

NIH Public Access

Author Manuscript

Published in final edited form as: Tuberculosis (Edinb). 2007 July ; 87(4): 347-359.

Differential gene expression between Mycobacterium bovis and Mycobacterium tuberculosis

Germán Rehren^a, Shaun Walters^{b,1}, Patricia Fontan^b, Issar Smith^b, and Ana M. Zárraga^{a,*}

a Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.

b TB Center, The Public Health Research Institute of the New Jersey Medical School-UMDNJ, 225 Warren Street, Newark, NJ 07103, USA.

Summary

The high sequence identity among the Mycobacterium bovis and Mycobacterium tuberculosis genomes contrasts with the physiological differences reported between these pathogens, suggesting that variations in gene expression may be involved. In this study, microarray hybridization was used to compare the total transcriptome of *M. bovis* and *M. tuberculosis*, during the exponential phase of growth. Differential expression was detected in 258 genes, representing a 6% of the total genome. Variable genes were grouped according to functional categories. The main variations were found in genes encoding proteins involved in intermediary metabolism and respiration, cell wall processes, and hypothetical proteins. It is noteworthy that, compared to *M. tuberculosis*, the expression of a higher number of transcriptional regulators were detected in M. bovis. Likewise, in M. tuberculosis we found a higher expression of the PE/PPE genes, some of which code for cell wall related proteins. Also, in both pathogens we detected the expression of a number of genes not annotated in the *M. tuberculosis* H37Rv or *M. bovis* 2122 genomes, but annotated in the *M.* tuberculosis CDC1551 genome.

Our results provide new evidence concerning differences in gene expression between both pathogens, and confirm previous hypotheses inferred from genome comparisons and proteome analysis. This study may shed some new light on our understanding of the mechanisms relating to differences in gene expression and pathogenicity in mycobacteria.

Keywords

Mycobacterium bovis; Mycobacterium tuberculosis; Transcriptome; Gene expression; Microarray

Introduction

Mycobacterium bovis and *Mycobacterium tuberculosis* are closely related pathogens, responsible for bovine and human tuberculosis, respectively. Bovine tuberculosis is enzootic in most developing countries, causing great economic losses. Lately, this zoonosis has raised in importance within the HIV infected population.^{1,2} The *M. bovis* and *M. tuberculosis* genomes show 99.95% identity at the nucleotide level.³ However, distinct phenotypes,

^{*}Corresponding author. Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. Phone:

^{56-63-221907;} Fax: 56-63-221107. E-mail: anamariazarraga@uach.cl ¹Present address: Department of Microbiology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

virulence and host tropism differentiate both pathogens.⁴ Indeed, *M. bovis* has shown increased virulence upon infection in mice, rabbits, calves and guinea pigs.^{5,6} Moreover, it causes disease in bovines, humans and a broad range of mammals. In comparison, man is the main natural host of *M. tuberculosis*.^{1,4,7,8} The high genome sequence homology and the lack of species-specific genes for *M. bovis*, suggest that distinctive mechanisms of gene expression might be involved in determining the differences among these bacilli.³ Genome features such as deletions, SNPs and hypervariable regions are important sources for polymorphism, but their contribution needs to be correlated with gene expression studies in order to explain the differences observed. Transcriptional analysis using microarrays has become a useful tool to study whole-genome expression and to identify changes in gene expression in cells exposed to different environmental conditions.⁹ Using this approach, diversity in gene expression has recently been reported among clinical isolates of *M. tuberculosis*.¹⁰

In this work, we used microarray hybridization to compare the total *in vitro* transcriptome of *M. bovis* and *M. tuberculosis* H37Rv. Our aim was to get a global view on the differences of gene expression among these pathogens as a mean to identify the genetic basis for their distinct phenotypes.

Materials and methods

Bacterial strains and culture conditions

The *M. tuberculosis* H37Rv (ATCC 27294) and *M. bovis* Ravenel (TMC 401) strains were used throughout and all cultures were grown under the same conditions. Bacteria were grown in 7H9 broth supplemented with 10% ADS (0.5% bovine serum albumin, fraction V, 0.2% glucose and 0.085% NaCl) and 0.05% Tween 80. For *M. tuberculosis*, 0.2% glycerol was also added to the media, while for *M. bovis* the media was supplemented with 0.4% sodium pyruvate. Liquid cultures were maintained at 37° C in plastic bottles in a roller apparatus and optical density (OD₅₄₀) was registered daily to measure growth.

Isolation of bacterial RNA

To minimize variations in gene expression analysis, all cultures were collected at the same growth phase. To prepare bacterial RNA, procedures previously published were followed. ¹¹, ¹² Bacterial cell pellets were recovered from 30 ml of exponential phase culture (OD₅₄₀ ~0.25) by 3 min centrifugation and then quickly frozen on dry ice. Frozen pellets were then resuspended in 1 ml of TRI reagent (Molecular Research Center) and immediately transferred to a 2 ml screw cap microcentrifuge tube containing zirconia beads (0.1mm diameter). Samples were disrupted in a Mini-BeadBeater (BioSpec Products), and the RNA was extracted according to the TRI manufacturer's instructions. To remove residual DNA, samples were treated with TurboTM DNAse (Ambion) and cleaned up using RNeasy columns (Qiagen). The integrity of all RNA samples was checked by non-denaturing agarose gel electrophoresis, with RNA concentration quantified by spectrophotometry. RNA samples were kept at -80° C until further use.

DNA microarray analysis

The *M. tuberculosis* microarray chips used in these assays were printed at the Center for Applied Genomics at the Public Health Research Institute. This array consists of 4,295 70-mer oligonucleotides representing 3,924 predicted open reading frames of the *M. tuberculosis* H37Rv strain, 371 non-redundant probes designed to the *M. tuberculosis* CDC-1551 strain, and 25 controls. Microarray analyses were performed according to previously described protocols ¹³ with modifications. ¹⁴ cDNA was synthesized and fluorescently labeled by a direct procedure. Two micrograms of total RNA extracted from either *M. tuberculosis* or *M. bovis* was reverse transcribed in a reaction mix with a final concentration of 0.17 ug/ul random

hexamers, 0.96x first strand buffer, 9.6 mM DTT, 0.44 mM dATP, dCTP and dGTP, 0.02 mM dTTP, 0.06mM Cyanine 3 or Cyanine 5 dUTP and 9.4 units Superscript II. The combination of reaction mix and total RNA was incubated for 10 minutes at 25°C followed by 90 minutes at 42°C. The labeled cDNA probes were then purified and concentrated using the MinElute Cleanup kit (Qiagen). The total purified cDNA probe was added to the arrays in a hybridization solution containing a final concentration of 0.5 ug/ul tRNA, 2.0x SSC, 0.25% formamide and 0.1% SDS. For each array, cDNA prepared from the *M. tuberculosis* RNA was mixed with cDNA from *M. bovis*. The slides were covered by a flat 22×22 mm coverslip and hybridized in sealed hybridization chambers for sixteen hours at 50°C in a water bath.

Microarray data analysis

Microarray slides were scanned using a GenePix 4000A scanner (Axon Instruments). Images were processed and the fluorescent intensity of each spot was quantified using the GenePix Pro 4.0 software. Four independent biological replicates were analyzed for each strain, and one swap-dye experiment was included. Median intensity values were corrected by background subtraction and negative corrected intensities were set to +1.¹⁵ Further analysis was performed using GeneSpring 7.2 software (Silicon Genetics). Data was normalized using the locally weighted linear regression (Lowess) method, to remove the fluorescence-intensity dependent, dye-specific effect of low fluorescence intensity ratios were determined using normalized values and then log transformed. For each gene, the geometric mean was calculated from the intensity ratios of the four replicates and the resulting value was used to determine differences in mRNA abundance between both strains. Genes were classified as differentially expressed if they fulfilled both of the following criteria: a minimum 3-fold regulation difference and a *p*-value <0.05. Statistical significance of the chosen genes was verified by a *t*-test with the Benjamini Hochberg false discovery rate correction method¹⁷ implemented in GeneSpring.

The data discussed in this publication have been deposited in NCBIs Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series accession number GSE6889.

Reverse transcription and real time PCR

RT and PCR primers were designed with the Primer3 web software¹⁸ and purchased from IDT (Coralville, IA). Primer sequences used in this study are provided in supplementary Table S1. Reverse transcription was carried out at 60°C, using 100 ng of RNA, 0.3 µM antisense genespecific primers (including sigA control primer) and the RNA Transcriptor First Strand cDNA Synthesis Kit (Roche), in a final volume of 20 µl, following the manufacturer's instructions. Control reactions, lacking reverse transcriptase, were performed for every RNA sample. Real time PCR reactions were accomplished using a LightCycler instrument (Roche), in a total volume of 10 µl, using 2 µl of diluted cDNA, 0.3 µM gene-specific primers and the LightCycler FastStart DNA Master SYBR Green I kit (Roche). After 10 min at 90°C, the PCR program consisted in 40-45 cycles at 95°C for 6 s, 62°C for 8 s and 72°C for 8 s. Fluorescence was measured at the end of the extension step. Reactions were run in triplicate for each gene and the specificity of the PCR products was verified by gel electrophoresis and melting curve analysis. For every PCR run, a standard curve was performed using serial dilutions of chromosomal DNA and the corresponding gene-specific primer set. These standard curves were used by the LightCycler software to calculate the initial amount of mRNA for each gene tested in the different samples. In order to compare gene expression between M. bovis and H37Rv strain, calculated values for each gene were normalized to the corresponding sample's sigA mRNA value, 19 and normalized values were used to calculate the *M. bovis/M.* tuberculosis gene ratio.¹¹ Ratios from 3 biological replicates were then averaged to give a final fold difference value.

Results and Discussion

Several lines of evidence have supported the fact that although slight differences are found in the genome sequence of *M. tuberculosis* and *M. bovis*, the physiology and host range spectrum is different. Variations in transcript abundance, even minor changes, may cause distinctive adaptive responses to changes in environmental conditions. To identify differences in the pattern of gene expression among *M. tuberculosis* and *M. bovis*, we used here a chip with all annotated *M. tuberculosis* genes. The comparative transcriptome profile was determined for both strains, grown to mid-exponential phase.

The results show that out of 4,295 genes that were represented on the chip, 6 % were differentially expressed. Of these genes, 95 exhibited higher expression in *M. bovis* compared to *M. tuberculosis*, while 163 genes were more highly expressed in *M. tuberculosis* compared to *M. bovis*. The list of differentially regulated genes in *M. bovis* and *M. tuberculosis* are shown in Table 1 and Table 2, respectively. The difference in transcript abundance for some of the selected genes was further confirmed by RT-qPCR (Table 3). Variations in transcript abundance were higher in RT-qPCR compared to microarray results, but followed the same pattern. Similar results have been observed in previous reports.^{20,21}

Differentially regulated genes were grouped according to functional categories as described in TubercuList and BoviList (Table 4). The highest difference in gene expression was found in genes related to general metabolism, insertion sequences, hypothetical proteins and cell wall proteins. A significant proportion of genes coding for proteins associated with metabolic processes were identified for both pathogens. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG)²² to search for metabolic pathways assigned to these genes, we found that some of the differences observed within this category corresponded to genes encoding proteins related to amino acid, steroid and sugar metabolism. With the aim of support successful growth, the culture media was supplemented with different carbon sources. Keeping in consideration that this may have an effect on the expression of some genes, we particularly looked for variations on genes that are likely to be affected, such as the key glycolytic enzymes *glpK*, pykA and pdhA. Our results showed no significant differences using the 3-fold cut-off. On the other hand, Tween 80 was also added to both culture media. This oleic acid ester can be used as a carbon source in vitro by mycobacteria, and it has also been shown that fatty acids are the primary carbon source in vivo. ²³ Therefore, taking together this data, we consider that although different carbon sources may influence gene expression to some extent, the results presented in this paper are representative of the *in vitro* differences on gene expression between M. bovis and M. tuberculosis.

Interestingly, 20 % of the differentially expressed genes code for hypothetical proteins in *M. bovis* compared to 13.5% in *M. tuberculosis*. These results point to the need of assigning a function to these proteins, as they may be involved in determining the physiological differences described for both bacilli.

Within the category of cell wall proteins, 18 genes of the PE/PPE family were found to be higher expressed in *M. tuberculosis* compared to three genes identified in *M. bovis*. These genes code for surface exposed proteins involved in host-pathogen interactions.²⁴⁻²⁶ In addition, six ESAT6-like genes showed higher expression in *M. tuberculosis* whereas, in *M. bovis*, no increased expression of ESAT-6 genes was detected. Similar results were obtained in a previous report on proteome analysis that showed a differential pattern of expression for Rv2346c (esxO) and Rv3620c (esxW) between *M. bovis* (BCG) and *M. tuberculosis*.²⁷ The ESAT6-like proteins have been a focus of attention as they are highly immunogenic, secreted proteins capable of inducing a strong T cell response in the host.^{28,29} The observed polymorphism in

the expression pattern of genes encoding cell wall and secreted proteins correlates with the variation in their sequences and could be an important source of antigenic diversity.

The major difference in the secretome of both bacilli is the elevated expression in *M. bovis* of the two serodominant antigens MPB70 and MPB83.³⁰ Behr and colleagues have recently reported that in both bacilli the *mpb70/mpb83* genes are under the positive control of *sigK*. Lately, a mutation in the gene encoding anti-SigK has been shown to be responsible for the high level of expression of MPB70/MPB83 in *M. bovis*.^{31,32} Accordingly, in our array analysis *mpb70* showed the highest fold difference value. In addition, a higher expression was also found in *M. bovis* for the gene *mpb83* and the neighboring genes *dipZ* and Mb2901. The orthologous genes in *M. tuberculosis* have been described as part of a putative operon.³³ Recent data showed that these genes are members of the SigK-RskA regulon.³² Interestingly, although the expression of *mpb70* and *mpb83* is low in *M. tuberculosis*, it greatly increases upon macrophage infection,^{32,34} suggesting an important *in vivo* function.

A distinctive pattern of expression was also observed for the genes encoding for the phosphatespecific transport (Pst) system. This system comprises a periplasmic phosphate-binding protein (PstS), two transmembrane channel-forming proteins (PstA and PstC) and a cytoplasmic ATP binding protein (PstB) that probably interacts with PstA-PstC. The cluster of genes encoding for these proteins is formed by three putative operons: *pstS3/pstC2/pstA1*, *pstS2/pknD* and *pstB/pstS1/pstC1/pstA2*.^{35,36} Interestingly, we observed a higher expression of the *pstS1/ pstC1/pstA2* operon in *M. tuberculosis*, whereas the *pstS3/pstC2/pstA1* genes were increased in *M. bovis*. Another gene highly expressed in *M. tuberculosis*, *pknD*, is a pseudogene in *M. bovis*, thought to be involved in phosphate transport regulation.³⁷ Thus, these results suggest the use of different mechanisms controlling the transport of phosphate in each bacteria.

The family of genes involved in lipid metabolism and cell wall composition are of particular relevance as their proteins have been related to *M. tuberculosis* pathogenesis. In *M. bovis*, a higher expression was found for *fadD26* and the *ppsA-D* genes, which codes for fatty-acid-coA ligase and polyketide synthases, respectively. These enzymes are involved in phtiocerol dimycocerosate (PDIM) and phenolphtiocerol glycolipids (PGLs) biosynthesis.^{38,39} PGLs are not produced by most strains of *M. tuberculosis*, includin H37Rv and CDC1551 strains, due to a frameshift mutation in the *pks1* gene.⁴⁰ Noteworthy, some strains of *M. tuberculosis* that produce PGLs display a hypervirulent phenotype,^{41,42} thus, supporting the role of these lipids in mycobacteria pathogenesis. Moreover, *fadD26* and *ppsA-E* genes have been associated with virulence by signature-tagged transposon mutagenesis and bioinformatics analyses.^{43,44} We also detected an increased expression in *M. tuberculosis* of two clusters of genes with similar organization: *pks4/papA3/mmpL10* and *mmpL8/papA1/pks2*. The *pks2* and *mmpL8* genes codes for a polyketide synthase and a lipid transporter, respectively. Both genes are required for the biosynthesis and transport of SL-1, a sulfolipid found exclusively in *M. tuberculosis* and thought to be implicated in host-pathogen interactions.^{45,46}

Special attention was given to transcriptional regulators as they play a crucial role in the survival of the mycobacteria. Within this group, we observed higher expression for the *M. tuberculosis* Rv2160c and Rv0232 genes, which code for putative transcriptional regulators of the TetR/AcrR-family. In contrast, seven transcriptional regulatory genes were differentially expressed in *M. bovis*. Among these, *whiB6* exhibited the highest degree of difference (30.5-fold). This gene is markedly up-regulated in *M. tuberculosis* cultured under SDS, ethanol, heat-shock or oxidative stress conditions.⁴⁷ Due to the high expression observed for whiB6 and keeping in mind that minor changes in the expression of transcriptional regulators may cause significant changes to the phenotype, we searched for the other members of the *whiB* family. The data showed that in *M. bovis, whiB3* and *whiB4* expression were close to the cut-off level (2.7 and 2.8 fold difference, respectively). Whereas, in M. *tuberculosis*, a similar result was

observed for *whiB1* (2.6 fold difference). These results support the view that differential gene regulation might contribute to the physiological differences observed between these pathogens.

The presence of several deletions in one genome relative to the others have been proposed as key features for evolution in members of the *M. tuberculosis* complex.^{4,48} We detected the expression of 31 genes annotated in the RD 4, 5, 6, 7, 8, 9, 10, 11 and 13 regions, present in *M. tuberculosis* but deleted in the *M. bovis* genome. These groups of genes include potential candidates for virulence factors and phenotype variation such as phospholipase C, prophages, ESAT-6 and PE family of proteins. In comparison, the expression of five genes in the RvD regions 1, 2 and 5, were detected in *M. bovis*. These genes code for a trans-membrane transporter protein, two hypothetical proteins, a molybdenum cofactor biosynthesis protein and a putative transcriptional regulator. Further research is needed to assess the role of the deleted regions in the physiology of the pathogen. So far, only two deletions have been attributed function across the *M. tuberculosis* complex; RD1 plays a key role in the attenuation of BCG, ⁴⁹ while Wilkinson and colleagues recently described loss of RD750 as being involved in host interaction of the EAI clade of *M. tuberculosis.*⁵⁰

An unexpected result was the finding of expression for some genes annotated in the M. tuberculosis CDC1551 genome whose annotation was missing from the M. bovis or M. tuberculosis H37Rv genomes. These genes hybridized to a set of probes designed for CDC1551 open reading frames. BLAST analysis of the probes sequences showed no significant identity with the annotated coding sequences of *M. bovis* and *M. tuberculosis* H37Rv genomes. Similar results were previously found at the proteome level by analysis of H37Rv supernatant proteins. 27 One of the identified genes with higher expression in *M. bovis* is MT2941. This gene is located between mpb83 and dipZ, which suggest it might be co-transcribed as part of the mpb83/Mb2901 region. A previous report has shown that when comparing CDC1551 and H37Rv strain, important differences where found in gene prediction due to sequence polymorphism.⁵¹ In this respect, we detected a high expression in *M. bovis* of MT1812, a gene absent in *M. tuberculosis* H37Rv and non-predicted in *M. bovis* 2122. Although the genes detected in our study were not included in the re-annotation of the *M. tuberculosis* H37Rv genome,⁵² the data presented here suggests that gene prediction approaches used in the annotation of the *M. tuberculosis* H37Rv and *M. bovis* 2122 genomes have overlooked some coding sequences and hence, their annotation needs to be updated.

A 15 % variation in gene expression among *M. tuberculosis* clinical isolates¹⁰ has been previously reported. Due to differences in the experimental approach, it is not feasible to directly compare that report with our data. However, a similar tendency in the distribution pattern of differentially expressed genes can be depicted across functional categories.

The transcriptional analysis presented in this work showed a good correlation with previously reported differences at the proteome level and with differences predicted by comparative genomics, which supports the validity of our study. Mutational studies will help to understand the particular contribution of variable genes in the mechanisms underlying the differences between both pathogens.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We would like to thank Alejandro Araya (C.N.R.S., Bordeaux Cedex, France) for his helpful comments and review of the manuscript. We also thank Eugenie Dubnau (TB Center, P.H.R.I) for valuable discussions and Saleena Ghanny (CAG, P.H.R.I), for her advice with microarray processing. This work was funded by FONDEF grant D02I1111

(awarded to A.M.Z.) and NIH grant HL068513 (awarded to I.S.). G.R. was supported by MECESUP AUS0006 fellowship and DID-UACH grant D2004-08.

References

- 1. Grange JM. Mycobacterium bovis infection in human beings. Tuberculosis (Edinb) 2001;81:71–77. [PubMed: 11463226]
- Grange JM, Daborn C, Cosivi O. HIV-related tuberculosis due to Mycobacterium bovis. Eur Respir J 1994;7:1564–1566. [PubMed: 7995382]
- Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, Simon S, Harris B, Atkin R, Doggett J, Mayes R, Keating L, Wheeler PR, Parkhill J, Barrell BG, Cole ST, Gordon SV, Hewinson RG. The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci U S A 2003;100:7877–7882. [PubMed: 12788972]
- 4. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 2002;99:3684–3689. [PubMed: 11891304]
- Dunn PL, North RJ. Virulence ranking of some Mycobacterium tuberculosis and Mycobacterium bovis strains according to their ability to multiply in the lungs, induce lung pathology, and cause mortality in mice. Infect Immun 1995;63:3428–3437. [PubMed: 7642273]
- Medina E, Ryan L, LaCourse R, North RJ. Superior virulence of Mycobacterium bovis over Mycobacterium tuberculosis (Mtb) for Mtb-resistant and Mtb-susceptible mice is manifest as an ability to cause extrapulmonary disease. Tuberculosis (Edinb) 2006;86:20–27. [PubMed: 16253563]
- 7. Collins DM. Virulence factors of Mycobacterium bovis. Tuberculosis (Edinb) 2001;81:97–102. [PubMed: 11463229]
- Cosma CL, Sherman DR, Ramakrishnan L. The secret lives of the pathogenic mycobacteria. Annu Rev Microbiol 2003;57:641–676. [PubMed: 14527294]
- Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE 3rd. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 2004;279:40174–40184. [PubMed: 15247240]
- Gao Q, Kripke KE, Saldanha AJ, Yan W, Holmes S, Small PM. Gene expression diversity among Mycobacterium tuberculosis clinical isolates. Microbiology 2005;151:5–14. [PubMed: 15632420]
- Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M, Smith I. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 2006;60:312–330. [PubMed: 16573683]
- Manganelli R, Voskuil MI, Schoolnik GK, Smith I. The Mycobacterium tuberculosis ECF sigma factor sigmaE: role in global gene expression and survival in macrophages. Mol Microbiol 2001;41:423–437. [PubMed: 11489128]
- Wilson M, DeRisi J, Kristensen HH, Imboden P, Rane S, Brown PO, Schoolnik GK. Exploring druginduced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci U S A 1999;96:12833–12838. [PubMed: 10536008]
- Schoolnik GK, Voskuil MI, Schnappinger D, Yildiz FH, Meibom K, Dolganov NA, Wilson MA, Chong KH. Whole genome DNA microarray expression analysis of biofilm development by Vibrio cholerae O1 E1 Tor. Methods Enzymol 2001;336:3–18. [PubMed: 11398407]
- 15. Mostowy S, Cleto C, Sherman DR, Behr MA. The Mycobacterium tuberculosis complex transcriptome of attenuation. Tuberculosis (Edinb) 2004;84:197–204. [PubMed: 15207489]
- Quackenbush J. Microarray data normalization and transformation. Nat Genet 2002;32(Suppl):496– 501. [PubMed: 12454644]
- 17. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B 1995;57:289–300.
- Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000;132:365–386. [PubMed: 10547847]

- Dubnau E, Fontan P, Manganelli R, Soares-Appel S, Smith I. Mycobacterium tuberculosis genes induced during infection of human macrophages. Infect Immun 2002;70:2787–2795. [PubMed: 12010964]
- Talaat AM, Howard ST, Hale Wt, Lyons R, Garner H, Johnston SA. Genomic DNA standards for gene expression profiling in Mycobacterium tuberculosis. Nucleic Acids Res 2002;30:e104. [PubMed: 12384606]
- 21. Butcher PD. Microarrays for Mycobacterium tuberculosis. Tuberculosis (Edinb) 2004;84:131–137. [PubMed: 15207482]
- 22. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27–30. [PubMed: 10592173]
- 23. Keating LA, Wheeler PR, Mansoor H, Inwald JK, Dale J, Hewinson RG, Gordon SV. The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth. Mol Microbiol 2005;56:163–174. [PubMed: 15773987]
- Banu S, Honore N, Saint-Joanis B, Philpott D, Prevost MC, Cole ST. Are the PEPGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol Microbiol 2002;44:9–19. [PubMed: 11967065]
- 25. Brennan MJ, Delogu G. The PE multigene family: a 'molecular mantra' for mycobacteria. Trends Microbiol 2002;10:246–249. [PubMed: 11973159]
- Brennan MJ, Delogu G, Chen Y, Bardarov S, Kriakov J, Alavi M, Jacobs WR Jr. Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells. Infect Immun 2001;69:7326–7333. [PubMed: 11705904]
- Mattow J, Schaible UE, Schmidt F, Hagens K, Siejak F, Brestrich G, Haeselbarth G, Muller EC, Jungblut PR, Kaufmann SH. Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. Electrophoresis 2003;24:3405–3420. [PubMed: 14595687]
- Brodin P, Rosenkrands I, Andersen P, Cole ST, Brosch R. ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol 2004;12:500–508. [PubMed: 15488391]
- Sorensen AL, Nagai S, Houen G, Andersen P, Andersen AB. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun 1995;63:1710–1717. [PubMed: 7729876]
- Hewinson RG, Michell SL, Russell WP, McAdam RA, Jacobs WR Jr. Molecular characterization of MPT83: a seroreactive antigen of Mycobacterium tuberculosis with homology to MPT70. Scand J Immunol 1996;43:490–499. [PubMed: 8633206]
- Charlet D, Mostowy S, Alexander D, Sit L, Wiker HG, Behr MA. Reduced expression of antigenic proteins MPB70 and MPB83 in Mycobacterium bovis BCG strains due to a start codon mutation in sigK. Mol Microbiol 2005;56:1302–1313. [PubMed: 15882422]
- 32. Said-Salim B, Mostowy S, Kristof AS, Behr MA. Mutations in Mycobacterium tuberculosis Rv0444c, the gene encoding anti-SigK, explain high level expression of MPB70 and MPB83 in Mycobacterium bovis. Mol Microbiol. 2006
- Juarez MD, Torres A, Espitia C. Characterization of the Mycobacterium tuberculosis region containing the mpt83 and mpt70 genes. FEMS Microbiol Lett 2001;203:95–102. [PubMed: 11557146]
- 34. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK. Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. J Exp Med 2003;198:693–704. [PubMed: 12953091]
- 35. Torres A, Juarez MD, Cervantes R, Espitia C. Molecular analysis of Mycobacterium tuberculosis phosphate specific transport system in Mycobacterium smegmatis. Characterization of recombinant 38 kDa (PstS-1). Microb Pathog 2001;30:289–297. [PubMed: 11373123]
- 36. Lefevre P, Braibant M, de Wit L, Kalai M, Roeper D, Grotzinger J, Delville JP, Peirs P, Ooms J, Huygen K, Content J. Three different putative phosphate transport receptors are encoded by the Mycobacterium tuberculosis genome and are present at the surface of Mycobacterium bovis BCG. J Bacteriol 1997;179:2900–2906. [PubMed: 9139906]

- Peirs P, Parmentier B, De Wit L, Content J. The Mycobacterium bovis homologous protein of the Mycobacterium tuberculosis serine/threonine protein kinase Mbk (PknD) is truncated. FEMS Microbiol Lett 2000;188:135–139. [PubMed: 10913696]
- Azad AK, Sirakova TD, Fernandes ND, Kolattukudy PE. Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J Biol Chem 1997;272:16741–16745. [PubMed: 9201977]
- 39. Camacho LR, Constant P, Raynaud C, Laneelle MA, Triccas JA, Gicquel B, Daffe M, Guilhot C. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 2001;276:19845–19854. [PubMed: 11279114]
- 40. Constant P, Perez E, Malaga W, Laneelle MA, Saurel O, Daffe M, Guilhot C. Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated phydroxybenzoic methly esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J Biol Chem 2002;277:38148–38158. [PubMed: 12138124]
- Reed MB, Domenech P, Manca C, Su H, Barczak AK, Kreiswirth BN, Kaplan G, Barry CE 3rd. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 2004;431:84–87. [PubMed: 15343336]
- 42. Tsenova L, Ellison E, Harbacheuski R, Moreira AL, Kurepina N, Reed MB, Mathema B, Barry CE 3rd, Kaplan G. Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J Infect Dis 2005;192:98– 106. [PubMed: 15942899]
- Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 1999;34:257–267. [PubMed: 10564470]
- Zubrzycki IZ. Analysis of the products of genes encompassed by the theoretically predicted pathogenicity islands of Mycobacterium tuberculosis and Mycobacterium bovis. Proteins 2004;54:563–568. [PubMed: 14748003]
- Converse SE, Mougous JD, Leavell MD, Leavy JA, Bertozzi CR, Cox JS. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci U S A 2003;100:6121–6126. [PubMed: 12724526]
- 46. Sirakova TD, Thirumala AK, Dubey VS, Sprecher H, Kolattukudy PE. The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis. J Biol Chem 2001;276:16833–16839. [PubMed: 11278910]
- 47. Geiman DE, Raghunand TR, Agarwal N, Bishai WR. Differential Gene Expression in Response to Exposure to Antimycobacterial Agents and Other Stress Conditions among Seven Mycobacterium tuberculosis whiB-Like Genes. Antimicrob Agents Chemother 2006;50:2836–2841. [PubMed: 16870781]
- Gordon SV, Brosch R, Billault A, Garnier T, Eiglmeier K, Cole ST. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 1999;32:643–655. [PubMed: 10320585]
- Pym AS, Brodin P, Brosch R, Huerre M, Cole ST. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 2002;46:709–717. [PubMed: 12410828]
- 50. Newton SM, Smith RJ, Wilkinson KA, Nicol MP, Garton NJ, Staples KJ, Stewart GR, Wain JR, Martineau AR, Fandrich S, Smallie T, Foxwell B, Al-Obaidi A, Shafi J, Rajakumar K, Kampmann B, Andrew PW, Ziegler-Heitbrock L, Barer MR, Wilkinson RJ. A deletion defining a common Asian lineage of Mycobacterium tuberculosis associates with immune subversion. Proc Natl Acad Sci U S A 2006;103:15594–15598. [PubMed: 17028173]
- 51. Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, Hickey E, Kolonay JF, Nelson WC, Umayam LA, Ermolaeva M, Salzberg SL, Delcher A, Utterback T, Weidman J, Khouri H, Gill J, Mikula A, Bishai W, Jacobs Jr WR Jr. Venter JC, Fraser CM. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 2002;184:5479–5490. [PubMed: 12218036]

52. Camus JC, Pryor MJ, Medigue C, Cole ST. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 2002;148:2967–2973. [PubMed: 12368430]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

 Table 1

 Genes with higher expression level in *M. bovis* compared with *M. tuberculosis* H37Rv

Predicted function	Conserved hypothetical protein Probable oxidoreductase Probable acyl-coa dehydrogenase Conserved hypothetical protein Posible transcriptional regulatory protein Conserved hypothetical protein Posible transcriptional regulatory protein Hypothetical protein Hypothetical protein Hypothetical protein	Inought to be involved in host cell invasion Thought to be involved in host cell invasion Probable galactose I-phosphate uridyl transferase Probable dehydrogenase/reductase Probable dehydrogenase/reductase Probable protease II (oligopeptidase b) Probable protease II (oligopeptidase b) Probable protease II (oligopeptidase b) Probable monoxygenase Periplasmic phosphate-binding lipoprotein Phosphate-transport integral membrane ABC transporter Phosphate-transport integral membrane ABC transporter Phosphate-transporter Phosphate-transporter Phosphate-transporter Phosphate-transporter Phosphate-transporter Phosphate-transporter Phosphate-tr	Probable omithine carbamoyltransferase Probable conserved transmembrane transport protein Probable cuinase Hypothetical protein Conserved hypothetical protein Conserved hypothetical protein Possible conserved membrane protein Possible conserved membrane protein Possible conserved membrane protein Possible conserved membrane protein Probable nicotinate-nucleotide adenylyltransferase Probable nicotinate-nucleotide adenylyltransferase Probable nicotinate-nucleotide adenylyltransferase Probable nicotinate-nucleotide adenylyltransferase Probable conserved transmembrane protein Probable conserved transmembrane protein Probable conserved transmembrane protein Possible transcriptional regulatory protein Possible transcriptional regulatory protein Possible transcriptional regulatory protein Possible acyl-coa dehydrogenase Cell surface lipoprotein Possible membrane cytochrome biogenesis protein Major secreted immungenic protein
RvD region			
<i>p</i> -value	0.00384 0.0415 0.00384 0.0036 0.0036 0.0133 0.0133 0.0133 0.0179 0.0179	0.0219 0.0045 0.00384 0.00111 0.00384 0.00389 0.00389 0.00562 0.00564 0.00564 0.00564 0.00523 0.00524 0.00564	$\begin{array}{c} 0.0152\\ 0.00562\\ 0.00562\\ 0.00562\\ 0.00562\\ 0.00266\\ 0.0105\\ 0.0105\\ 0.00384\\ 0.00384\\ 0.00384\\ 0.0133\\ 0.0133\\ 0.0133\\ 0.0133\\ 0.0133\\ 0.0133\\ 0.0133\\ 0.0133\\ 0.0133\\ 0.0133\\ 0.00362\\ 0.00361\\ 0.00361\\ 0.00361\\ 0.00361\\ 0.00362\\ 0.00361\\ 0.00361\\ 0.00362\\ 0.00361\\ 0.00361\\ 0.00362\\ 0.00362\\ 0.00361\\ 0.00362\\ $
Fold difference ^a	14.8 4.6 4.1 10.8 4.3 11.1 6 6 3.3 8 9 3.8	8 - 2 8 - 2 9 - 3 - 2 9 2 9 - 2 9 - 2 9 9 - 2 9 9 - 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 27.7\\ 27.7\\ 23.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.$
Gene	fadE3	mee2C mee2C galT psrS3 psrC2 psrC2 psrAJ PPE16 argC argJ	argF mmpL14 cut1 nadD PE25 fadE21 mpb83 dip2 mp570
Mb CDS	Mb0066 Mb0079c Mb0221c Mb0222 Mb0266c Mb0456c Mb04556 Mb04556 Mb0563c Mb0565c	Mb0607 Mb0607 Mb0607 Mb0792 Mb0794 Mb0794 Mb0916 Mb0955 Mb0955 Mb1566 Mb1566 Mb1566 Mb1666 Mb1680 Mb1681	Mb1684 Mb1787 Mb1788 Mb1788 Mb2028c Mb2028c Mb2050c Mb2446c Mb2461c Mb2461c Mb2535 Mb2562 Mb2555 Mb2555 Mb2562 Mb2562 Mb2562 Mb2589 Mb2899 Mb2899 Mb2899 Mb2899
Mtb CDS	Rv0065 Rv0077c Rv0216 Rv0216 Rv0449c Rv0449c Rv0465c Rv0465c Rv0559c	RV0592 RV0592 RV0619 RV070 RV0770 RV0771 RV0782 RV0782 RV0782 RV0782 RV0782 RV0782 RV0782 RV0782 RV1421 RV1493 RV1493 RV1493 RV15588c RV1653	Rv1656 MT1802 Rv1758 Rv1947 Rv2005c NT2005c NT2005c Rv2005c Rv2275c Rv2231c Rv2431c Rv2431c Rv2431c Rv2431c Rv2431c Rv2621g Rv2621c Rv2621c Rv2621c Rv2623 Rv2623 Rv2623 Rv2623 Rv2623 Rv2623 Rv2637 Rv2637 Rv2637 Rv2637 Rv2779c

Ζ
Ŧ
Ŧ
Å
$\overline{}$
2
Author
ē
Man
E
uscrip
ğ
Ч.
÷

Mtb CDS	Mb CDS	Gene	Fold difference ^a	<i>p</i> -value	RvD region	Predicted function
Rv2876	Mb2901		5.7	0.0049		Possible conserved transmembrane protein
RV291/ Rv7930	Mb2955	fadD26	9.1 8.2	0.0086		Conserved hypothetical alanine and arginine rich protein Eatty-acid-coa lioase
Rv2931	Mb2956	ppsA	10.7	0.00384		Phenolphinocerol synthesis type-I polyketide synthase
Rv2932	Mb2957	ppsB	6.9	0.0166		Phenolpthiocerol synthesis type-I polyketide synthase
Rv2933	Mb2958	ppsC	7.9	0.0049		Phenolpthiocerol synthesis type-I polyketide synthase
Rv2934	Mb2959	ppsD	3.9	0.0166		Phenolpthiocerol synthesis type-I polyketide synthase
Rv2945c	Mb2970c	Xddl	3.3	0.0226		Probable conserved lipoprotein
Rv2955c	Mb2979c		4.5	0.00568		Conserved hypothetical protein
RV29726	Mb299/c	<u> </u>	8.5 2 2	0.01/2		Proceeding of the second secon
Rv2974c	Mb2999c	Lieu	0, 7 6, 7	0.01190		Frobable alp-uepenuent una nencase Conserved hynothetical alanine rich nrotein
Rv2987c	Mb3011c	leuD	4.3	0.015		Probable 3-isopropylmalate dehydratase (small subunit)
Rv2988c	Mb3012c	leuC	3.4	0.0336		Probable 3-isopropylmalate dehydratase (large subunit)
Rv2989	Mb3013		9	0.00568		Probable transcriptional regulatory protein
Rv2998A	Mb3023c		3.8	0.00384		Conserved hypothetical protein
Rv3054c	Mb3080c		5.4	0.0331		Conserved hypothetical protein
Rv3082c	Mb3109c	virS	4.2	0.019		Virulence-regulating transcriptional regulator
MT3248	Mb3184c	PPE70	5.7	0.0166		PPE family protein
KV3324C	Mb3353c	moaC3	15	0.00612	ų	Probable molybdenum cofactor biosynthesis protein C3
MT3427.1 MT3427.1	Mb3356	CEDON	22.6	0.0119	n va	Froedore morenum coractor prosynutesis protein A Hypothetical protein
MT3428	Mb3358	embR2	8	0.027	ŝ	Possible transcriptional regulatory protein
Rv3331	Mb3364	Igus	15.5	0.00401		Probable sugar-transport integral membrane protein
Rv3332	Mb3365	nagA	5.2	0.0413		Probable n-acetylglucosamine-6-phosphate deacetylase
Rv3340	Mb3372	metC	3.1	0.015		Probable o-acetylhomoserine sulfhydrylase
Rv3397c	Mb3430c	phyA	3.4	0.0219		Probable phytoene synthase
Rv3398c	Mb3431c	idsA	4.4	0.0086		Probable geranylgeranyl pyrophosphate synthetase
KV3455	MD3483		7.0	0.0184		Possible conserved transmembrane protein
KV3454 Rv3466	Mb3485 Mb3495		3.5	0.0086		Probable conserved integral memorane protein Conserved hymothetical motein
Rv3530c	Mh3560c			0.0000		Couser veu ny pouneticat protein Dossible ovidorednetase
Rv3651	Mb3675		3.2	0.0131		Conserved hypothetical protein
Rv3697c	Mh3723c		3.1	0.00641		Possible conserved membrane protein
Rv3862c	Mb3892c	whiB6	30.4	0.00663		WhiB-like possible transcriptional regulatory protein
Rv3897c	Mb3927c		5.7	0.00523		Conserved hypothetical protein
MT0573.1			3.5	0.0105		Hypothetical protein
MT0915.1			6.3	0.00568		Hypothetical protein
MT1812			C.CC 7.CC	0.00384		Hypothetical protein
MT7083			C:70	0.00200		Hypometical protein Hymothatical protain
MT2941			3.1 47 6	0.00861		Hypothetical protein
MT3718.1			0.4 6.6	0.0179		Hypothetical protein

^aFold differences are the average of normalized intensity ratios from 4 microarray experiments using 4 independent biological replicates.

Rehren et al.

~
~
T
.0
~
<
a
Author
0
_
<
_
<u>a</u>
=
<u> </u>
_
<u></u>
S
JSC
<u> </u>
 .
0
+

NIH-PA Author Manuscript

 Table 2

 Genes with higher expression level in *M. tuberculosis* H37Rv compared with *M. bovis*

Predicted function	Possible 8-amino-7-oxononanoate synthase Secreted proline rich protein GDP-D-mannose dehydratase Faty-acid-coal igase Conserved hypothetical integral membrane protein Conserved hypothetical protein Probable enoyl-coa hydratase Probable enoyl-coa hydratase Probable enoyl-coa hydratase Probable enoyl-coa hydratase Probable enoyl-coa hydratase Probable enoyl-coa hydratase Probable exported protein Probable polyketide beta-ketoacyl synthase Probable conserved integral membrane transport protein Probable motion protein Probable conserved integral membrane protein Probable conserved hypothetical protein Probable conserved hypothetical protein Probable conserved membrane protein Probable conserved membrane protein Probable membrane protein Probable conserved membrane protein Probable conserved membrane protein Probable membrane protein Probabl	Conserved hypothetical protein Conserved hypothetical protein
RD region	Ö Ü 444444.	44
<i>p</i> -value	$\begin{array}{c} 0.0383\\ 0.0157\\ 0.0157\\ 0.0157\\ 0.00818\\ 0.00818\\ 0.00818\\ 0.00818\\ 0.00818\\ 0.00818\\ 0.00818\\ 0.00818\\ 0.00859\\ 0.00859\\ 0.000659\\ 0.000659\\ 0.000659\\ 0.001659\\ 0.001659\\ 0.001658\\ 0.00707\\ 0.0108\\ 0.00268\\ 0.000268\\ 0.00268\\ 0.000268\\ 0.00268\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.0000\\ 0.00000\\ 0.00000\\ 0.00$	0.00351 0.00739
Fold difference ^a	3.3 3.3 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	8.7 69.4
Gene	bioF2 mtc28 gea gea gea echA1 echA1 echA1 echA1 pstC1 pstA2 pstA2 pstA2 pstA2 pstA1 pstA2 pstA1 pstA2 pstA1 pstA2 pstA1 pstA2 pstA2 pstA1 pstA2 pstA2 pstA2 pstA2 pstA2 pstA1 pstA2 pstA3 pstA2 pstA2 pstA3 pstA2 pstA2 pstA2 pstA2 pstA2 pstA3 pstA2 pstA3 pstA3 pstA3 pstA2 pstA3	
Mtb CDC	Rv0032 Rv0040c Rv0115 Rv0166 Rv0115 Rv0221 Rv0222 Rv0222 Rv0223 Rv0223 Rv0223 Rv0223 Rv0223 Rv0226 Rv0233 Rv0233 Rv0236 Rv0233 Rv0236 Rv0236 Rv0233 Rv0233 Rv0233 Rv0236 Rv0236 Rv0233 Rv0236 Rv0236 Rv0336 Rv1336 Rv116 Rv116 Rv116 Rv116 Rv116 Rv116 Rv116 Rv116 Rv	Rv1513 Rv1515c

NIH-PA Author Manuscript

Predicted function	Probable sugar transferase	Hypothetical protein	Maltooligosyltrehalose synthase	Probable indole-5-glycerol phosphate synthase	Probable tryptophan synthase, beta subunit	Probable tryptophan synthase, alpha subunit	Possible prolipoprotein diacylglyceryl transferases	Conserved hypothetical membrane protein	y protein	PE PGKS family protein	Possible Penicillin-binding protein	Putative transposase for insertion sequence 1S0110	Futauve transposase for insertion sequence 130110 Dutative transmesses for insertion sequence 136110	t utauve u attispusase rut ittiseturut sequence isut ru Geat-6 lika metain	PPE family motein	Possible 1-lactate dehvdrogenase	Probable resuscitation-promoting factor	Possible dehydrogenase	Conserved hypothetical integral membrane protein	Conserved hypothetical protein	Conserved hypothetical protein	Precorrin-4 c11-methyltransferase	Probable shortchain dehydrogenase	Conserved hypothetical protein	Possible Conserved transmembrane protein	Putative transposase for insertion sequence IS6110	Probable transposase for insertion sequence IS6110	Conserved hypothetical protein	Conserved hypometical protein (mutative tetr family)	Conserved hypothetical protein	PE PGRS family protein	Probable transposase	Putative transposase for insertion sequence IS6110	Probable long-chain-fatty-acid-coa ligase	t utauve u ausposase tot miseruon sequence 130110 Prohahle transnosase	Putative Esat-6 like protein	Putative Esat-6 like protein	hypothetical protein	Probable phospholipase C3	Probable membrane-associated phospholipase C2	Probable membrane-associated phospholipase C	PPE family protein	Probable transposase for insertion sequence 1S6110	Frobable uansposase Probable Conserved integral membrane protein	Probable transposase	Possible transposase for insertion sequence IS6110	PE PGRS family protein	Probable Conserved integral membrane protein	Frobable transposase for insertion sequence 130110 Drobable transmosses for insertion sequence 186110	rrobable transposase for insertion sequence 130110 Possible phirv2 prophage protease
Predicted	Probable	Hypotheti	Maltoolig	Probable	Probable	Probable	Possible I	Conserve	PE family protein	PE PGKS	Possible	Putative t	Putauve t Dutative t	Feat-6 lib	PPE fami	Possible 1	Probable	Possible of	Conserve	Conserve	Conserve	Precorrin	Probable	Conserve	Possible (Putative t	Probable	Conserve	Conserve	Conserve	PE PGRS	Probable	Putative t	Probable	Prohable	Putative F	Putative I	hypotheti	Probable	Probable	Probable	PPE fami	Probable	Prohable	Prohable	Possible t	PE PGRS	Probable	Probable	Possible F
RD region	4																		7	7	7		6	6												ŝ	ŝ	5	S	S	ŝ	S						÷	11	==
<i>p</i> -value	0.0235	0.0208	0.0435	0.0009	0.00268	0.0183	0.00651	0.00268	0.0291	0.0421	0.00268	0.016	01010		0.00659	0.0296	0.0288	0.00984	0.0217	0.0176	0.0452	0.00765	0.032	0.00268	0.0108	0.0157	0.016	1010.0	06000	0.00768	0.00659	0.00268	0.0156	0.016	101010	0.0121	0.00268	0.00268	0.00659	0.00966	0.016	0.00565	0.016	0.00588	0.0266	0.0208	0.00707	0.0268	07100	0.0108
Fold difference ^a	15.2	3.4	6.7	o (1.0		11.1	5.4	3.2	16.2	n (0.9 - 1	1.1	t.c	2:2	4.5	5.5	3.1	14.1	29.3	6.9	3.7	4.8	83.3	13	× ¦	5.2	/.c	2.42 44 4	80	17.9	4.3	9.2	0.0	22	3.0	3.4	87.7	67.6	64.5	19	69.4	بن م د ز	4 m 4 0	; 4	6.5	3.7	3.8	0.6	0.' 6
Gene			treY	trpC	trpb	trpA	lgt		PEIT	PE PGRS30				Mag	PPF33	lidD2	refC	fadD31	yrbE3B			cobM									PE PGRS38			cidbat		exrO	esxP		plcC	plcB	plcA	PPE38					PEPGRS43			
Mtb CDC	Rv1516c	Rv1535	Rv1563c	Kv1611	KVI612	Kv1613	Rv1614	Rv1639c	Rv1646	Kv1651c	KV1/30C	KVI/2/C	KV1/05 Dw1764	DV1707	Rv1809	Rv1872c	Rv1884c	Rv1925	Rv1965	Rv1976c	Rv1977	Rv2071c	Rv2073c	Rv2074	Rv2077c	Rv2105	Rv2106	KV215/C Dv7150c	Rv2160c	Rv21606 Rv2161c	Rv2162c	Rv2167c	Rv2168c	RV2187 Dv7778	Rv2210 Rv779	Rv2346c	Rv2347c	Rv2348c	Rv2349c	Rv2350c	Rv2351c	Rv2352c	Kv2354	Rv2395	Rv2479c	Rv2480c	Rv2490c	Rv2600	RV2040 Pv7640	Rv2049 Rv2651c

NIH-PA Author Manuscript	Predicted function	Probable phirv2 prophage protein Probable transposase for insertion sequence IS6110 Hypothetical protein Conserved hypothetical protein Probable Conserved integral membrane protein Probable monoxygenase Probable acetyl-hydrolase'estenase Aldehyde reductase Conserved hypothetical protein Hypothetical oxidoreductase Conserved hypothetical protein Probable transposase for insertion sequence IS6110 Probable protein Probable conserved hypothetical protein Probable Conserved integral motein Hypothetical protein Hypothetical protein Hypothetical protein Hypothetical protein
~	RD region	∞∞ v v ⊐
NIH-PA Author Manuscrint	<i>p</i> -value	0.0176 0.0176 0.0176 0.0176 0.00659 0.00659 0.0077 0.00707 0.00707 0.00707 0.00707 0.00707 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.0176 0.00872 0.00872 0.00872 0.00872 0.00872 0.00872 0.00872 0.00872 0.00872 0.00872 0.00872 0.00872 0.00872 0.00872 0.00872 0.00872 0.00872 0.00872 0.00659 0.0116 0.01255 0.00659 0.0116 0.00659 0.0116 0.00165 0.00165 0.00165 0.00166 0.000659 0.00166 0.00166 0.00166 0.000659 0.00166 0.00066 0.00066 0.00066 0.00066 0.00060 0.00000000
 uscrint	Fold difference ^a	$\begin{array}{c} 29.1\\ 29.1\\ 29.2\\ 29.2\\ 20.5\\$
NIH-PA Author Manuscrint	Gene	merT fadE22 lipR adhD pPE51 PPE50 lipF esxW ipqG fipF papA1 pks2
. Manuscrint	Mtb CDC	Rv2657c Rv2814c Rv2814c Rv2813c Rv2813c Rv2813c Rv2813c Rv2813c Rv2813c Rv2813c Rv2813c Rv2813c Rv2813c Rv3083 Rv3084 Rv3086 Rv3086 Rv3086 Rv3094c Rv3094c Rv3185 Rv3185 Rv3329 Rv3470 Rv3470 R

NIH-PA Author Manuscript		
r Manuscript	Predicted function	Hypothetical protein
ZH	RD region	
NIH-PA Author Manuscript	<i>p</i> -value	0.00659
nuscript	Fold difference ^a	8.9
NIH-PA Autho	Gene	
I-PA Author Manuscrip	Mtb CDC	MT4026.1

^aFold differences are the average of normalized intensity ratios from 4 microarray experiments using 4 biological replicates.

Table 3

Validation of microarray results by RT-qPCR

CDS	Gene	Fold difference ^a M. bovis/M. tuberculosis
Mb0606	mce2C	16.2
Mb0607	mce2D	23
Mb2898	mpb83	38.8
Mb2900	mpb70	166.9
Mb2955	fadD26	3.4
Mb2956	ppsA	7.1
Mb2957	ppsB	3.6
Mb2958	ppsC	22
Mb2959	ppsD	28.6
Mb3358	embR2	173.3 ^b
Mb3450	WhiB3	4.5
Mb3706c	WhiB4	3.1
Mb3892c	WhiB6	77.4

 a^{a} Fold differences are averaged ratios from 3 biological replicates. Each ratio was calculated between the numbers of cDNA copies for each gene in both strains, normalized to *sigA*.

 b The *embR2* gene is not present in the *M. tuberculosis* H37Rv genome, therefore, the value represent the absolute number of cDNA copies detected in *M. bovis*.

Table 4

Distribution of differentially expressed genes according to functional categories

Functional category ^a	М.	bovis	M. tube	erculosis
g ,	n	%	n	%
Cell wall and cell processes	17	17.9	31	19
Conserved hypotheticals	19	20	22	13.5
Conserved hypotheticals with an orthologue in <i>M. bovis/M.</i> tuberculosis	4	4.2	2	1.2
Information pathways	1	1.1	-	-
Insertion seqs and phages	2	2.1	33	20.2
Intermediary metabolism and respiration	22	23.2	30	18.4
Lipid metabolism	10	10.5	8	4.9
PÊ/PPE	3	3.2	18	11
Regulatory proteins	7	7.4	3	1.8
Unknown	-	-	3	1.8
Virulence, detoxification, adaptation	3	3.2	3	1.8
Hypothetical proteins CDC1551^{b}	7	7.4	10	6.1
Total	95	100	163	100

 $^a{\rm Genes}$ were grouped according to functional classifications as annotated in TubercuList.

^bORFs annotated in the *M. tuberculosis* CDC1551 genome.