape-based filter such as the one we describe is to be
useful, it is critical that it leads to demonstrable improve-
ments in data quality. To assess this we considered three
aspects of our data in well- and poorly-segmented popu-
lations.

First, we assessed overall variation in our data, pre- and
post- application of the shape filter, to determine if our fil-
ter reduced unwanted technical noise in the data, while
retaining variation of biological interest. A filter that
selected only (for example) G1-phase cells would reduce
variation in the filtered morphology data, but at the cost
of losing potentially valuable information from cells in
other phases of the cell cycle. We found that our shape-
based filter did not inappropriately reduce overall varia-
tion in most morphological features (Figure 5). This indi-
cated that the well-segmented population of cells that
passed our filter, retained variation of biological interest.

Second, we reviewed the DNA distributions of well- and
poorly-segmented populations. This revealed that the
poorly-segmented objects included a number of acellular
debris objects with little or no detectable DNA content
(Figure 4). These objects were largely eliminated by the
segmentation filter, leading to a clear improvement in the
quality of the cell population, by eliminating acellular
debris. This was achieved without inappropriate specific
loss of cells in any particular cell-cycle phase.

Finally, we queried the data for morphological features
that had significant dose responses to specific drugs, and
asked if the quantitative changes in those features in either
well-segmented or poorly-segmented populations, cap-
tured real qualitative changes as assessed by visual inspec-
tion of the cells. In the cell body channel, we found that
17-AAG at high dose tended to make cells round up, con-
sistent with a cell-cycle block around mitosis, or cell kill-

Effect of Herbimycin on actin fiber morphologyFigure 9
Effect of Herbimycin on actin fiber morphology. Grayscale 
images in Channel 3 are shown. (a) Cells after exposure to 
low dose Herbimycin. (b) After exposure to high dose Her-
bimycin. White overlays show the segmented actin fiber 
objects.

Low dose Herbimycin

A
High dose Herbimycin

B

Examples of segmentation-sensitive and resistant actin-channel featuresFigure 8
Examples of segmentation-sensitive and resistant actin-channel features. The dose response of the KS statistic to the com-
pound Herbimycin A, for the FiberCount feature in Channel 3, computed using only well-segmented cells (A), or only poorly 
segmented cells (B).
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ing. This qualitative change was somewhat subtle (Figure
7a,b), but it was reflected in a significant decrease in
perimeter-to-area ratio among well-segmented cells (Fig-
ure 6a). In contrast, this morphological change would not
have been clearly detected if the poorly-segmented cells
had been analyzed (Figure 6b). In the actin channel, a
similar trend was seen with the actin fiber count. Among
the well-segmented population, a significant decrease in
actin fiber count occurred after treatment with high-dose
Herbimycin (Figure 8a), as confirmed by visual inspection
of images (Figure 9), but this trend was attenuated when
only poorly-segmented cells were analyzed (Figure 8b).

Conclusion
Commercial HCS systems are powerful tools for the eluci-
dation of cellular morphology. One of the factors that can
limit the quality of HCS data is imperfect segmentation of
cells, especially in "HCS-unfriendly" cell lines. We have
shown that a shape-based SVM-RBF classifier can repro-
duce a human classification of well- and poorly-seg-
mented objects with 81% accuracy. Intensity and texture
features tended to be more resistant to poor cell segmen-
tation than shape or dimension features. Application of
the shape-based classifier as a data filter yielded quantifi-
able improvements in data quality. DNA content meas-
urements were cleared of a spurious debris signal, and
discrimination of visually-evident morphological changes
in cells was sharpened. These results highlight the impor-
tance of high-quality image segmentation in the analysis
of HCS data.

Methods
Cell culture
SK-BR-3 cells were cultured at 37C, 5% CO2 in RPMI 1640
medium supplemented with 10% fetal bovine serum.
5000 cells in a total volume of 40 uL were plated per well
of a 384 well black wall, clear bottom tissue culture plate
(Becton Dickenson cat#35326).

Compound treatment
A library of compounds was prepared in DMSO to a final
concentration of 10 mM except for Herbimycin A (pre-
pared at 1 mM). Compounds were diluted three fold seri-
ally down each column of a 384 well plate in DMSO. Four
microliters from the DMSO compound plate were trans-
ferred to a dilution plate containing 60 uL media per well.
An additional transfer of 8 uL from the dilution plate to
the assay plate containing cells in 40 uL media was made
for a total 96 fold dilution of compound. Cells were incu-
bated with vehicle or compound for 24 hours.

Fixation and staining for HCS
Prior to fixation, live cells were stained for 30 minutes by
adding 12 uL of 5 X CMFDA (Molecular Probes cat#
C7025) per well diluted in serum free media. Cells were

then washed with pre-warmed PBS on a Biotek Elx405
plate washer programmed to leave behind 20 uL per well.
20 uL of 2X (8%) paraformaldehyde in PBS were added
per well and fixation was allowed to proceed for 10 min-
utes. Cells were washed and permeabilized for 10 minutes
with PBS/0.2% Triton-X100. Cells were stained for 1 hour
with a 1:125 dilution of an anti beta-tubulin antibody
(BD Pharmingen cat# 556321) diluted in PBS/1% Goat
serum. Cells were then washed and stained for 1 hour
with a cocktail of a 1:200 dilution of an Alexa labelled sec-
ondary antibody (Molecular Probes goat anti-mouse
Alexa-647 cat# A21238), 4 U/mL Phalloidin Alexa-546
(Molecular Probes cat #A22283) for actin labelling, and
0.35 uM DAPI (Molecular Probes cat#D21490) diluted in
PBS/1% goat serum, for DNA labelling. Following stain-
ing, cells were washed and plates were sealed for auto-
mated fluorescent microscopy.

HCS image capture and processing
Cell images were captured in four channels using a 20X
objective on a Cellomics ArrayScan VTi system (Cel-
lomics, Pittsburgh, PA). The four channels corresponded
to the cell body CMFDA stain (Ch1), the nuclear DAPI
stain (Ch2), the actin stain (Ch3), and the tubulin stain
(Ch4). Cells were segmented and feature values were
computed from the 4-channel images by the Cellomics
Morphology Explorer BioApplication version 5.0. A con-
stant 20 fields per well were captured in autoexpose
mode. Object segmentation in the Morphology Explorer
BioApplication was done in each channel as described in
the following paragraphs. Also refer to Chapter 2 of the
Cellomics Morphology Explorer User Guide [12] for more
details about specific segmentation parameters described
below.

In Ch1 (cell body), isodata intensity thresholding was first
applied. In this histogram-based method, the intensity
threshold for objects is chosen by an iterative method so
that it is equal to the average of the mean of the pixel
intensities to the left of the threshold and the mean of the
pixel intensities to the right of the threshold. The resulting
threshold value was then multiplied by (1+IsoDataTh-
reshold), where IsoDataThreshold was set to -0.999. No
image smoothing was applied. After thresholding, water-
shed segmentation was applied to resolve overlapping
objects, with Cellomics parameters
ObjectSegmentationCh1 = 16, WatershedCh1 = 100.

In Ch2 (nucleus), isodata thresholding was applied in the
same way as for channel 1, except that the IsoDataThresh-
old parameter was set to -0.35. No image smoothing was
applied. To resolve nuclei, simple segmentation based on
typical nuclear radius parameter (Cellomics terminology:
MemberSegmentationCh2) of 6 pixels was done inside
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the region defined by the Ch1 object (Cellomics parame-
ter ObjectMaskModifierCh2 = 0).

In Ch3 (actin) and Ch4 (tubulin), 3-sigma intensity
thresholding was applied. In this method, the intensity
threshold for objects was set to 3 times the standard devi-
ation of the pixel intensities, multiplied by the factor
(1+3SigmaThreshold), where 3SigmaThrehold was set to
-0.988. No image smoothing was applied. After threshold-
ing, spots/fibers were identified by spatial variation filter-
ing with a half-width parameter (Cellomics terminology:
SpotFiberSizeCh3 and SpotFiberSizeCh4) of 1 pixel.
Objects were identified within the cytoplasmic region
defined by Ch1 cell body object (Cellomics Parameters:
ObjectMaskModifierCh3 = ObjectMaskModifierCh4 = 0)

A total of ~190 features were defined by the Morphology
Explorer application, including measures of object posi-
tion, orientation, intensity, size, shape, and texture. Of
these, we focused our attention on two subsets of primary
interest. First, for building classifiers, we considered the
subset of 116 features that had defined values for every
cell in our training set (feature data is available in addi-
tional file 1).

The calculation of morphological features is described in
the Cellomics Morphology Explorer BioApplication
Guide [12]. Here, we briefly describe nine features that
were used in the SVM-RBF classifier, or shown in our
results. Total intensity in Channels 2 and 3 was calculated
for each object by integrating the total intensity in objects
in these channels; average intensities in Channel 2 and 3
were the corresponding total intensities divided by the
number of pixels in the object. Spot Fiber Count in Chan-
nel 3 was the count of identified actin fiber objects in each
object. Convex hull to area ratio in Channel 1 was the
ratio of the area of the convex hull of an object, to the area
of the object. Convex hull perimeter ratio in Channel 1
was the ratio of the convex hull perimeter to the perimeter
of the object. Finally, if L and W are defined as the length
and width of the rectangle that bounds the cell body in
Channel 1, then P2A and FW in Ch1 were defined as fol-
lows [12]:

Note that the definition of P2A is such that a perfectly cir-
cular object would have P2A = 1. From its definition, FW

is also related to cell shape; as an object becomes more
elongated its FW would approach 0.

Definition of feature types
For the analysis of Table 3, we defined a subset of 57 of the
116 features used for building classifiers, by excluding
"status" features. These status features are integer flag var-
iables, which indicate that a specific morphological fea-
ture is inside or outside a user-defined range. For our
analysis of feature types these status features were not rel-
evant. We assigned a type to each of the 57 non-status fea-
tures to indicate what facet of cell morphology each
feature reflected: "intensity" for features that primarily
reflected the intensity of staining, "shape" for dimension-
less shape parameters, "texture" for intensity texture fea-
tures, "arrangement" for features indicating object
arrangement, and "dimension" for features related to
object size.

Calculation of Kolmogoroff-Smirnov statistics
As a statistical measure of changes in each morphological
feature, we used the Kolmogoroff-Smirnoff (KS) statistic
[13] to compare the distribution of each feature in a pop-
ulation of perturbed cells to the corresponding distribu-
tion in vehicle-treated cells on the same 96-well plate.
This controlled for inter-plate level technical variation in
the experimental process.

Measurement of the sensitivity of features to 
segmentation
To assess the sensitivity of morphological features to seg-
mentation, we fitted the dose-response of the KS statistic
for each feature to each compound by a linear ANOVA
model, using either well-segmented cells, or poorly-seg-
mented cells. Then, the error-weighted discrepancy D
between the fitted model from the well-segmented cell
population and that from the poorly-segmented popula-
tion was calculated as:

where yws was the fitted estimate from well-segmented
cells, yps was the estimate from poorly-segmented cells,
and SEws was the residual standard error of the ANOVA
model for the well-segmented cells. Hence D was a meas-
ure of how different the dose responses for each drug-fea-
ture combination were, if estimated from either well-
segmented cells alone, or poorly-segmented cells alone.
For the analysis of Table 3, drug-feature combinations
with D less than the median D of all drug-feature combi-
nations were called "resistant", and drug-feature combi-
nations with D greater than the median D were called
"sensitive".
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Data analysis software
Automated segmentation of images was carried out by the
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PA). Images were reviewed and manipulated using MAT-
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package (version 2.1.1, http://www.r-project.org).
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