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Tyrosyl-DNA phosphodiesterase 1 (Tdp1) cleaves the phos-

phodiester bond between a covalently stalled topoisome-

rase I (Topo I) and the 30 end of DNA. Stalling of Topo I at

DNA strand breaks is induced by endogenous DNA da-

mage and the Topo I-specific anticancer drug camptothe-

cin (CPT). The H493R mutation of Tdp1 causes the

neurodegenerative disorder spinocerebellar ataxia with

axonal neuropathy (SCAN1). Contrary to the hypothesis

that SCAN1 arises from catalytically inactive Tdp1, Tdp1�/�

mice are indistinguishable from wild-type mice, physi-

cally, histologically, behaviorally, and electrophysiologi-

cally. However, compared to wild-type mice, Tdp1�/� mice

are hypersensitive to CPT and bleomycin but not to etopo-

side. Consistent with earlier in vitro studies, we show that

the H493R Tdp1 mutant protein retains residual activity

and becomes covalently trapped on the DNA after CPT

treatment of SCAN1 cells. This result provides a direct

demonstration that Tdp1 repairs Topo I covalent lesions

in vivo and suggests that SCAN1 arises from the recessive

neomorphic mutation H493R. This is a novel mechanism

for disease since neomorphic mutations are generally

dominant.

The EMBO Journal (2007) 26, 4732–4743. doi:10.1038/

sj.emboj.7601885; Published online 18 October 2007

Subject Categories: genome stability & dynamics; molecular

biology of disease

Keywords: camptothecin; neurodegeneration; SCAN1; Tdp1;

topoisomerase I

Introduction

DNA topoisomerases, glycosylases, methyltransferases, and

recombinases act via formation of a transient covalent inter-

mediate with DNA. When these DNA-processing enzymes

become covalently trapped on the DNA, they cause a parti-

cularly harmful kind of DNA damage. The repair pathways

for these types of lesions are of great interest because they

influence the effectiveness of widely used antibacterial and

antitumor drugs that act by stabilizing such covalent com-

plexes (Connelly and Leach, 2004).

Inherited defects of DNA repair are associated with a

predisposition to cancer and neurological abnormalities

(Friedberg et al, 2006). To our knowledge, spinocerebellar

ataxia with axonal neuropathy (SCAN1) is the first example

of a human genetic disorder that results from a failure to

repair DNA–protein covalent complexes. More importantly,

the mutant protein responsible for the disease becomes itself

covalently trapped on the DNA.

SCAN1 is an autosomal recessive disorder characterized by

ataxia, cerebellar atrophy, and peripheral neuropathy

(Takashima et al, 2002). The patients are usually wheelchair

bound by early adulthood but retain normal cognitive func-

tion suggesting that the disease arises from degeneration or

impairment of specific neurons (Takashima et al, 2002).

SCAN1 has been associated with the TDP1 1478A4G muta-

tion, which encodes the missense change H493R that disrupts

the active site of tyrosyl-DNA phosphodiesterase 1 (Tdp1)

(Interthal et al, 2001, 2005b; Takashima et al, 2002).

Tdp1 catalyzes the hydrolysis of the phosphodiester bond

between a DNA 30 end and a tyrosine residue, a linkage

specific to the enzyme–DNA covalent complex formed when

a type IB DNA topoisomerase cleaves DNA (Yang et al, 1996).

Topoisomerase I (Topo I) becomes covalently trapped in a

dead-end complex on the DNA when it fails to religate the

DNA after cleavage near endogenous lesions (nicks, gaps, or

abasic sites) (Pommier, 2004). Tdp1 participates in the repair

of Topo I–DNA complexes as a member of the mammalian

DNA single-strand break repair complex (Pouliot et al, 2001;

El-Khamisy et al, 2005; Interthal et al, 2005b).
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The anticancer drug CPT also causes Topo I to stall on the

DNA (Pourquier and Pommier, 2001). The predominant cyto-

toxic lesion is a DNA double-strand break resulting from the

collision of a replication fork with the covalent Topo I–DNA

complex (D’Arpa et al, 1990). In yeast, these DNA double-

strand breaks can also be repaired through Tdp1-independent

pathways involving the structure-specific endonucleases

Rad1/Rad10 and Mus81/Mms4 (Liu et al, 2002; Vance and

Wilson, 2002).

Consistent with these proposed functions of Tdp1, the

lymphoblastoid cell lines from SCAN1 patients are CPT

hypersensitive (Interthal et al, 2005b) and accumulate CPT-

induced DNA single- and double-strand breaks (El-Khamisy

et al, 2005; El-Khamisy and Caldecott, 2007). Furthermore,

Miao et al (2006) recently showed that SCAN1 cells accumu-

late Topo I–DNA complexes. These observations have led to

the conclusion that SCAN1 arises solely from the catalytic

inactivity of H493R Tdp1 (El-Khamisy et al, 2005).

Despite the role of Tdp1 in DNA repair, SCAN1 patients do

not have an increased incidence of cancer or other health

problems (Takashima et al, 2002). Nor do cancer patients

receiving Topo I inhibitors such as CPT have an increased

incidence of neurodegeneration. These observations suggest

that the etiology of SCAN1 is more complex than simple loss

of Tdp1 function.

We describe the first mouse model to study the etiology of

SCAN1 and the organismal function of Tdp1. Tdp1-deficient

mice are CPT and bleomycin hypersensitive, but do not

develop SCAN1-like symptoms. However upon CPT treat-

ment, Tdp1-deficient mouse cells expressing H493R Tdp1

accumulate DNA breaks to higher levels than control

Tdp1�/� cells. These data suggest that in addition to reduced

Tdp1 activity, the qualitative change in enzymatic activity of

human H493R Tdp1 that causes it to become covalently

trapped on the DNA may contribute to the etiology of SCAN1.

Results and discussion

Generation and phenotypic analysis of Tdp1�/� mice

To ascertain whether SCAN1 arises from loss of functional

Tdp1, we generated Tdp1-deficient mice (hereafter referred to

as Tdp1�/� mice) using a Geo trap inserted in Tdp1 intron 11

(Figure 1A). Embryonic fibroblasts and neurospheres derived

from the Tdp1�/� mice did not express full-length Tdp1 mRNA

and protein (Figure 1B, C) but did express a stable truncated

protein product and a geoTDP1 protein derivative (Figure 1C).

The truncated protein was translated from an aberrantly spliced

mRNA that encoded a protein without an active site (data not

shown), and consistent with this, Tdp1 enzymatic activity was

undetectable (Figure 1D). On a 129Sv genetic background,
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Figure 1 Generation of the Tdp1�/� mouse by insertional mutagenesis. (A) Diagram of the mouse Tdp1 genomic structure (top). The H493R
mutation found in SCAN1 patients would be encoded in exon 13 of mouse Tdp1. For generation of the Tdp1-deficient mice (Tdp1�/�), we used
embryonic stem cells containing a pGT1Lxf insertion in Tdp1 intron 11. This insertion truncates the Tdp1 mRNA following exon 11. The
location of the primers used for genotyping and RT–PCR detection are indicated. (B) RT–PCR confirmation of the absence of full-length Tdp1
mRNA expression in the brain of Tdp1�/� mice. The upstream RT–PCR primers reside in exons 2 and 6, the downstream primers in exons 12
and 16. (C) Western confirmation of the absence of expression of full-length Tdp1 protein in Tdp1�/� neurospheres. The western analysis also
detected the Tdp1-b-geo fusion protein and a smaller Tdp1 product that is the product of alternative splicing deleting exons 12 and 13.
(D) Absence of Tdp1 enzymatic activity in lysates from Tdp1�/� mouse neurospheres as shown by the failure to hydrolyze the tyrosyl-DNA
substrate 12-Y. Each lane represents a serial 10-fold dilution of the Tdp1�/� (lanes 2–5) and Tdp1þ /þ (lanes 6–9) cell extracts.
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Tdp1þ /� parents produced all genotypic classes in Mendelian

ratios. Thus, in contrast to Drosophila (Dunlop et al, 2004) in

which deficiency of glaikit, the Tdp1 homolog, causes defective

embryonic neurogenesis and embryonic lethality, Tdp1-defi-

cient mice did not exhibit embryonic or neonatal lethality.

At birth, the Tdp1�/� mice had body weights and lengths,

brain weights and histopathology comparable to Tdp1þ /þ

mice (Figure 2A–I). This phenotype correlates with that of

SCAN1 patients who had normal growth and motor, lan-

guage, social and intellectual development throughout child-

hood (Takashima et al, 2002). However, in contrast to the

SCAN1 patients who develop clinical symptoms in their

second decade of life (Takashima et al, 2002), the Tdp1�/�

mice examined at 270 days by histopathology and peripheral

nerve electrophysiology did not show abnormalities (Figure

2J–S) and those analyzed at 14–17 months did not exhibit

behavioral or other abnormalities. Thus, we propose that the

Tdp1�/� mice are able to repair endogenous levels of Topo I–

DNA complexes by alternate DNA-repair pathways.

Alternative pathways for the repair of Topo I–DNA

covalent complexes

In Saccharomyces cerevisiae, the two best-studied alternative

pathways for repairing stalled Topo I are those mediated by
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Figure 2 Comparative phenotypic and histopathological evaluation of the Tdp1þ /þ and Tdp1�/� mice at P0 (A–I) and P270 (J–S). P0 mice:
Hematoxylin and eosin (H&E) staining of cortex (A, B), cerebellar vermis (C, D), spinal cord (E, F), and dorsal root ganglion (G, H). Note the
comparability of the external granular cell (EGL), molecular (ML), and internal granular cell layers (IGL) as well as the Purkinje cell number
(PC). (I) Comparison of the body weights and lengths and brain weights of Tdp1þ /þ , Tdp1þ /�, and Tdp1�/� littermates. P270 mice: H&E
staining of cortex (J, K), cerebellar vermis (L, M), spinal cord (N, O), and dorsal root ganglia (P, Q). The cortical layers are labeled in panels J
and K and the cerebellar molecular (ML) and granular cell (GL) layers in panels L and M. The insets in panels N and O are higher
magnifications of the dorsal (upper) and ventral (lower) horns. (R) Comparison of male and female body weights. (S) Comparison of the
peripheral nerve electrophysiology of Tdp1þ /þ and Tdp1�/� littermates. Scale bar¼ 50 mm.
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the structure-specific endonucleases Rad1/Rad10 and Mus81/

Mms4 (Liu et al, 2002; Vance and Wilson, 2002), which

correspond to mammalian XPF/ERCC1 and Mus81/Eme1,

respectively (Matsunaga et al, 1995; Brookman et al, 1996;

Ciccia et al, 2003; Ogrunc and Sancar, 2003). By in situ

hybridization and RT–PCR across a spectrum of Tdp1þ /þ

mouse tissues, Xpf, Ercc1, and Mus81 were expressed at each

time point investigated, whereas Eme1 generally had much

lower neural expression except in the developing cerebellum

(Supplementary Figures 1 and 2). Notably, Eme1 was ex-

pressed in non-neural tissues such as the thymus, heart,

intestine, liver, skin, vertebrae, teeth, and testes

(Supplementary Figure 1M, N). We observed a similar lack

of neural expression of Eme1 in the adult human brain by

RT–PCR (Supplementary Figure 2T) and northern analyses

(data not shown). The mRNAs encoding these endonucleases

(Supplementary Figure 2U) as well as the mRNAs encoding

the base excision repair enzymes Apex1 and Apex2 (data not

shown) were not increased in Tdp1�/� brain tissue. Thus,

although not upregulated in Tdp1�/� tissue, the XPF/ERCC1

pathway may function as one alternative pathway for repair

of Topo I–DNA complexes in the absence of Tdp1 (Vance and

Wilson, 2002), and the low or absent Eme1 expression in the

majority of neuronal tissues might contribute to the neuronal

specificity of SCAN1.

Tdp1 is expressed in the nervous system of mice and

humans

To test whether variation in expression across species ac-

counted for the difference in phenotype between Tdp1�/�

mice and SCAN1 patients, we compared the expression of

Tdp1 in mice and humans. By northern blot analysis, human

Tdp1 mRNA was present in all analyzed adult tissues

(Supplementary Figure 3A) and in all tested areas of the

central nervous system (Supplementary Figure 3B). Similarly,

mouse Tdp1 mRNA was expressed in all analyzed adult

tissues (Supplementary Figure 3C) and in the brain from

embryonic day (E) 9.5 through adulthood (Supplementary

Figure 3D).

In the human brain, Tdp1 was highly expressed in neurons

from 10 gestational weeks (GW) through 16 years of age and

at very low levels in glia (Figure 3A–C). Similar to the

Drosophila glaikit protein (Dunlop et al, 2000), human

Tdp1 was expressed in subependymal neural progenitors

and cultured neurospheres (Figure 3A and Supplementary

Figure 4). Cerebellar, granule and Purkinje cells (Figure 3D–

F) and neurons of the dentate nucleus (Figure 3G), spinal

cord (Figure 3H), and dorsal root ganglia (DRG) (Figure 3I),

the neurons putatively affected by SCAN1 (Takashima et al,

2002), also expressed Tdp1. Similar to the glaikit protein in

Drosophila, the Tdp1 protein was prominently expressed

in the cytoplasm of some neurons (Figure 3F–H), a poorly

understood finding; however, in contrast to human Tdp1,

glaikit is not thought to participate in DNA repair but in

localization of membrane proteins (Dunlop et al, 2000, 2004).

Antiserum nonspecificity does not account for this staining

pattern because we obtained the same results with two

independently produced antisera, and the preimmune

serum did not recognize either a nuclear or a cytoplasmic

antigen (Figure 3J–K). Moreover, the antisera recognized a

70 kDa protein in mouse Tdp1�/� fibroblasts transfected with

a human Tdp1 expression plasmid but not in untransfected

Tdp1�/� fibroblasts (Figure 3L), and competitive inhibition

with recombinant Tdp1 protein blocked interaction of the

anti-human (Figure 3M) and anti-mouse sera with Tdp1

(data not shown). Although we observed this staining pattern

in the tissues from several individuals, this finding could be

an artefact of tissue fixation since in our experience Tdp1

readily diffuses out of the nucleus of dying human and mouse

cells. Alternatively, this might suggest either cytoplasmic

sequestration or a cytoplasmic function for Tdp1 in humans

but not in mice.

With the exception of the cytoplasmic localization, the

mouse brain showed a similar expression pattern for the

Tdp1 RNA and protein (Figure 4). This suggested to us that

SCAN1 arises either from loss of a human-specific function as

reflected by the differences in protein localization or from a

novel function of Tdp1 created by the H493R mutation.

Tdp1�/� mice, neurospheres, and embryonic fibroblasts

are CPT hypersensitive

Like cells from the SCAN1 patients (El-Khamisy et al, 2005;

Interthal et al, 2005b), Tdp1�/� mouse embryonic fibroblasts

(MEFs, Supplementary Figure 6A, D–G) and neurospheres

(Figure 5A) were hypersensitive to CPT. Therefore, we hy-

pothesized that the Tdp1�/� mice, and perhaps in particular

the nervous system of these mice, would have increased

sensitivity to CPT and that CPT treatment might induce a

SCAN1-like phenotype. Intraperitoneal administration of the

Topo I poison CPT-11 as a single (80 mg/kg) or a weekly

(40 mg/kg, for 20 weeks) dose elicited no detectable pheno-

type in Tdp1�/� or Tdp1þ /þ mice aged 70–210 days

(Figure 5B). But five consecutive daily doses of CPT-11

(40 mg/kg/day) or of topotecan (1.6 or 4.8 mg/kg/day)

were toxic to Tdp1�/� mice ranging in age from 70 to 80

days (Figure 5B). Although the same age Tdp1þ /þ mice were

unaffected, the Tdp1�/� mice developed weakness and diar-

rhea and expired within 2 days after completion of CPT-11 or

topotecan administration. By histopathology and immuno-

histochemistry, there was extensive necrosis in the more

slowly proliferating intestinal, renal, and hepatic tissues

(Figure 5C–J), and extensive apoptosis and marked tissue

loss in the more rapidly proliferating lymphoid and hemato-

poietic tissues (Figure 5K–R). The induction of apoptosis in

these rapidly proliferating tissues indicates that Tdp1, as

expected, is involved in the repair of Topo I-associated DNA

double-strand breaks that are generated when the replication

machinery collides with CPT-trapped Topo I. The treated

Tdp1�/� mice also had electrophysiological changes, pro-

longed distal latencies, and reduced compound muscle action

potentials (Supplementary Figure 5A), changes typically seen

in acute illness but different from those of the SCAN1 patients

(Takashima et al, 2002). Whether treated with CPT-11 or

topotecan, Tdp1�/� mice did not exhibit ataxia or have

detectable atrophy or apoptosis in the cerebrum, cerebellum,

spinal cord, DRG, or peripheral nerve by histological,

immunohistochemical, TUNEL, or ultrastructural analyses

(Supplementary Figure 5B–U). In addition, the Tdp1�/�

glia and neurons differentiated from neurospheres

(Supplementary Figure 5V, W) or cultured Tdp1�/� cortical

neurons (data not shown) failed to exhibit cell death

or apoptosis at CPT doses that impaired neurosphere

proliferation.
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In summary, these results confirm that the CPT hypersen-

sitivity of SCAN1 lymphoblastoid cells is likely arising be-

cause of deficient Tdp1 activity. However, they also highlight

the possibility that the neuropathology of SCAN1 may not be

caused solely by deficient Tdp1 activity because accentuation

of the formation of Topo I–DNA complexes with the admin-

Figure 3 Immunohistochemical analysis of Tdp1 protein expression in the human brain. (A) Tdp1 expression in the cerebrum of a human 10
gestational week (GW) brain. Cells adjoining the ventricle (V), and in the subventricular zone (SVZ), intermediate zone (IMZ), and cortical
plate (CP) express Tdp1. (B, C) Tdp1 expression in layer two of the cortex from a 40 GW and a 16-year brain. (D–F) Tdp1 expression in the
cerebella from a 22 GW, a 9-month and a 4-year brain. Note the staining in the external granular cell layer (EGL), Purkinje cells (PC),
and internal granular cell layer (IGL). (G) Tdp1 expression in a 19-year dentate gyrus. (H, I) Tdp1 expression in spinal cord anterior horn
cells (AHC) and a dorsal root ganglion of a 10-year old, respectively. (J–M) Specificity of the immune serum is shown by absence of staining
of the spinal cord (J) and dorsal root ganglion (K) from a 10-year old with preimmune serum and also by absence of antigen recognition in
mouse Tdp1�/� mouse embryonic fibroblasts compared to Tdp1�/� fibroblasts transfected with a human Tdp1 expression construct
(Tdp1�/�þ pCMV5 .Tdp1) (L), and competitive inhibition of the antiserum by recombinant human Tdp1 (M). Scale bar¼ 50mm.

Figure 4 In situ hybridization and immunohistochemistry showing the spatial and temporal expression of mouse Tdp1 mRNA and protein,
respectively. Localization of the Tdp1 mRNA in P1 (A–D), P10 (E–H), and adult (I–L) mice. (A, E, I) Expression of Tdp1 mRNA in a midline sagittal
section from a P1, P10, and adult mouse or brain, respectively. Note that Tdp1 is expressed throughout the cortex (Cx), cerebellum (Cb), spinal cord
(SC), and dorsal root ganglia (DRG) as well as most other organs including the skin, thymus (Th), heart, lungs, liver, and intestines. (B, F, J)
Expression of Tdp1 mRNA in the cortex (Cx) and hippocampus (Hip) of a P1, P10, and adult brain, respectively. (C, G, K) Expression of Tdp1
mRNA in a coronal section of a P1, P10, and adult cervical spinal cord, respectively. The highest expression is in the dorsal horns (DH) and the
ventral horns (VH). (D, H, L) Expression of Tdp1 mRNA in a cross-section of a P1, P10, and adult dorsal root ganglion, respectively. (M–O) Serial
sections from the P1 mouse hybridized with a sense probe for Tdp1 showing the specificity of the hybridization for the antisense probe used in
panels A–L. Scale bar¼ 1 cm (A, E, I, M), 0.5 mm (B, C, F, G, J, K, N, O), 0.2 mm (D, H, L). Localization of the Tdp1 protein in the P0 and the P270
CNS (P-AA). (P) P0 cortex and hippocampus, (Q) P0 layer II cortical neurons, (R) P270 cortex, (S) P270 layer II cortical neurons, (T) P0 cerebellum,
(U) P270 cerebellum, (V) P270 dentate nucleus, (W) P270 spinal cord. Nonspecific staining of the P0 cortex (X), P270 cortex (Y), P0 cerebellum
(Z), and P270 cerebellum (AA). Scale bar¼ 0.5 mm (P, R, T, U, Y, Z, AA, BB), 0.2 mm (X), 50mm (Q, S, and all insets). Abbreviations: EGL, external
granular layer; PC, Purkinje cell; ML, molecular layer; VH, ventral horn; VHC, ventral horn cell; DH, dorsal horn.
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istration of Topo I inhibitors did not cause SCAN1-like neural

dysfunction. Rather, nonproliferating Tdp1�/� neural cells in

culture and in vivo did not show acute toxicity to Topo I–DNA

complexes, whereas proliferating Tdp1�/� cells in vivo were

quite sensitive to the toxicity of Topo I–DNA complexes

(Figure 5 and Supplementary Figure 5). The resistance of

nonproliferating neural cells to topotecan and CPT-11 cannot

be ascribed to the failure of these drugs to penetrate the

blood–brain barrier since topotecan penetration of the

blood–brain barrier is well established in rodents (El-Gizawy

and Hedaya, 1999; Zhuang et al, 2006). In addition, the

DRG, which resides outside of the blood–brain barrier

(Arvidson, 1979), did not exhibit histopathological changes

(Supplementary Figure 5).

P1

Sense probe

P1

P10

Adult

CbHip

OL

Cx

T
Hy

Hip

Cx

Cb
Cx DRG

Th

SC
Hip

Cx

Hip
Cx

DH

VH

DH

VH

Cb
Cx

DRG

Th

SC

DH

VH

Cortex
Spinal Dorsal root

ganglion cord 
In situ hybridization

Immunohistochemistry

Preimmune
AAZYX

P

WVUT

SRQ

AmH

DG

AmH

DG

EGL

MLPC

VH

DH

A B C D

E

I

F G H

J K L

M N O

PC VHC

A Tdp1 recessive neomorphic mutation causes SCAN1?
R Hirano et al

&2007 European Molecular Biology Organization The EMBO Journal VOL 26 | NO 22 | 2007 4737



The resistance of nonproliferating neural cells to CPT might

suggest that alternative pathways are able to repair low levels of

Topo I–DNA complexes. The existence of such alternative

pathways is supported by the observation of Xpf induction in

lung tumors commonly resistant to camptothecin (Sestili et al,

2006) and by the increased levels of homologous recombination

in SCAN1 patient lymphoblastoid cells (El-Khamisy et al, 2005).

Additionally, we have evidence for the existence of an endonu-

clease-dependent repair pathway for stalled Topo I (J Leppard,

H Interthal, and J Champoux, unpublished).

Tdp1�/� mice and embryonic fibroblasts are bleomycin

but not etoposide hypersensitive

SCAN1 cells are also deficient in processing of DNA phos-

phoglycolate 30 ends (Inamdar et al, 2002; Zhou et al, 2005).

Therefore, we hypothesized that the Tdp1�/� cells and mice

would have increased sensitivity to bleomycin. By the comet

assay, Tdp1�/� MEFs were hypersensitive to bleomycin

(Supplementary Figure 6B), and with intraperitoneal admin-

istration of the bleomycin for 10 consecutive days (10 mg/kg/

day), Tdp1�/� mice developed weakness and expired within

4 days following treatment. Histopathology and immunohis-

tochemistry showed extensive apoptosis and marked tissue

loss in the more rapidly proliferating lymphoid and hemato-

poietic tissues (Supplementary Figure 6H–K). The treated

Tdp1�/� mice did not exhibit ataxia or electrophysiological

changes typical of SCAN1 or have detectable atrophy or

apoptosis in the cerebrum, cerebellum, spinal cord, or DRG

peripheral nerve (Supplementary Figure 6L–O and data not

shown).

Tdp1 is also proposed to participate in the repair of

DNA double-strand breaks resulting from stalling

of Topoisomerase II (Topo II) (Barthelmes et al, 2004; Nitiss

et al, 2006). If Tdp1 played a key role in this repair process,

then Tdp1�/� cells and mice might have increased sensitivity

to etoposide, a Topo II inhibitor (Liu, 1989). However,

consistent with the studies of lymphoblastoid cells from

SCAN1 patients (Interthal et al, 2005b), neither Tdp1�/�

MEFs nor mice showed increased sensitivity to etoposide

(Supplementary Figure 6C, P–W). Both Tdp1þ /þ and

Tdp1�/� mice became ill and died 2 or 3 days after

5 consecutive days of 30 or 40 mg/kg/day of etoposide, and

both were equally symptom free 60 days after 5 days of

20 mg/kg/day of etoposide. The Tdp1þ /þ and Tdp1�/�

mice did not have detectable pathological differences by

histological, immunohistochemical, or TUNEL analyses

(Supplementary Figure 6P–W and data not shown).

These in vivo and cell culture studies confirm the partici-

pation of Tdp1 in the repair of DNA phosphoglycolate 30 ends

but not in the repair of Topo II–DNA complexes. Moreover,

the absence of an SCAN1-like phenotype in the treated mice

again highlights the possibility that SCAN1 might not arise

solely from deficient Tdp1 activity.

CPT treatment of cells expressing Tdp1 H493R causes

the accumulation of H493R–DNA complexes and the

accumulation of DNA strand breaks

The above observations suggested that SCAN1 is caused by a

novel and distinct function of Tdp1 created by the SCAN1

point mutation. Previously, Interthal et al (2005a, b) hypothe-

sized that SCAN1 might not only arise from the 25-fold

reduction in activity caused by the H493R change, but also

from the accumulation of the Tdp1 H493R–DNA covalent

reaction intermediate which has a half-life of B13 min. The

removal of H493R Tdp1 from the DNA by wild-type Tdp1

explains the recessive nature of SCAN1 (Interthal et al,

2005a, b). To test whether Tdp1 H493R becomes trapped on

the genomic DNA in vivo in response to CPT treatment, we

analyzed telomerase-immortalized skin fibroblasts from

unaffected controls and SCAN1 patients using a modified

in vivo complex of enzyme (ICE) assay (Subramanian et al,

1995). CPT-treated fibroblasts from both sources accumulated

the Topo I–DNA covalent intermediate as expected, but only

SCAN1 cells accumulated a covalent Tdp1–DNA intermediate

(Figure 6A). Based on alkaline comet assay analyses and

accumulation of gH2AX, CPT-treated Tdp1�/� MEFs expres-

sing the human H493R Tdp1 protein accumulated DNA

strand breaks more rapidly and to a higher level than CPT-

treated Tdp1�/� MEFs transfected with the control expression

plasmid (Figure 6B and Supplemental Figure 7). In contrast,

reduced accumulation of DNA strand breaks was evident

upon expressing the wild-type Tdp1 protein (Figure 6B and

Supplementary Figure 7).

These data show that the human H493R Tdp1 has an

enzymatic activity in vivo that is qualitatively different from

the Tdp1 activity in Tdp1�/� cells or Tdp1�/� cells comple-

mented with wild-type Tdp1. This defines Tdp1 H493R as a

neomorphic mutation. Moreover, the covalent stalling of

H493R Tdp1 on the DNA in CPT-treated SCAN1 cells provides

direct evidence that human Tdp1 removes CPT-trapped Topo I

from the DNA in vivo.

Model for the repair of covalent Topo I–DNA complexes

and the molecular mechanism of SCAN1

We previously had hypothesized that SCAN1 arises from cell

death or cellular malfunction secondary to the accumulation

of Topo I–DNA complexes; however, our data here suggest

that Tdp1–DNA intermediates arising from antecedent Topo

I–DNA complexes may be the underlying basis for the disease

(Figure 6C). Although treatment of Tdp1�/� mice with Topo I

inhibitors or bleomycin might have recapitulated the SCAN1

phenotype if sufficient DNA damage was able to accumulate,

Tdp1�/� mice treated with either high or low doses of drug

did not develop an SCAN1-like phenotype. This suggests that

the resultant DNA complexes are not the initiating lesions;

however, it seems more likely that for the high doses, the

drug-induced damage greatly exceeded the repair capacity

of the mice and therefore failed to mimic the low level

of naturally occurring lesions that accumulate in SCAN1

patients. And for low doses of drug, redundant path-

ways effectively repaired the DNA damage. Therefore, we

hypothesize that the prolonged half-life of the H493R Tdp1–

DNA complexes and the increased level of DNA damage

in neuronal cells is the origin of the cellular malfunction

underlying SCAN1. Such an increase in DNA damage in

neuronal cells could arise from decreased efficiency Tdp1–

DNA adduct removal since some DNA repair pathways are

attenuated in terminally differentiated cells (Nouspikel and

Hanawalt, 2002). Testing this model requires analysis of

another mouse model solely expressing the mutant H493R

Tdp1 rather than the loss of function mutation described here.

Relevant to the treatment of cancer, the absence of detect-

able acute effects of CPT and bleomycin treatment on the

murine nervous system suggests that nonproliferating cells of
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the nervous system are insensitive to Topo I–DNA complexes

and 30 phosphoglycolate-DNA damage. Thus, in contrast to

the accentuation of demyelinating neuropathies by some

chemotherapies (Weimer and Podwall, 2006), short-term

administration of these chemotherapeutic agents is unlikely

to induce neurological disease even in the absence of Tdp1.

Additionally, our observations suggest that Tdp1 is also a

reasonable chemotherapeutic target as long as the formation

and consequences of Tdp1–DNA complexes in non-neoplastic

tissues are carefully assessed.

In summary, SCAN1 is the first example of a human

genetic disease that results from a failure to repair DNA–

protein covalent complexes. SCAN1 likely arises not only

from a quantitative change in Tdp1 activity but also from a

Figure 5 Analysis of CPT-11-treated and untreated Tdp1þ /þ and Tdp1�/� cells and mice. (A) CPT sensitivity of Tdp1þ /þ and Tdp1�/�

neurosphere cells following 72 h of incubation with camptothecin (CPT) at the indicated concentrations. (B) CPT-11 and topotecan treatment
protocols and outcomes for Tdp1þ /þ and Tdp1�/� mice. Note that only mice treated repetitively at short intervals developed a phenotype; this
suggests a high level of redundancy for the removal of stalled Topo I. (C–R) Histopathology and TUNEL staining of liver and spleen derived
from Tdp1þ /þ and Tdp1�/� mice treated with 40 mg/kg of CPT-11 for 5 days. Note the extensive vacuolization (F) but paucity of TUNEL-
positive cells (J) in the liver of Tdp1�/� mice suggesting necrotic cell death. In contrast, the lymphoid and hematopoietic tissues such as the
spleen showed marked loss of tissue (M versus N) with a large number of TUNEL-positive cells (Q versus R) suggesting cell death by apoptosis.
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SCAN1 fibroblasts but not in unaffected fibroblasts (upper panel). The expected covalent Topo I–DNA complex (middle panel) and the relative
abundance of each protein (lower panel) are also shown. (B) Alkaline comet assay showing increased CPT induction of DNA strand breaks in
Tdp1�/� MEFs expressing H493R Tdp1 (pcDNA3.1(�) .TDP11478A4G) and reduced induction of DNA breaks in Tdp1�/� MEFs expressing wild-
type Tdp1 (pcDNA3.1(�) .TDP1WT). The comet moments were measured following treatment with 1mM CPT for 1 h and recovery in CPT-free
medium for the indicated times. The comet moment of Tdp1�/� MEFs transfected with only the expression vector (pcDNA3.1(�)) was
significantly different from TDP1WT and TDP11478A4G (**P50.001). The expression of human wild type and H493R Tdp1 was detected in the
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1478A4G mutation creates a BsaAI restriction site. (C) Potential model for the molecular basis of SCAN1. DNA breaks with blocked 30 ends
(e.g., Topo I or phosphoglycolate) undergo Tdp1-facilitated DNA repair via both DNA single-strand break repair (SSBR) and double-strand
break repair (DSBR) mechanisms. With loss of functional Tdp1 (Tdp1�/�), there is sufficient redundant activity for adequate DNA repair by
alternative pathways (e.g. endonuclease-dependent pathways) unless the system is further stressed as by administration of CPT or bleomycin.
In contrast, when Tdp1 carries the H493R mutation, it not only has a quantitative reduction in overall activity, but also a qualitative change
resulting in accumulation of Tdp1–DNA complexes. These complexes are efficiently removed from the DNA by wild-type Tdp1 in all tissues of
heterozygotes, whereas they are only removed in replicating cells of homozygotes by alternative DNA strand break repair mechanisms.
According to this model, the transcriptional interference and/or apoptosis resulting from the Tdp1–DNA complexes in nondividing neurons
causes SCAN1 via neurodegeneration.
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qualitative change that renders the enzyme different from

wild-type Tdp1 causing it to become covalently trapped

on the DNA. Furthermore, since the previously described

disease-causing neomorphic mutations are dominant

(Antonarakis et al, 2001; Beaudet et al, 2001), the recessive

nature of the neomorphic Tdp1 H493R mutation (Interthal

et al, 2005a, b) defines a novel mechanism for human

disease.

Materials and methods

Human subjects
Patients gave informed consent approved by the Institutional
Review Board of Baylor College of Medicine (H-9669, Houston,
TX, USA) and the University of British Columbia (C06-0283,
Vancouver, BC, Canada). The clinical data were collected from
questionnaires completed by the referring primary care physician
and from medical records and summaries provided by that
physician.

Animal subjects
Mice used in this study were housed, bred, and killed in accordance
with accepted ethical guidelines. These procedures were approved
by the Institutional Review Board of Baylor College of Medicine
(Houston, TX, USA, IRB protocol: AN-2983), the University of
British Columbia (Vancouver, BC, Canada, Animal Care Certificate:
A06-0257), and Kagoshima University (Kagoshima, Japan).

Transgenic mice
We purchased the gene trap embryonic stem (ES) cell line XD105
from BayGenomics (http://baygenomics.ucsf.edu/). XD105 was
generated by integration of pGT1Lxf into intron 11 of Tdp1.
This cell line was injected into albino C57 blastocysts that were
then implanted into pseudopregnant mothers. The resulting
chimeric mice were bred to 129/SvEv females to generate founders.
The progeny from these heterozygous founders were used for
all subsequent analyses. Mice were genotyped by PCR of genomic
DNA using a common forward primer in intron 11 and a reverse
primer in either intron 11 or in pGT1Lxf (Supplementary Table I)
and data not shown. The intron 11 primer pair detects the wild-type
allele but not the trapped allele, and the intron 11 forward
primer with the pGT1Lxf reverse primer detects the mutant allele
but not the wild-type allele. The PCR was carried out
using HotMasterMix (Eppendorf) with 50 ng of genomic DNA and
10 pmol of each primer. After initial denaturation at 941C for
2 min, amplification was performed for 40 cycles with denatura-
tion at 941C for 20 s, annealing at 551C for 10 s, extension at
651C for 90 s.

To determine if the gene trap allowed expression of full-length
Tdp1 mRNA by splicing around the gene trap, we performed RT–
PCR on brain RNA extracted from Tdp1�/� mice (Figure 1B). The
RT–PCR primers 50 of the trap reside in exon 2, and the primers 30 of
the trap reside in exons 12 and 16, respectively (Supplementary
Table I). The RT–PCR amplification was performed as described
below. To determine if the gene trap allowed expression of
aberrantly spliced mRNA, we performed RT–PCR using primers
residing in exons 9 and 14 (Supplementary Table I).

Bleomycin, CPT-11, etoposide, and topotecan treatment of
mice
Bleomycin (Bristol-Myers Squibb, Montreal, Canada), CPT-11
(Yakult Honsha Co., Tokyo, Japan), etoposide (Novapharm,
Toronto, Canada), or topotecan (LKT laboratories, Inc.) were
diluted with 5% Dextrose solution prior to intraperitoneal injec-
tion. Drug or PBS was given to five wild-type and five Tdp1�/� mice
according to the dosages and administration schedules indicated in
the Results and Figure 5B. The mice were evaluated by electro-
physiology (Supplementary data) 2 days after the last dose of
CPT-11, topotecan, or bleomycin.

Comet assay
For Figure 6 and Supplementary Figure 6, the MEFs were treated
with 1mM CPT, 12.5mg/ml bleomycin, or 12.5mg/ml etoposide for
60 min. For Figure 6, the CPTcontaining medium was then replaced

with fresh medium and the cells were allowed to recover for the
indicated times. The MEFs were then removed from the plates with
trypsin, washed with medium, resuspended in LMAgarose, and
layered on agarose-coated slides cooling on ice.

Alkali comet assay (Singh et al, 1988). For CPT- or bleomycin-
treated MEFs, the slides were immersed in lysis solution (2.5 M
NaCl, 100 mM EDTA, 10 mM Trizma base, 1% Triton X-100, 10%
dimethyl sulfoxide; pH 10) at 41C for 1 h. After a rinse in deionized
water, slides were immersed in a 41C alkaline solution (50 mM
NaOH, 1 mM EDTA, 1% dimethyl sulfoxide; pH413) for 25 min.
Electrophoresis was carried out at a constant voltage of 25 V for
25 min at 41C. After electrophoresis, slides were neutralized in
0.4 M Tris–HCl pH 7.5.

Neutral comet assay (Olive et al, 1992). For etoposide-treated
MEFs, the slides were immersed in lysis solution (50 mM EDTA,
0.5% SDS; pH 7.5) at 41C for 1 h. After a rinse in deionized water,
slides were immersed in 41C TBE for 25 min. Electrophoresis was
carried out at a constant voltage of 25 V for 25 min at 41C.

After electrophoresis for both methods, slides were dehydrated
in ice-cold 70% ethanol for 5 min and air-dried. DNA was stained
with Sybr Green I. A total of 100 comets were scored for each
sample using CASP (Konca et al, 2003) and statistically significant
differences in the distribution of comet moments were determined
using the Student t-test.

Anti-Tdp1 serum production
An anti-human Tdp1 serum was generated in rabbits against
Tdp1 amino acids 1–152. An anti-mouse Tdp1 serum was generated
in guinea pigs against the full-length protein (amino acids 1–608).
Both antigens were produced in Escherichia coli with the
pET28a expression system (Novagen). Neither antigen displayed
homology to other human proteins by BLASTp. The specificity of
each antiserum was confirmed by the absence of crossreactivity
with recombinant Tdp1 expressed in Tdp1�/� MEFs and by
competitive blocking with recombinant human or mouse Tdp1,
respectively.

Immunohistochemistry and histopathology
Human and mouse brains were fixed by immersion in 10% buffered
formalin or 4% PFA in PBS. The brain tissue was processed,
embedded in paraffin, and cut into 8 mm sections according to
standard protocols (Deguchi et al, 2003). Immunohistochemistry
was carried out as previously described (Kilic et al, 2005). We used
the polyclonal rabbit anti-human Tdp1 at a dilution of 1:50 and the
polyclonal guinea pig anti-mouse Tdp1 at a dilution of 1:50. TUNEL
detection of apoptotic cells was carried out using the ApopTag
Peroxidase In Situ Apoptosis Detection Kit (Chemicon, S7100) and
the tissue was counterstained with 1% methyl green.

Modified ICE assay (Subramanian et al, 1995)
Briefly, two confluent 15 cm Petridishes of telomerase immortalized
SCAN1 or control human fibroblasts were treated with 20mM CPT
for 1 h. Cells were lysed in 0.8% SDS in TE and the genomic DNA
was sheared with a syringe. Small aliquots of the whole cell extracts
were mixed with SDS loading buffer for later analysis. The
remaining cell lysates were diluted four-fold with 1% N-lauroyl-
sarcosine and the extracts were layered onto a CsCl cushion (1.5 g/
cc). After ultracentrifugation, the pellet fraction was treated with
micrococcal nuclease to remove the majority of the DNA bound to
the proteins. Samples were mixed with SDS sample buffer and
subjected to SDS–PAGE and western blotting.

Tdp1 activity assay with mouse neurosphere cell extracts
Exponentially growing neurospheres were harvested by centrifuga-
tion, washed twice in PBS, and resuspended to 8�107 cells/ml
in lysis buffer (10 mM Tris–HCl (pH 7.5), 50 mM KCl, 2 mM MgCl2,
1% Triton X-100, 15 mM DTT, 0.2 mg/ml PMSF, 1/1000 volume of
protease inhibitor mixes Pic-D (5 mg/ml Pepstatin A, 1 mg/ml
chymostatin in DMSO), and Pic-W (208 mg/ml benzamidine,
5 mg/ml aprotinin, and 1 mg/ml leupeptin in H2O)). The cells were
lysed by vortexing for 1 min and the cell extracts were clarified by
centrifugation.

Cell extracts were first diluted 1:2 with 2� reaction buffer
(200 mM KCl, 40 mM Tris–HCl (pH 7.5), 40 mM EDTA, 2 mM DTT)
and then 10-fold serially diluted in reaction buffer. For the
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experiment shown in Figure 1D, 10 ml of the extract dilutions was
added to 5ml of reaction buffer containing 0.01 pmol of 32P-50 end-
labeled substrate 12-Y (a 12-mer DNA oligonucleotide with a 30

phosphotyrosine (Interthal et al, 2005b)) and the reactions were
incubated at 371C for 30 min and stopped with an equal volume of
formamide loading dye. Assays were analyzed on a 15% sequen-
cing gel. Image retrieval and quantitation were carried out using
a PhosphorImager and ImageQuant software (Amersham Bio-
sciences).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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