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Abstract
We have used time-lapse imaging to study cisplatin-induced hair cell death in lateral line neuromasts
of zebrafish larvae in vivo. We found that cisplatin-induced hair cell death occurred much more
slowly than had been shown to occur in aminoglycoside-induced hair cell death. By prelabeling hair
cells with FM1-43FX, and assessing hair cell damage, it was established that cisplatin causes hair
cell loss in the lateral line in a dose-dependent fashion. The kinetics of hair cell loss during exposure
to different concentrations of cisplatin was also assessed and it was found that the onset of hair cell
loss correlated with the accumulated dose of cisplatin. These data demonstrate the feasibility and
repeatability of cisplatin damage protocols in the zebrafish lateral line and set the stage for future
evaluations of modulation of cisplatin-induced hair cell death.
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INTRODUCTION
Ototoxic injury to hair cells is well documented. Two of the most well described ototoxic agents
are aminoglycosides and cisplatin. Investigation of these two agents is both clinically
important, and may provide insights to general properties underlying hair cell death.
Developing damage protocols for these agents in models systems is thus an important step in
any research protocol.

While aminoglycosides are still frequently used globally due to their low cost, they are often
replaced with effective, albeit more expensive antibiotics such as fluoroquinolones. Cisplatin
and other platinum derivatives, on the other hand, are still common components of many
chemotherapeutic regimens, with no true alternatives available. Known to be effective against
a variety of adult and pediatric malignancies, the use of cisplatin is still limited by its well
known ototoxicity and nephrotoxicity (Reddel et al., 1982; Thompson et al., 1984).
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Cisplatin is known to cause hair cell death, with the outer hair cells showing greater
susceptibility than inner hair cells;the cisplatin derivative carboplatin is thought to cause
primarily inner hair cell death in some species (Takeno et al., 1994; Wake et al., 1993). Cisplatin
is also thought to have damaging effects on the stria vascularis, spiral ganglion cells, and
possibly the supporting cells of the inner ear (Saito and Aran 1994; Zheng et al., 1995; Campbell
et al., 1999; Cardinaal et al., 2000a; Ramirez-Camacho et al., 2004). While cisplatin is known
to bind DNA and form DNA adducts, causing cell death in mitotically active cells, in mitotically
quiescent hair cells it is generally felt that cisplatin induces cell death at least partly by
activating reactive oxygen species pathways (Campbell et al., 1996; Rybak et al., 1997;
Cardinaal et al., 2000b; Li et al., 2002;). Supporting this hypothesis is evidence that antioxidants
such as D-methionine, N-acetylcysteine, and ebselen are at least partially protective against
cisplatin-induced hair cell death in several species of mammals (Campbell et al., 1996; Rybak
et al., 1997; Saito et al., 1997; Rybak et al., 2007).

The zebrafish lateral line is emerging as a useful system for studying hair cells and hair cell
loss. Recent studies from our laboratory and others have focused on aminoglycoside-induced
hair cell death in the zebrafish (Williams and Holder 2000; Harris et al., 2003; Murakami et
al., 2003; Ton and Parng 2005; Santos et al., 2006; Owens et al., 2007). The zebrafish offers
several advantages to study mechanisms of hair cell toxicity. Like all aquatic vertebrates, they
have hair cells on the surface of the body in a sensory system known as the lateral line. These
hair cells are organized into clusters of 5–20 hair cells called neuromasts, and are located in
stereotypical locations on the head and along the body. Zebrafish lateral line hair cells exhibit
selective uptake of a variety of fluorescent vital dyes such as YO-PRO1 and FM1-43. The
mechanism FM1-43 uptake is likely through the nompC TRP channel (Sidi et al., 2003), while
the mechanism of YO-PRO1 uptake in hair cells is unknown. This selective uptake, combined
with the optical clarity of the body of young zebrafish allow for rapid in vivo assessment of
hair cell death. In addition, ototoxic and potentially protective compounds can be added directly
to water, so that precise dose –response curves can be constructed, and large numbers of hair
cells and animals can be assayed.

In this study, we sought to validate the use of larvae zebrafish as a model for investigating hair
cell death by studying the specificity of cisplatin toxicity to these hair cells. In addition we
sought to establish protocols for cisplatin damage to zebrafish lateral line hair cells. The results
provide evidence that: 1) Cisplatin-induced hair cell death occurs in a dose dependent fashion
in the zebrafish lateral line; 2) Cisplatin-induced hair cell death can be studied with time-lapse
fluorescence microscopy in vivo in this preparation and appears to occur slower than that
observed with aminoglycosides; and 3) Onset of hair cell death in the zebrafish lateral line
correlates with the cumulative dose of cisplatin delivered.

METHODS
All procedures described have been approved by the University of Washington Animal Care
and Use Committee.

Animals
Zebrafish (Danio rerio) embryos of the AB wildtype strain were produced by paired matings
of adult fish maintained at 28.5°C in the University of Washington zebrafish facility. Embryos
were maintained at a density of about 50 embryos per 100 mm2 petri dish in embryo media (1
mM MgSO4, 120 μM KH2PO4, 74 μM Na2HPO4, 1 mM CaCl2, 500 μM KCl, 15 μM NaCl,
and 500 μM NaHCO3 in dH2O). Beginning at 4 days post-fertilization (dpf), larvae were fed
live paramecia.
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Labeling protocols
For time-lapse imaging, live 5 dpf zebrafish larvae were immersed in 2 μM YO-PRO1
(Invitrogen; Y3603) in embryo media for 30 minutes, then rinsed three times in embryo media.
YO-PRO1 used in this fashion selectively labels hair cell nuclei of the lateral line (Santos et
al., 2006) and was used only for time-lapse imaging because it allowed better visualization of
nuclear changes. For selective labeling of hair cell cytoplasm, live 5 dpf zebrafish larvae were
exposed to 3 μM fixable FM1-43FX (Invitrogen; F-35355) for 30 seconds followed by three
rinses in embryo media. This labeling can be used as a vital dye alone or in conjunction with
other fluorophores. In addition it remains bright and specific to the cytoplasm of the hair cells
after fixation. After the various treatments with cisplatin and recovery periods (described
below), larvae labeled with FM1-43FX were fixed overnight in 4% paraformaldehyde at 4°C,
then rinsed in phosphate-buffered saline (PBS) and mounted in Fluoromount-G
(SouthernBiotech; 0100–01) for fluorescence microscopy (Figure 1).

Cisplatin damage protocols
Cisplatin solutions were prepared from powder (Sigma; 33422) in embryo medium. Five dpf
zebrafish larvae, prelabeled with FM1-43FX were exposed to cisplatin at concentrations of 0,
0.25 mM, 0.5 mM, 0.75 mM, 1 mM, and 1.5 mM for 4 hours. Doses were chosen empirically
in pilot studies by identifying high doses of cisplatin that caused hair cell death after short
durations without mortality of the zebrafish. For these studies, group sizes ranged from 10–15
fish. Fish were then fixed overnight at 4°C in 4% paraformaldehyde, rinsed in PBS, and
mounted in Fluoromount-G on 25×60mm coverslips for imaging. Hair cell counts were
determined using fluorescence microscopy to count intact FM1-43FX labeled hair cells from
the SO1, SO2, O1 and OC1 (Raible and Kruse 2000) neuromasts on one side of each fish.
These neuromasts were selected for cell counts due to their close proximity to one another and
their relative ease of imaging in our preparation. Previous work has demonstrated that there is
no significant differential sensitivity to aminoglycosides between neuromasts (Harris et al.,
2003). Fluorescence microscopy was performed using a Zeiss Axioplan II microscope. Hair
cells were counted as surviving if FM1-43FX labeling of the cytoplasm and plasma membrane
appeared intact without blebbing or fragmentation. Total hair cell counts were determined by
adding the hair cell counts from the four neuromasts. Hair cell survival as a percentage of the
control was calculated by dividing the total number of hair cells of each fish in the experimental
group by the mean total number of hair cells in a similarly treated control group.

Time-lapse microscopy
Live 5 dpf zebrafish larvae with hair cells prelabeled with YO-PRO1 were placed in a solution
of MS222 (3-aminobenzoic acid ethyl ester, methanesulfonate salt, Sigma) anesthetic (10 μg/
ml) with or without 1 mM cisplatin in embryo media. For neomycin time-lapse microscopy, 5
dpf larvae were placed in a solution of MS222 with or without 200 μM neomycin in embryo
media. A single larva was then placed in a droplet of the MS222/cisplatin or MS222/neomycin
solution encircled by vacuum grease on a 24× 60 mm No. 1.5 coverslip. A second coverslip
was then placed over the droplet to prevent evaporation. Larvae viability was assessed during
imaging by monitoring heartbeat. Zebrafish larvae prepared for imaging in this fashion remain
viable for greater than 4 hours. Time-lapse imaging was performed using an inverted
epifluorescent Zeiss Axiovert 200M microscope with an automated stage. In most cases
neuromasts were viewed with a 40X objective (N.A. = 0.75). Single images and z-series were
collected with Slidebook 4.0 software (Intelligent Imaging Innovations, Denver, CO).

Statistics
All values are presented as the mean ± 1 S.D. Statistical analyses were performed using one-
way ANOVA (VassarStats: faculty.Vassar.edu/lowry/VassarStats.html). Post-ANOVA
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pairwise analyses were performed using Tukey’s HSD test. Results were considered
statistically significant if p<0.05. Linear least squares regression was performed using
Microsoft Excel.

RESULTS
Dose response curve for cisplatin

We first tested whether zebrafish lateral line hair cells are killed by cisplatin in a dose-
dependent manner. Hair cells in zebrafish larvae at 5 days post-fertilization (dpf) labeled with
FM1-43FX were exposed to cisplatin concentrations ranging from 0.25–1.5 mM for 4 hours
and then immediately fixed. Figure 1 shows an example of FM1-43 FX labeled neuromasts
(OC1) in zebrafish fixed in paraformaldehyde in a control subject (A) and after exposure to 1
mM cisplatin (B) for four hours. There was no general toxicity or mortality at any of the doses,
and we did not detect toxicity to any other cell type on the animal's surface. Remaining hair
cells were counted in four identified neuromasts (SO1, SO2, O1, OC1; Raible and Kruse
2000). The results (means + 1 S.D.) of this experiment are shown in Figure 2. Hair cell survival
is expressed as a percentage of control animals without cisplatin. In normal animals at this age
these four neuromasts have 8(±2), 12(±2), 10(±3), and 7(±3), hair cells, respectively. We found
a robust, dose-dependent loss of hair cells in response to cisplatin.

Time-lapse imaging of cisplatin-induced hair cell loss
To follow the time course of hair cell loss by time-lapse microscopy, hair cells in neuromasts
of 5 dpf larvae were first incubated with YOPRO-1. OC1 neuromasts were imaged at 30-minute
intervals after initiating exposure to 1 mM cisplatin. A representative example is shown in
Figure 3. Morphologic changes of nuclear condensation and fragmentation suggestive of
apoptotic cell death are first seen after 30 minutes of treatment, and continue through the period
of imaging. It is important to note that control 5 dpf larvae zebrafish treated and imaged in the
identical manner without cisplatin exposure demonstrate no hair cell loss during the same time
period.

The rate of hair cell loss after cisplatin exposure is much slower than we previously determined
for lateral line hair cell loss after exposure to aminoglycoside antibiotics (Santos et al., 2006;
Owens et al., 2007). To compare the two treatments, we labeled hair cells with YO-PRO-1 and
followed loss after exposure to 200 μM neomycin, a dose resulting in near-total hair cell death
(Harris et al., 2003). An example is shown in Figure 4. Nuclear condensation is observed as
early as 5 min after treatment, and hair cell loss is essentially complete by 50 min of exposure
at this neomycin dose.

Relationship between dose and time
The relative delay in hair cell death with cisplatin treatment when compared to neomycin
exposure is consistent with previous studies that have suggested that cisplatin has cumulative
effects (Bokemeyer et al., 1998; Helson et al., 1978). We therefore evaluated the relationship
between cisplatin concentration and exposure time. Figure 5 shows the results of this analysis.
Fish at 5 dpf were continuously exposed to cisplatin doses between 0.05 and 1 mM
concentrations. Different groups of fish (N = 10 to 15 fish) were then examined at time intervals
between 1–12 hours. There was no mortality of larvae at any of the cisplatin doses or time-
points. As can be seen from Figure 5, both dose and time of exposure dramatically and
independently influence the amount of hair cell loss: low doses and longer times of exposure
are as effective at killing hair cells as high doses for shorter times.

The relationship between time of exposure and cisplatin concentration can be evaluated more
directly by calculating the exposure duration required to cause 50% hair cell loss, or t1/2. These
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data for cisplatin concentrations between 50 μM and 1 mM are shown in Table 1 and Figure
6. A linear regression was calculated for each cisplatin concentration. The resulting regression
was used to calculate the time required to produce 50% hair cell loss, t1/2. Table 1 provides the
estimates of rates of hair cell loss at each dosage and results of regression analyses. As shown
in Figure 6 the t1/2 plotted against cisplatin concentration on a logarithmic scale produced a
very tight linear function with an r2 of 0.97. Table 1 also suggests that once hair cell loss is
initiated (determined by the onset of hair cell loss on the dose-response curve), the rate of loss
appears independent of the concentration. The slopes of the hair cell loss functions are
consistent with a model where hair cells are lost once enough cisplatin has accumulated,
independent of dose or time.

Hair cell loss continues after withdrawal of cisplatin
To further assess the progression of hair cell loss after the initial cisplatin exposure, 5 dpf
zebrafish larvae were treated first with 1 mM cisplatin for 2 hours. Note that this is a dose of
cisplatin that causes extensive hair cell loss after 4 hours, but no significant hair cell loss at 2
hours (Figure 5). Some fish were then rinsed in embryo media and allowed to recover for 4 or
24 hours in embryo media before analysis. Data from these groups were compared to results
from control (untreated) fish, fish fixed immediately after treatment with 1 mM cisplatin for 2
hours (no recovery period), as well as fish continuously exposed to cisplatin for 6 hours. Hair
cell counts for approximately 10 fish per group were assessed by fluorescence microscopy.

Figure 7 compares the hair cell survival (percent of control) of these five groups. Hair cell
survival after 2 hours of cisplatin and 4 hours of recovery is significantly lower than survival
immediately after the 2 hour exposure to cisplatin, demonstrating that hair cell loss continues
after withdrawal of cisplatin (one-way ANOVA, p<0.01). Not surprisingly, hair cell survival
in the fish exposed to 2 hours of cisplatin followed by 4 hours of recovery is higher than that
of fish exposed to 6 hours of continuous cisplatin (one-way ANOVA, p<0.01). Hair cell
survival after 24 hours of recovery is not significantly different from hair cell survival after 4
hours of recovery, indicating that the majority of hair cell loss is complete after 4 hours of
recovery. These data suggest that cell death pathways triggered after 2 hours of cisplatin are
likely completed within 4 hours. Note, that while hair cell regeneration does occur in the lateral
line (Harris et al., 2003), since existing hair cells were pre-labeled with FM1-43FX prior to
cisplatin exposure and recovery, newly regenerated hair cells would not be fluorescently
labeled at the time of this analysis.

DISCUSSION
This study establishes that cisplatin causes repeatable and predictable damage to zebrafish
lateral line hair cells, defines the time course of hair cell loss, and demonstrates that the kinetics
of hair cell loss in response to low and high dose cisplatin follows a mathematically predictable
relationship. Recent work from our laboratory and others has established the zebrafish lateral
line as a model system for studying aminoglycoside-induced hair cell death (Harris et al.,
2003; Murakami et al., 2003; Ton and Parng, 2005; Linbo et al., 2006; Santos et al., 2006;
Owens et al., 2007). The present study provides additional support for the validity and utility
of the zebrafish lateral line as an accessible preparation for studying mechanosensory hair cell
death from a variety of challenges.

Time-lapse data from this study indicate that cisplatin damage occurs over a much longer time
period than neomycin damage. There are several possible reasons why the time course for
cisplatin-induced damage is slower. One mechanism might be different rates of uptake. While
the mechanisms of aminoglycoside uptake in hair cells is known to be rapid in mammalian
inner ear hair cells (Steyger et al., 2003) as well as zebrafish lateral line hair cells (Santos et
al., 2006), relatively little is known regarding the kinetics or mechanisms of cisplatin uptake
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by hair cells. In vitro, cisplatin is known to enter murine fibroblast cell lines at least partially
via the CTR1 copper influx transporter (Holzer et al., 2006). The CTR1 transporter is known
to be widely expressed in early stage zebrafish, although its specific expression in hair cell
membranes is not characterized (Mackenzie et al., 2002). Once uptake occurs, the mechanisms
of cell injury and death also likely differ between aminoglycosides and cisplatin. There is some
suggestion that neomycin and cisplatin act through different apoptotic pathways; e.g. Jun
kinase inhibition blocks neomycin but not cisplatin-induced hair cell death (Wang et al.,
2004; Ou et al., 2006). On the other hand, it should be noted that there is evidence that reactive
oxygen species play important roles in both aminoglycoside and cisplatin-induced hair cell
death (Hirose et al., 1997; Hirose et al., 1999; Sha and Schacht 2000; Cardinaal et al., 2000b;
Li et al., 2002; Minami et al., 2004). Finally, there may be different rates of clearance or
degradation in cells, which would influence whether toxicity is cumulative or acute.

Our data are consistent with a cumulative model for cisplatin-induced hair cell loss. Cisplatin
toxicity has been associated with peak plasma levels (Nagai et al., 1996) and with plasma area
under the concentration-time curve (Nagai and Ogata 1997) in cancer models of cisplatin
toxicity. Bokemeyer et al. (1998) studying patients with testicular cancer found that ototoxicity
correlated strongly with the cumulative dose of cisplatin. Since the lateral line hair cells are
external, it can be assumed that there is a constant extracellular concentration of cisplatin, and
thus the area under the curve is simply the concentration multiplied by the exposure time. The
data presented here demonstrate that low doses of cisplatin given continuously over a long
duration can cause equivalent amounts of hair cell loss as high doses delivered over shorter
durations. The t 1/2 (time required for 50% hair cell loss) did not correlate linearly with the
area under the curve, but did correlate well with concentration on a logarithmic scale (r2=0.97).
While not conclusive, this relationship is consistent with a drug accumulation model of cisplatin
damage in hair cells, where hair cell death is initiated once cisplatin uptake has exceeded a
critical intracellular concentration. In addition, based on the linear regression analysis in Table
1, once the first signs of hair cell death are apparent, the kinetics of hair cell loss are independent
of cisplatin concentration. This interpretation is supported by the similar rates of hair cell loss
once cell death had been initiated. This finding is significant in that it addresses concerns over
whether the surprisingly rapid hair cell death observed in the zebrafish lateral line is secondary
to exposure to unnaturally high drug levels, and possibly activation of other apoptotic or
necrotic cell death pathways. Our finding here that low and high dose cisplatin damage obey
predictable and similar hair cell death kinetics suggests that higher doses of cisplatin simply
result in earlier initiation of a cell death cascade. These more time-efficient, high dose, short
duration damage protocols may therefore be acceptable models for studying cisplatin-induced
hair cell damage in the zebrafish lateral line. This may be a particularly valuable model because
most in vivo mammalian preparations in which cisplatin-induced hair cell death is studied
require multiple days of cisplatin exposure (Cardinaal et al., 2000b; Li et al., 2002; Minami et
al., 2004). While the gold standard with respect to human health is clearly what happens in the
mammalian inner ear, development of more rapid damage protocols in zebrafish paves the way
for future high throughput investigations into modulation of cisplatin-induced hair cell death.

Caveats
While we believe that the zebrafish lateral line is a valuable system for studying hair cells and
hair cell loss, there are certainly drawbacks that must be kept in mind. In contrast to the inner
ear, hair cells of the lateral line have no stria vascularis or spiral ganglia, which are known
targets of cisplatin, nor are there compartmentalized fluids such as perilymph and endolymph.
In addition, while the basic mechanisms of hair cell sensitivity to cisplatin are likely to be
universal, lateral line hair cells are morphologically and physiologically much more similar to
vestibular than cochlear hair cells of the mammalian inner ear. Hence, to the extent that cisplatin
exposure differentially affects these two hair cell populations, we would expect results in this
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model system to be more predictable of the outcomes for vestibular epithelium. No
ultrastructural analysis is included here, however loss of FM1-43FX staining clearly correlates
well with actual HC loss, and nuclear staining with YO-PRO1 shows clear histologic findings
consistent with an apoptotic-like program of cell death (nuclear condensation and
fragmentation).

Conclusion
This study demonstrates the value of the zebrafish for studying hair cell death. Due to the
availability of large numbers of animal subjects, as well as the ease of hair cell assessment,
experiments with a large number of time-points and concentrations are possible. Access to hair
cells on the body surface allows precise determination of times of drug exposure. In addition,
this study demonstrates that while cisplatin-induced hair cell death appears to occur slower
than aminoglycoside-induced hair cell death in the zebrafish lateral line, fairly rapid (<4 hrs)
cisplatin damage protocols are feasible and useful. These experiments provide a baseline for
rapid and simple protocols to assess modulation of cisplatin-induced hair cell death in the
zebrafish lateral line.
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Figure 1.
FM1-43 FX labeled neuromast (OC1) in a fixed zebrafish. Zebrafish were prelabeled with 3
μM FM1-43 FX, fixed in 4% paraformaldehyde, then mounted for fluorescence microscopy.
Hair cells are easily counted in undamaged (A) and in neuromasts exposed to 1 mM cisplatin
for 4 hrs. (B). Scale bar = 10 μm.
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Figure 2.
Cisplatin dose response relationship. Five day post-fertilization (dpf) zebrafish were prelabeled
with FM1-43FX and then exposed to cisplatin for 4 hours. Fish were then fixed and hair cells
from four neuromasts (SO1, SO2, O1, OC1) were counted. Hair cell survival was calculated
as a percentage of the control group (not exposed to cisplatin). Data bars represent the mean
hair cell survival (n=10 fish per cisplatin dose) ± S.D.
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Figure 3.
Timelapse microscopy of hair cells from single neuromast (OC1) in a living zebrafish exposed
to cisplatin. Hair cell nuclei were prelabeled with YO-PRO1, exposed to 1 mM cisplatin, and
then imaged at 30 minute intervals. The first timepoint measured was at 5 minutes as this was
the time required to anesthetize and prepare the fish for timelapse imaging. Triangles indicate
fragmented nuclei. Arrows indicate condensed nuclei. The bottom three panels are images from
an unexposed control, demonstrating no significant hair cell loss over 240 minutes of imaging.
Scale bar = 10 μm.
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Figure 4.
Timelapse microscopy of hair cells from single neuromast (OC1) in a living zebrafish exposed
to neomycin. Hair cell nuclei were prelabeled with YO-PRO1, exposed to 200 μM neomycin,
and imaged at the labeled timepoints. The first timepoint measured was at 5 minutes as this
was the time required to anesthetize and prepare the fish for timelapse imaging. Note that as
early as five minutes there was already evidence of hair cell damage. Overall, morphologic
changes of hair cell death after neomycin treatment were seen much more rapidly than were
seen during cisplatin exposure in Figure 3. Triangles indicate fragmented nuclei. Arrows
indicate condensed nuclei. Scale bar = 10 μm.

Ou et al. Page 13

Hear Res. Author manuscript; available in PMC 2008 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Cisplatin hair cell survival curves with variable cisplatin doses. 5 dpf zebrafish larvae were
labeled with FM1-43FX and then exposed to cisplatin at 50 μM (solid line), 100 μM (— — —),
250 μM (---), 500 μM (— - —), and 1000 μM (— - - —). Fish were then removed after 1, 2,
4, 6, 8, and 12 hrs of continuous cisplatin exposure. Hair cell survival was calculated as a
percentage of the control group (not exposed to cisplatin). Data points represent the mean value
(n=10 fish, per concentration and timepoint) ± S.D.
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Figure 6.
Linear regression of time required to achieve 50% hair cell loss as a function of cisplatin
concentration (t1/2). Cisplatin concentration is plotted on a logarithmic scale. Data points were
calculated from linear regression functions from Table 1. Regression line depicted is
represented by the formula t1/2 = −5.5log(μM cisplatin) + 20 (r2 =0.97).
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Figure 7.
Hair cell survival after treatment with 1 mM cisplatin for 2 hours followed by variable recovery
periods. Data bars represent mean hair cell survival (n=10 fish) ± S.D. for each treatment
condition. After 2 hours of cisplatin (CDDP) and no recovery, there was minimal hair cell loss.
After 4 hours of recovery, there was progressive hair cell loss (one-way ANOVA, p<0.01).
Extending recovery for 24 hours resulted in no significant additional hair cell loss. Six hours
of continuous cisplatin showed additional damage compared to 2 hrs of cisplatin with 4 hours
of recovery (one-way ANOVA, p<0.01).
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Table 1
Kinetics of hair cell loss for variable cisplatin doses. T 1/2 represents the time in hours required to achieve 50%
hair cell loss based on linear regression analysis. The rate of hair cell loss once hair cell loss was initiated was
determined by linear regression of data points from Figure 5 and is shown as the slope of hair cell loss versus
time, or the percent hair cell loss per hour (r2).

Cisplatin concentration t1/2 % Total hair cells lost / hr (r2)

50 μM 11.6 hrs 9%/hr (0.84)
100 μM 9.6 hrs 9%/hr (0.90)
250 μM 8.5 hrs 11%/hr (0.67)
500 μM 5.6 hrs 18%/hr (0.83)
1000 μM 5.1 hrs 16%/hr (0.89)
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