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Background. The clinical attack rate of influenza is influenced by prior immunity and mixing patterns in the host population,
and also by the proportion of infections that are asymptomatic. This complexity makes it difficult to directly estimate R0 from
the attack rate, contributing to uncertainty in epidemiological models to guide pandemic planning. We have modelled
multiple wave outbreaks of influenza from different populations to allow for changing immunity and asymptomatic infection
and to make inferences about R0. Data and Methods. On the island of Tristan da Cunha (TdC), 96% of residents reported
illness during an H3N2 outbreak in 1971, compared with only 25% of RAF personnel in military camps during the 1918 H1N1
pandemic. Monte Carlo Markov Chain (MCMC) methods were used to estimate model parameter distributions. Findings. We
estimated that most islanders on TdC were non-immune (susceptible) before the first wave, and that almost all exposures of
susceptible persons caused symptoms. The median R0 of 6.4 (95% credibility interval 3.7–10.7) implied that most islanders
were exposed twice, although only a minority became ill in the second wave because of temporary protection following the
first wave. In contrast, only 51% of RAF personnel were susceptible before the first wave, and only 38% of exposed susceptibles
reported symptoms. R0 in this population was also lower [2.9 (2.3–4.3)], suggesting reduced viral transmission in a partially
immune population. Interpretation. Our model implies that the RAF population was partially protected before the summer
pandemic wave of 1918, arguably because of prior exposure to interpandemic influenza. Without such protection, each
symptomatic case of influenza would transmit to between 2 and 10 new cases, with incidence initially doubling every 1–
2 days. Containment of a novel virus could be more difficult than hitherto supposed.
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INTRODUCTION
Reports of past influenza pandemics show marked variation in

clinical attack rates between populations. In the 1918–19 H1N1

pandemic, rates of clinical illness were less than 20% in some

urbanised communities, but more than 60% in isolated communities

such as Western Samoa [1–4]. During the 1968 H3N2 pandemic,

attack rates in US households were limited to 30–40% [5], whereas

almost the whole population fell ill when the virus reached the

isolated island of Tristan da Cunha (TdC) in 1971 [6]. Biologically-

based models for pandemic influenza [1] that incorporate effects of

host immunity can help to explain such differences in observed

attack rates. Such models could also explain recurrent waves of

infection reported from 1918–19 [2–4] and 1968–71[6]. Higher

attack rates in isolated populations are most likely due to fewer past

exposures and lesser immune protection, leading to greater

susceptibility. Multiple waves could reflect rapid waning of immune

protection following exposure to a novel virus, antigenic drift [1,4],

seasonal influences on transmission of respiratory agents [7] or effects

of social interventions [8].

Our flexible model, which we here apply to outbreaks of H3N2

from 1968–71 [6] and H1N1 from 1918 [2], allows for the

possibility of asymptomatic infection [4,9–11], for pre-existing

immunity [4,9,10] and for the waning of immune protection and/

or antigenic drift over time [1,4,10–12]. As the immune response

cumulates following repeated exposure to seasonal variants of

influenza [4,12], and wanes thereafter, protection tends to be

stronger in populations with a history of more recent exposure [4].

Our results also suggest that pre-existing immunity, arguably

induced by prior exposure to inter-pandemic influenza, provided

short-lived protection against the new pandemic virus of 1918.

Such cross-reactive (heterosubtypic) immunity [4,12–14] could

also be important in protecting global populations against H5N1

or any other pandemic virus that might emerge.

METHODS

Approach
Epidemic curves from single wave outbreaks with low rates of

symptomatic influenza provide little or no information to separate

the effects of viral exposure (and hence magnitude of R0) from the
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effects of population immunity or asymptomatic infection. Any

arbitrary outbreak can arguably be explained by either high

intensity exposure (high R0) with a high level of prior immunity or

a high rate of asymptomatic infection, or alternatively by a low R0

with less immunity, or by appropriate intermediate combinations

[1]. Furthermore, measurement of subtype-specific antibody, as in

a number of household and challenge studies [5,10,15] does not

provide information about heterosubtypic immune protection

induced by prior exposure to other subtypes [10,13]. Multiple-

wave outbreaks can provide more information about the in-

teraction between influenza and the host immune system [1],

particularly if there is evidence of repeated attacks in some

individuals (See Appendix S1). Furthermore, as asymptomatic

infection can induce immunity [9,10], the time course of an

outbreak also provides some information about asymptomatic

infection. Accordingly, we have used data on the incidence of

symptomatic influenza in two multiple-wave outbreaks of

pandemic influenza, on different time-scales, to make inferences

about asymptomatic infection, pre-existing levels of immunity, and

the rate of change of immunity following exposure to a new

pandemic strain. We chose not to use mortality or hospital

admissions data because of the additional uncertainties arising

from changes in virulence and incomplete reporting.

Sources of data
The population of Tristan da Cunha, a remote island in the South

Atlantic, had been free of influenza for 8–9 years when H3N2 was

introduced by ship from South Africa in 1971[6]. The resulting

epidemic curve over 50 days was based on reports of cases by day

of symptom-onset. In two waves, 96% of the population of 284 fell

ill; there were 365 recorded attacks, of which 312 could be

identified with a precise day of onset. 273/284 islanders

experienced a first attack of influenza, and 92/284 experienced

a second attack. Most second attacks coincided with the second

population wave; a minority of individuals experienced a first (and

only) clinical attack during the second wave, possibly following

asymptomatic infection during the first wave. Second attacks were

generally less severe. Two elderly persons died [6]. To test the

flexibility of the model to evaluate multiple wave behaviour over

a longer time-frame, we also examined weekly reports of new cases of

influenza among 180,000 personnel in RAF camps, providing

apparently unbiased incidence rates for symptomatic influenza over

32 weeks of the summer and autumn waves of the 1918–19 UK

pandemic [2]; data for the third (winter) wave were unavailable

because of post-war demobilisation. The cumulative incidence of

clinical illness was only 25% over the two waves of illness, arguably

because some RAF personnel in the UK were protected because of

prior seasonal exposure to interpandemic influenza.

Basic epidemic model
Fig. 1 shows our extended SEIRS model [16]. After exposure to

influenza virus, susceptible hosts (S) pass through two sequential

exposed states (E1 and E2) of latent infection, providing flexibility in

the distribution of the estimated time spent in the infective and

symptomatic state (I) that follows. The model also allows for

individuals with asymptomatic or unreported infection (A). A key

model assumption is that these two types of infections (A and I) occur

in proportion, which ensures that model behaviour is independent of

the degree of infectiousness of asymptomatic (A) cases. For

mathematical simplicity, we may therefore consider the infectivity

of asymptomatic cases to be zero (See Appendix S1). (However, as A

cases become immune without being directly observed, the shape of

the incidence curve does provide information about the frequency of

A infections.) The recovered state (R) follows viral clearance from

both I and A states. Recovery is followed by longer-term immunity

(L) with formation or consolidation of ‘memory’ immune responses

in a proportion, or by a temporary state of protection or immunity

(T) in the more immunologically naive, before subjects again become

susceptible (S) to re-infection. The full parameter set and the relevant

differential equations for the model are described in Appendix S1.

To explain the results in this main paper, we define:

R0 = average number of secondary cases (I and A) from each

infectious case (I and A) if all contacts are susceptible. If

asymptomatic infections do not transmit, it is easy to see that R0

is the average number of secondary symptomatic and infectious

cases from each primary symptomatic and infectious case.

l= force of infection (See Appendix S1);

z = proportion of individuals susceptible (S) prior to the first

wave;

a= proportion of latent infections (E2) becoming infective

and symptomatic (I);

1–a= proportion of infections that are asymptomatic or

unreported (A);

2/c= Te = mean time in states of latent infection (E1 or E2);

2/w = Tw = mean time in resistant states (R or T);

1/u= Ti = mean time as I (infective) if symptomatic or as A if

asymptomatic;

r= proportion of resistant (R) developing longer-term

resistance (L);

Serial interval, doubling time and transmissions per

day
The mean generation time or serial interval for our SEIR model is

G = Te+Ti. The effective reproduction rate, Re, is defined as z.R0,

where z is the proportion initially susceptible. The initial doubling
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Figure 1. Flexible Influenza Model. Each compartment corresponds to a class of individuals in the population, and the arrows indicate the flows of
individuals from class to class over time. As a result of exposure to the force of infection (l), susceptible individuals (S) flow through two exposed
classes of latent infection (E1 and E2). A proportion (a) then become infective and symptomatic (I), and a proportion 1-a become asymptomatic (A).
Both I and A pass to the recovered class (R) from which a proportion r develop longer-lasting protection (L), while the remainder eventually return to
the susceptible class after passing through a temporary state (T).
doi:10.1371/journal.pone.0001220.g001

Influenza Transmission

PLoS ONE | www.plosone.org 2 November 2007 | Issue 11 | e1220



time (D) is related to R0 by the formula given in Roberts &

Heesterbeek [17]. The mean number of transmissions per day for

each transmitter in a fully susceptible population is estimated as

R0/Ti.

Model-fitting
We used MATLAB v7.3 to fit deterministic epidemic curves and

for Monte Carlo Markov Chain (MCMC) simulations to estimate

parameter distributions; we used the negative binomial distribu-

tion to calculate each likelihood [18]. For TdC we fitted a prior

distribution for the latent period (normal distribution with a mean

of 1.25 days and variance of (0.3)2 days) and serial interval (log

normal distribution with a mode of 2.6 days and variance of

(0.33)2 days), based on estimates from the literature [1,19–22]. We

also used stochastic simulation, conditional on deterministic

parameters, to fit the Tristan da Cunha observations, and

construct empirical likelihoods. For the RAF simulations we fixed

both Ti and Te. More details are provided in Appendix S1.

RESULTS

Epidemic curve for Tristan da Cunha in 1971
Fig. 2 shows the model fit and Table 1 summarises the

corresponding parameter estimates and credibility intervals. The

results indicate that about 84% of islanders were susceptible before

the outbreak began (z = 0.84, 95% credibility interval 0.62–0.99)),

as would be expected in a population that had been free of

influenza for 8–9 years. 96% of persons reported clinical influenza

in one or both waves [6]. Our model estimated that most islanders

were exposed twice and that almost all infections led to clinical

symptoms (a= 0.91, (0.72, 1.00)). Inferred exposures in the first

wave on TdC led to protection of very short duration (median

12 days), allowing the second wave to cause (milder) second

infections in some of those previously affected [6]. The estimated

median infective period was 0.98 days (0.30, 1.83), and R0 found

support in the range 3.73–10.69 (Table 1).

Epidemic curve for RAF Camps in 1918
Due to the weekly reporting of influenza in RAF camps, our MCMC

algorithm was unable to distinguish between a range of possible

solutions, leading to wide credibility intervals on the estimates for most

parameters (See Appendix S1). For this reason, we fixed the latent

period (Te) and mean infectious period (Ti) to the posterior median

estimates from the TdC run. Fig. 3 shows the model fitted to the

summer and autumn waves with Te = 1.3 days and Ti = 1.0 days.

Table 1 summarises relevant parameter estimates. The results indi-

cate that only some 51% of RAF personnel were susceptible prior to

the first wave (z = 0.51 (0.34, 0.65)), arguably because of recent

exposures to inter-pandemic influenza. Only 38% of exposures of

susceptible persons led to clinical symptoms (a= 0.38 (0.28, 0.60)). In

this case, inferred exposures led to temporary protection of about 68

(56, 95) days duration, thus accounting for the longer delay between

the summer and autumn waves (Fig. 3). Over the two waves, the

cumulative incidence of symptomatic attacks for RAF personnel was

only 24.7%. R0 found support in the range 2.26–4.28. The

assumption that all RAF personnel were initially susceptible led to

a significantly worse model fit, and if all infections were additionally

assumed to be symptomatic, the model was unable to adequately

reproduce observed epidemic behaviour (See Appendix S1).

Estimates of doubling time
Initial doubling times for influenza were estimated as 0.72 days on

Tristan da Cunha and 3.93 days in RAF camps. In fully

susceptible populations, the estimated doubling times would be

0.62 days and 1.25 days respectively.

Transmissions per day
For Tristan da Cunha, there were initially 5.59 (3.20, 13.33)

transmissions per day for each transmitter, corresponding to 6.76

(3.84, 16.35) if the population were fully susceptible. For RAF

personnel, the estimates were 1.46 (1.43, 1.50) and 2.88 (2.26,

4.28) per day respectively.
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Figure 2. Incidence data and fitted model for Tristan da Cunha. Observed and fitted (median parameters) incidences for the H3N2 outbreak on the
island of Tristan da Cunha in 1971 (cases per day, starting from 15th August). Error bars (+/2 one SD) are calculated using the negative binomial
variance (See Appendix S1).
doi:10.1371/journal.pone.0001220.g002
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DISCUSSION
Our flexible model explains multiple waves of influenza by

incorporating biological effects that have been overlooked in some

earlier pandemic models. The model allows for the possibility that

asymptomatic infection [4,9,10], pre-existing immunity, and waning

immunity or antigenic drift of the virus [4,9,10,12] could affect

transmission and disease, However, it should be emphasised that the

magnitudes of each effect in the fitted model were determined by the

data. Where an effect was missing or small, as with the low

proportion of Tristan da Cunha islanders with prior immunity, this

could be inferred from the parameter estimate (Table 1).

Seasonality [7] and social distancing measures [8,22,23] might

also explain multiple waves of influenza. However, it is unlikely

that seasonality alone can explain multiple waves occurring over

weeks to months in the absence of waning immunity, antigenic

drift and/or birth of new susceptibles. At least for seasonal

interpandemic influenza, seasonal forcing seems to determine the

timing of a new outbreak, whereas the magnitude is likely determined

by R0 and the proportion susceptible. Furthermore, as the first

wave of pandemic flu in 1918 in the UK was in summer and out of

season, it must have been triggered by ‘‘non-seasonal’’ factors (i.e.

new virus in a (partially) susceptible population). We cannot

exclude an effect of season on the timing of the second wave in

1918, nor can we exclude a role for social interventions in

explaining the gap between the first and second waves in 1918.

However, our inference that waning immunity can replenish the

Table 1. Parameters and summary statistics to explain influenza outbreaks with multiple waves.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Estimated quantity RAF camps (1918)* Tristan da Cunha (1971)*

R0 = average number of secondary cases from each primary case in a fully susceptible population 2.88 (2.26, 4.28) 6.44 (3.73, 10.69)

z = proportion susceptible before first wave 0.51 (0.34, 0.65) 0.84 (0.62, 0.99)

a= proportion of people with latent infections who develop symptoms 0.38 (0.28, 0.60) 0.91 (0.72, 1.00)

r= proportion of infections followed by longer-lasting protection 0.55 (0.41, 0.70) 0.49 (0.39, 0.57)

2/w = Tw = mean time (days) in temporarily resistant state after infection 68 (56, 95) 12 (9, 17)

2/c= Te = mean latent period (days) 1.30 (fixed) 1.36 (0.82, 1.87)

1/u= Ti = mean infective period (days) 1.00 (fixed) 0.98 (0.30, 1.83)

2/c+1/u = mean serial interval (days) 2.30 (fixed) 2.34 (1.56, 3.26)

Initial doubling time in fully susceptible population (days) 1.25 (0.85, 1.69) 0.62 (0.52, 0.73)

Initial doubling time in actual population (days) 3.93 (3.69, 4.19) 0.72 (0.63, 0.81)

Initial transmissions per day per transmitter in fully susceptible population 2.88 (2.26, 4.28) 6.76 (3.84, 16.35)

Initial transmissions per day per transmitter in actual population 1.46 (1.43, 1.50) 5.59 (3.20, 13.33)

*The 1918 pandemic is known to have been caused by H1N1; the 1971 outbreak on Tristan da Cunha was caused by H3N2.
Parameter values (median, 95% credibility intervals) were estimated by MCMC simulation (See Appendix S1). The estimate for the mean serial interval, the mean
doubling times and transmissions per day per transmitter were derived from the full MCMC distributions.
doi:10.1371/journal.pone.0001220.t001..
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Figure 3. Incidence data and fitted model for RAF. Observed and fitted (median parameters) incidences of influenza reported from RAF camps in UK
during the 1918 pandemic of H1N1 (cases per week, starting from week of June 8). Error bars (+/2 one SD) are calculated using the negative binomial
variance.
doi:10.1371/journal.pone.0001220.g003
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susceptible pool over time scales of months (RAF) or weeks (TdC)

is biologically plausible and arguably more parsimonious.

Asymptomatic influenza infections are known to be immunising

[9,10], which helps to explain why the clinical attack-rate does not

approach 100%, even in isolated, immunologically naı̈ve popula-

tions, as in Samoa and Alaska in 1918–19 [2–4], where expected

R0 would have been high. We estimated that about 59% of

infections of susceptible RAF personnel in 1918 were asymptom-

atic, compared with only 9% on TdC in 1971. This difference

suggests that the clinical attack rate was reduced in RAF personnel

by two mechanisms–firstly by a lower proportion of susceptibles,

and secondly by the higher proportion of infections in susceptible

persons that were asymptomatic or unreported. High rates of

asymptomatic infection [9,10] with the capacity for transmission

can also help to explain why chains of influenza transmission are

often unidentifiable in inter-pandemic years, particularly in urban

settings [4,9,11].

Our results suggest that prior immunity was important in

protecting against clinical attack in the 1918 H1N1 pandemic, but

do not explain the origins of that immunity. However, hetero-

subtypic immunity likely provides at least some protection against

influenza A of novel subtype [4,12–14,24,25] and specific

antibodies against a new subtype can develop even when the

inducing infection is asymptomatic [9]. We suggest that residual

heterosubtypic immunity from the previously circulating H2 or H3

(interpandemic) viruses [4,26] might account for the apparent lack

of susceptibility in many RAF personnel before the summer wave.

However, we cannot exclude the alternative possibility that the

H1N1 virus might have circulated in less virulent form in the

spring of 1918, as was suggested for the USA [27,28], and thus

immunized some individuals against later infection. Nevertheless,

the three waves seen in 1918–19, and our detailed model for the

first and second waves, suggest that pre-existing immunity was

often short-lived, as was the immunity induced by first exposure to

the novel virus. Unfortunately, we have no evidence that would

allow us to separate the effects of waning immunity from the effects

of antigenic drift of the 1918 pandemic virus.

One result from our Tristan da Cunha model could seem

counter-intuitive: exposure in the first wave did not always protect

against re-infection in the second wave several weeks later, and

protection apparently waned much more quickly than in the RAF

population (Fig. 2 and Table 1). Re-infections over similarly short

time-intervals have also been described in an institutional

population of young and susceptible naval apprentices [1,29]

and in other historical sources [2]. We have suggested [1] that

initial viral clearance, involving innate immunity and cytokines

[30], is not immediately followed by acquired immunity, especially

in persons with little recent experience of influenza, as on TdC,

where immune priming for influenza could have been absent or

immune memory lost.

Our analyses have provided an economical explanation for the

time course of the observed data in two contrasting outbreaks.

Rather than providing inconsistent evidence, we suggest that the

two outbreaks provide complementary evidence about how

‘‘immunity’’ to influenza can evolve over different time scales

from different starting points. The dynamics of multiple-wave

outbreaks on these different time-scales are at least partly due to

the past exposure history of the population. We did not expect,

and did not observe, comparable estimates for the waning time of

immunity in the RAF and TdC populations.

Our inferred values of 2–10 for R0 are consistent with some

reports [15,22,31,32] but are greater than some estimates used for

pandemic planning [20,33–35]. The marked difference in R0

between TdC and RAF populations (Table 1) is unlikely to be due

to differences between the H3N2 virus in 1971 and the H1N1

virus in 1918, because in an isolated UK boarding school

population, we found that the 1918 virus spread with an R0 of

6.90 (See Appendix S1). We suggest therefore that the R0

difference is partly determined by differences in levels of prior

immunity, arguably through reduced levels of viral shedding from

persons with partial immunity. Differences in social mixing or

stratification of the RAF population between different camps could

also contribute to a lower R0. We note that after the arrival of the

ship from South Africa there were welcome-home parties on TdC

that could have contributed to the explosive outbreak over the first

few generations of infection (6).

For the RAF outbreaks, with data reported only at weekly time

steps, there is little information to allow MCMC estimation to

separate the effects of changing serial interval from the effects of

changing R0; likewise it was difficult to make inferences about the

relative contributions of Te and Ti to the serial interval. Table 1

provides parameter estimates and credibility intervals for RAF

analyses where Te and Ti were fixed. RAF results were similar,

although less stable when Te and Ti were constrained only by the

priors on latent period and serial interval (See Appendix S1). For

TdC, with data reported daily, information on the latent period

can be extracted by the model, which is able to resolve the subtle

timing differences that arise from trading off Te and Ti. Pleasingly,

our posterior median latent period was consistent with our prior at

1.36 days.

The estimates for the latent period from TdC simulations (See

Appendix S1) are close to published estimates of mean incubation

period (time from exposure to onset of symptoms) of 1.48 [21] or

1.9 days [20], leaving a short time window before the onset of

symptoms during which a person could be infective for others.

Our estimate of median infective period (1.01 days for TdC) is

short compared with the duration of viral shedding [1,30], and

with some other estimates of mean infective period [22]. This

discrepancy suggests that the process of infecting other people can

be terminated by isolation of cases, or by exhaustion of susceptibles

in the local environment, as well as by a decline in viral shedding.

If substantial transmission occurs before the onset of symptoms, as

suggested by others [31], this would add to the difficulties of

controlling any new pandemic.

Our flexible model, with host immunity and asymptomatic

immunising infections as the constraints on observable disease

spread, adequately reproduces the observed epidemiology of

influenza in disparate populations, and leads to additional insights

into virus behaviour. Less flexible models can explain single wave

outbreaks with a range of R0 values, but have little capacity to

estimate immune effects [1]. Indeed, several reports have implied

that it is unimportant to distinguish between R0 and effective Re, as

it is the latter that largely determines the rate of population spread

[15,20,34]. However our model uses the additional information

from multiple wave outbreaks to draw stronger inferences about

immunity and asymptomatic infection, as well as R0 and mean

infective period.

What might our findings mean for pandemic planning? The

bad news is that the pandemic doubling time in a fully susceptible

population could be as short as 1 or 2 days, and that R0 for

a pandemic strain could be considerably higher than has been

assumed in some previous models [1]. However, the good news is

that high levels of pre-existing immunity could translate a high R0

into a much lower effective Re. Unfortunately, heterosubtypic

immunity, which can be short-lived, is likely induced more

effectively by recent infection with a live influenza virus than by

conventional sub-unit vaccines [14,24]. This raises the possibility

that inter-pandemic sub-unit vaccine, by preventing infection with

Influenza Transmission
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live inter-pandemic virus, could even make people more

susceptible to a novel pandemic virus. The bottom line is that

we need much more information about heterosubtypic immunity

in humans, and about the potential value of live-attenuated

influenza vaccines against H1N1 and H3N2 in protecting

populations against H5N1 or any other novel pandemic virus.

We await the results of relevant research with great interest.

SUPPORTING INFORMATION

Appendix S1

Found at: doi:10.1371/journal.pone.0001220.s001 (0.50 MB

PDF)
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