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Abstract
Many phytochemicals, the bioactive nonnutrient compounds found in plant foods, possess biologic
effects associated with reduced risk of various diseases such as cancer. Genetic variation in pathways
affecting absorption, metabolism, and distribution of phytochemicals is likely to influence exposure
at the tissue level, thus modifying disease risk in individuals. Few studies have examined these gene-
phytochemical interactions in humans. In this review, we discuss the sources of variation in
metabolism and disposition of phytochemicals, and focus on two aspects of phytochemical handling
that have received some attention: the impact of intestinal bacteria and genetically polymorphic phase
II, conjugating enzymes.
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1. Introduction
Phytochemicals are bioactive nonnutrient chemical compounds found in plant foods, such as
fruits, vegetables, grains, and other plant foods. They can be categorized into various groups,
i.e., polyphenols, organosulfur compounds, carotenoids, alkaloids, and nitrogen-containing
compounds. The polyphenols are some of the most studied compounds and can be further
divided into flavonoids (including flavonols, flavones, catechins, flavanones, anthocyanidins,
and isoflavones), phenolic acids, stilbenes, coumarins, and tannins [1].

Many phytochemicals are potent effectors of biologic processes and have the capacity to
influence disease risk via several complementary and overlapping mechanisms [1–5]. In
theory, genetic variation in pathways affecting absorption, metabolism, and distribution of
phytochemicals is likely to influence exposure at the tissue level. Similarly, genetic variation
in the pathways within which these compounds interact can alter biological response. However,
beyond a few well-recognized conditions (e.g., glucose-6-phosphate dehydrogenase and vicine
and covicine: favism), little is known about the biologic effects of genetic variation on these
gene-phytochemical interactions in humans, particularly as it relates to cancer risk. Further,
some phytochemicals undergo bacterial modification to produce metabolites that are more
biologically active than the parent compounds. Few studies have systematically addressed the
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factors that contribute to the substantial variation in the metabolism and disposition of
phytochemicals in vivo. Two aspects of phytochemical handling that are receiving some
attention, particularly in relation to specific phytochemicals, are the impact of intestinal
bacteria and genetically polymorphic phase II, conjugating enzymes.

2. Sources of variation in phytochemical metabolism and disposition
Researchers investigating the pharmacokinetics of phytochemicals in humans have observed
substantial variation (reviewed in [6,7]). Circulating concentrations of phytochemicals, such
as psoralens, lignans, and the flavonoids naringenin and hesperitin, can vary widely among
individuals even in the context of controlled feeding studies [8–10]. The process of
phytochemical disposition, like that of disposition of drugs and other xenobiotics, involves
absorption, metabolism, distribution, and excretion, and each of these parts may contribute to
pharmacokinetic variability (Figure 1) [11].

Many phytochemicals are present in plant foods as glycosides or other conjugates and need to
be hydrolyzed in order to be absorbed [7]. This hydrolysis can be carried out by brush border
membrane-bound β-glucosidases (e.g., lactase phlorizin hydrolase) or by gut bacterial β-
glucosidases in the lower small intestine and colon. Once absorbed, aglycones undergo
extensive first-pass metabolism in the gut epithelium or liver, with many compounds being
conjugated with glutathione, glucuronic acid or, to a lesser extent, sulfate. Conjugation in the
intestinal epithelium and liver by UDP-glucuronosyltransferases (UGT) and sulfotransferases
(SULT) results in conjugates that are excreted in urine and bile. Those that are re-excreted
through the bile duct are deconjugated by bacterial β-glucuronidase and can undergo
enterohepatic recycling.

The transcellular transport of ingested food ingredients across the intestinal epithelium is
another important factor determining bioavailability upon oral intake. For many
phytochemicals and other xenobiotic compounds, this transcellular transport is dependent on
the activity of membrane-bound, ATP-binding cassette (ABC) transport proteins, which are
able to export the compounds from intestinal cells. ABC transporters can efflux a variety of
conjugated and unconjugated compounds from the intestinal cells, either to the basolateral
blood side, facilitating absorption, or back into the intestinal lumen, reducing bioavailability.
The intestinal ABC transporters include P-glycoprotein (Pgp/MDR1/ABCB1), multidrug
resistance proteins (MRPs/ABCCs) and breast cancer resistance protein (BCRP/ABCG2/
ABCP/MXR) and these transporters are typically located specifically in the apical (intestinal
luminal side) or basolateral (blood/plasma side) membrane of the enterocytes [12]. Animal and
cell-based studies have demonstrated a role for P-gp and BCRP and other transporters in
regulating the uptake of various flavonoids and other phytochemicals [13,14]. Polymorphisms
have been identified in ABCB1, ABCC1, ABCC2, and ABCG2; however, their impact on drug
disposition in vivo are not well understood [15–17] and the implications for their effects on
phytochemical efflux are unknown.

As with other xenobiotics, some phytochemicals undergo Phase I reactions in the liver. Several
studies have shown, using human liver microsomes or monitoring metabolites in vivo in
pharmacokinetic studies, that hydroxylation can occur at various positions on lignans,
isoflavones, and other flavonoids, producing an array of novel secondary oxidation products
[18–22]. However, oxidation products appear to be minor metabolites of most polyphenols,
probably due to rapid conjugation of the would-be Phase I substrates in the intestinal epithelium
and the liver. In contrast, isothiocyanates (ITC) derived from cruciferous vegetables have been
shown to undergo extensive Phase I metabolism in rats [23]. Although it has not been
determined to what extent these reactions occur in humans, theoretically, genetic variation in
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cytochrome P-450 (CYP) and other Phase I enzymes that can metabolize phytochemicals has
the capacity to influence biologic response to phytochemicals [6].

In addition to the genetic variation that influences the degree of absorption, metabolism, and
excretion of phytochemicals, variation in receptors and signal transducers that interact with
phytochemicals has the potential to affect response to these plant constituents at the tissue level.
For example, several estrogen receptor (ER) gene mutations resulted in receptors with altered
binding to its natural agonist estradiol and concomitantly altered transcriptional properties
[24–26]. Similarly, this may influence binding of other ER ligands, such as the phytoestrogens.

3. Phytochemical metabolism by gut bacteria
Gut bacteria can hydrolyze glycosides, glucuronides, sulfates, amides and esters [27]. They
also carry out reduction, ring-cleavage, demethylation and dehydroxylation reactions [27–
29]. The hydrolysis of glycosides and glucuronides typically results in metabolites that are
more biologically active than the parent compounds. In contrast, further bacterial degradation
and transformation of aglycones can lead to production of more or less active compounds,
depending on the substrate being metabolized and the products formed.

Plant polyphenols, including phytoestrogens such as the isoflavones and lignans, are
extensively metabolized in the gut by intestinal bacteria. To date, probably the most familiar
example of interindividual differences in effects of host bacteria relates to isoflavone
metabolism. Equol is produced from the soy isoflavone daidzein via the actions of intestinal
bacteria. The production of equol in humans is of particular interest for several reasons,
including: 1) there is substantial interindividual variation in the ability to produce equol, but
the capacity to produce equol appears predominantly stable in an individual over time; 2) in
vitro and in some animal models, equol is more biologically active than its precursor daidzein
and the alternate metabolite O-desmethylangolensin; and 3) equol production has been
associated with reduced risk of certain cancers and other diseases in humans (reviewed in
[30]). In general, the proportion of equol-producing individuals is reported to be approximately
one-third to one-half of the human population. Diet and host genetics may contribute to
interindividual differences in equol production in humans; however, the reasons for such
differences in the ability to harbor the equol-producing bacteria remain essentially unknown
[30].

Wide interindividual differences in lignan metabolism also have been reported [31–36], but
the reasons for such variation and the ultimate impact this may have on human health have not
been fully evaluated. Plant lignans such as secoisolariciresinol diglucoside (SDG) and
matairesinol, are metabolized by intestinal bacteria to the enterolignans (also known as
mammalian lignans) enterodiol (END) and enterolactone (ENL). END can be further
metabolized to ENL. Lignans are present in plants primarily as glycosides, and, upon ingestion,
the sugar moieties are hydrolyzed to release the aglycones. Hydrolysis can be carried out by
both bacterial β-glucosidases, and β-glucosidases in the human gut mucosal brush border
[37]. The aglycones are absorbed or can be metabolized further by gut bacteria to the
enterolignans. Matairesinol and SECO can be dehydroxylated and demethylated to form ENL
and END, respectively [38]. Bacterial oxidation of END also occurs to yield ENL, but, while
ENL can be reduced chemically to END, this reverse reaction does not appear to occur in
vivo [39].

Matairesinol and SECO were long assumed to be the major plant lignans that could be
converted to END and ENL; however more recently several studies have shown the capacity
of gut bacteria to convert other plant lignans to enterolignans [38,40]. Heinonen et al [38]
reported that plant lignans including pinoresinol diglucoside, 7-hydroxymatairesinol, and
lariciresinol could be converted to END and ENL. The efficiency of conversion of plant lignan
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precursors to END and ENL in 24-h incubations with human fecal inocula varied greatly
depending on the compound and ranged from 0 to 100%. Studies have reported that urinary
excretion of ENL is very low or nonexistent in some study participants challenged with SDG
[9,35,36]; these results suggest that there may a subpopulation of individuals that lacks the
bacteria or appropriate intestinal environment necessary for oxidation of END to ENL.

Interindividual differences in gut microbial community structure also affects metabolism of
other polyphenols and ultimately human exposure to specific bioactive compounds.
Isoxanthohumol, produced from the hop-derived prenylchalcone xanthohumol during the beer-
making process, is the principal prenylflavonoid present in beer at concentrations ranging from
0.5 mg/L up to 4 mg/L [41]. It is metabolized by gut bacteria to 8-prenylnaringenin (8-PN),
one of the most potent phytoestrogens currently known. Possemiers et al [42] reported that in
vitro incubations of fecal samples from female volunteers resulted in varying degrees of
conversion of isoxanthohumol to 8-PN ranging from approximately 7 to 79% after 72 h. The
authors estimated that these interindividual differences in gut microbial activity could result
in a 10-fold difference in intestinal 8-PN production after moderate beer consumption.
Similarly, in another in vitro study, the intestinal bacterial communities from some individuals
did not degrade the flavonoid naringenin, whereas those from others produced a range of
intermediates, and those from some individuals completely degraded the compound [29]. Thus,
differences in microbial biotransformation potential may result in the production of
biologically-relevant concentrations of bacterially-derived phytochemicals in some
individuals but not others, exerting differential health effect in the hosts.

Another group of compounds that undergo gut bacterial metabolism are the glucosinolates
(β-thioglycoside N-hydroxysulfates) present in cruciferous vegetables. As with other plant
compounds, the glucosinolates themselves are not biologically active, but some of their
hydrolysis products, e.g. ITC and indole, are. The plant enzyme myrosinase, a β-
thioglucosidase, co-occurs in plants producing glucosinolates and in intact plant tissues is
located in a compartment separate from the glucosinolates. When the cells in plants are
damaged (e.g., cut, ground, or chewed), enzyme and substrate come in contact, releasing the
biologically active ITC. If myrosinase has been inactivated (e.g., with cooking), intestinal
microbial metabolism of glucosinolates contributes to ITC exposure, albeit at a lower level
[43]. Getahun and Chung (1999) observed large interindividual variation in excretion of
dithiocarbamates (metabolites of ITC), ranging from 1 to 7% of the ingested glucosinolates
for cooked watercress in which the plant myrosinase had been inactivated. Similarly, in a
randomized, parallel arm of 400 µmol glucoraphanin/d (provided as a broccoli-sprout hot water
extract, where ITC bioavailability is highly dependent on bacterial hydrolysis of the
glucosinolates) vs. placebo, Kensler et al [44] reported large interindividual variation in
overnight dithiocarbamate excretion, ranging from 1 to 45% of administered dose. Although
these studies did not test the direct contribution of gut bacterial hydrolysis to the variation in
response, the results suggest that interindividual differences in gut bacteria may play a role in
availability of ITC.

4. Phytochemical metabolism by polymorphic phase II conjugating enzymes
Phytochemicals are metabolized in vivo by biotransformation enzymes in a manner similar to
that of other xenobiotics. Many classes of phytochemicals are rapidly conjugated with
glutathione, glucuronide, and sulfate moieties and excreted in urine and bile. Thus, in theory,
polymorphisms in biotransformation enzymes, such as the glutathione S-transferases (GST),
UGT, and SULT, have the capacity to affect phytochemical metabolism in the same fashion
as they do carcinogens and other xenobiotics.
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4.1. Glutathione S-Transferases
To date, probably, the most studied group of compounds in this regard is the ITC in cruciferous
vegetables. The primary route of in vivo metabolism of ITC is by the mercapturic acid pathway,
a major pathway for elimination of many xenobiotics [45]. Thiol conjugates of ITC are formed
by conjugation with glutathione, catalyzed by GST. Subsequent, stepwise cleavage of
glutamine and glycine yields L-cysteine-ITC, which are acetylated to produce N-acetyl-L-
cysteine ITC conjugates (mercapturic acids); these are excreted in urine. Thus, GSTs play an
important role in disposition of ITC in humans. Relationships between cruciferous vegetable
intake and cancer risk may be influenced by genetic polymorphisms in biotransformation
enzymes that metabolize ITC, as well as possibly in receptors and transcription factors that
interact with these compounds.

In humans there are 3 major GST families: cytosolic GST, mitochondrial GST, and microsomal
GST that are now referred to as membrane-associated proteins in eicosanoid and glutathione
metabolism (MEPEG) [46]. Cytosolic GST are the largest GST family, containing 7 classes:
α, ζ, θ, μ, π, σ, and ω GST. Two studies examined the ITC metabolism by different GST
isozymes and found GSTM1-1 and GSTP1-1 to be the most efficient catalysts, GSTA1-1 to
be less efficient, and GSTM2-2 and GSTM4-4 to be the least efficient [47,48].

Depending on the population, 27 – 53% of people are GSTM1-null (no expression of GSTM1)
and 20 – 47% of people in various ethnic groups are GSTT1-null (no expression of GSTT1)
[49]. Investigators have hypothesized that individuals who are null for GSTM1 and GSTT1,
and who therefore less readily conjugate and excrete ITC, would have greater amounts of ITC
at the tissue level, and hence would experience a greater protective effect of glucosinolates
consumption [49]. Results of one population-based study of ITC excretion among Chinese
showed that urinary ITC was higher among GSTT1-positive, relative to GSTT1-null,
individuals, but that GSTM1 and P1 genotypes had no effect [50]. In contrast, a recent
pharmacokinetic study of sulforaphane disposition showed that GSTM1-null, relative to
GSTM1-positive, individuals, had greater areas under the curve for plasma sulforaphane
metabolite concentrations, faster rates of urinary sulforaphane metabolite excretion in the first
6 hours following consumption, and higher total excretion of sulforaphane and its metabolites
over 24 h [51]. In a larger feeding study of a single meal containing 2.5 g broccoli/kg body
weight, urinary ITC concentration did not differ by GSTM1, GSTP1, and GSTA1 genotypes
except there was a tendency toward higher ITC excretion in GSTT1-positive individuals. Using
a chi-square analysis, they observed a higher proportion of GSTM1-null individuals with high
urinary ITC excretion compared to the proportion of GSTM1-positive individuals with high
urinary ITC excretion [52]. Both of these studies were conducted using a single dose of
broccoli, rather than more prolonged feeding that would be more comparable to habitual dietary
practices among populations that routinely consume crucifers. Whether these differential
responses are a function of acute versus chronic feeding or differences in the varieties of ITC
present in broccoli versus crucifers commonly consumed in China remains to be established
[51]; however, they speak to the further need to understand how genotype influences ITC
disposition.

Polymorphisms in ITC-metabolizing enzymes may affect response of other biotransformation
enzymes to ITC exposure. In one cross-sectional study, among frequent consumers of broccoli,
GSTM1-null, relative to GSTM1-positive, individuals had a 21% higher CYP1A2 activity
[53]. This relationship was not observed in a controlled feeding study designed to test a
priori the effect of GSTM1 genotype on response to a diet high in cruciferous vegetables;
increased CYP1A2 activity on the crucifer-containing diet was not affected by GSTM1
genotype [54]. However, in this same feeding study [55], serum GSTα concentration, a
surrogate measure of hepatic GSTα and an enzyme also induced by ITC, increased significantly
in response to cruciferous vegetable feeding, but only in GSTM1-null individuals.
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4.2. UDP-Glucuronosyltransferases
The substrate-binding regions of the UGT genes are highly polymorphic and many result in
amino acid changes that alter enzyme function to varying degrees in in vitro systems [56,57].
The functional impact of an alteration in UGT protein is often substrate-specific. In vivo, where
multiple UGTs are expressed in the same tissue, the overall impact is often less clear.
UGT1A1 polymorphisms associated with Gilbert syndrome (fasting hyperbilirubinemia) have
been most strongly associated with altered xenobiotic glucuronidation in vivo.

Dietary flavonoids are a structurally diverse class of compounds. This class includes the
flavones and flavonols (e.g., apigenin, chrysin, galangin, luteolin, quercetin, etc.), flavanes
(e.g., catechin, hesperetin, naringenin, etc.) and isoflavonoids (e.g., genistein, daidzein, etc.).
The selectivity of glucuronosyl conjugation of the flavonoids is dependent both on the structure
of a particular flavonoid as well as on the UGT enzyme involved in its conjugation. For
example, UGT1A1, UGT1A8, and UGT1A9 have been shown to be especially active in
conjugating luteolin and quercetin, whereas UGT1A4, UGT1A10, and UGT2B7 and
UGT2B15 in the UGT2B family are less efficient [58]. The isoflavone genistein is conjugated
by UGT1A3, UGT1A8, and, with less efficiency, by UGT1A1 and UGT1A10, but not by
UGT2B15 [59,60].

The effects of UGT polymorphisms on flavonoid clearance have not been examined; however,
studies showing that polymorphisms affect glucuronidation and clearance of drugs and other
xenobiotic compounds suggest that it is possible that similar effects may be seen for the dietary
flavonoids. For example, the UGT1A1*28 polymorphism, which results in 30–40% lower
UGT1A1 gene transcription among homozygous variant individuals, is associated with
increased toxicity in colorectal cancer patients treated with the topoisomerase I inhibitor,
irinotecan. Innocenti et al reported that, compared to *1/*1 and *1/*28 individuals, *28/*28
individuals had a higher prevalence of grade 4 neutropenia and a higher area under the curve
(AUC) for the irinotecan metabolite SN-38 that requires glucuronidation in order to be cleared
effectively [61]. Peters et al showed that, with exposure to well-cooked red meat (a source of
mutagenic compounds) in a controlled feeding study, individuals with the *1/*28 and *28/
*28 genotypes had a higher urinary mutagenicity index than did individuals with the *1/*1
genotypes [62]. The authors suggested that greater amounts of the mutagens were being
excreted in the freeform, rather than being glucuronidated and deactivated. Further, Chung et
al [63] showed that the UGT2B15 *2/*2 genotype was associated with a 0.58-fold lower
systemic clearance compared with *1/*1 group for lorazepam in healthy volunteers. Although
having this polymorphism may result in adverse responses in the context of exposure to toxic
compounds or carcinogens, it may be beneficial in the context of reduced conjugation of
phytochemicals. This has yet to be studied.

Other UGT polymorphisms have also been shown to speed drug clearance, but the impact on
phytochemical metabolism remains unknown. For example, the UGT1A4 (L48V) variant
glucuronidates tamoxifen and its active metabolites at a faster rate [64]. Women at high-risk
for breast cancer who take tamoxifen as a chemopreventive agent, particularly those with the
UGT1A4 (L48V) polymorphism, may experience reduced effectiveness of anti-estrogen
therapy [64].

4.3. Sulfotransferases
Although the majority of flavonoid conjugates in circulation or excreted in urine are
glucuronides, a fraction – 2 to 10% – are also sulfated by cytosolic SULT in the liver and
gastrointestinal tract. Because sulfates can be deconjugated in target tissues, circulating sulfate
conjugates of phytochemicals may act as a source of tissue aglycones. SULT1A1 has shown
high sulfating activity with a variety of flavonoids, isoflavonoids, anti-oxidants, and other
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phenolic dietary compounds, and SULT1A3 also has high activity with the flavonoids, but not
with isoflavonoids [65,66]. Genetic variants in SULT genes with associated functional
consequences on the translated protein have been identified. Single-nucleotide polymorphisms
in SULT 1A1 and 2A1, are common and have been associated with altered response to
therapeutic agents and sex steroid concentrations, respectively (reviewed in [67]). Similarly,
this variability could influence the disposition of phytochemicals metabolized by SULT;
however, this remains to be tested.

5. Summary
Intake of a particular phytochemical or its precursor does not necessarily equate with exposure
at the tissue level. Interindividual differences in phytochemical metabolism and disposition
may be affected by: gut microbial identity and activity; genetic determinants of
biotransformation enzyme expression, stability, and activity; environmental exposures that
influence gut microflora and biotransformation enzymes; and variation in levels of endogenous
compounds that modulate biotransformation pathways. An enhanced understanding of the
factors that contribute to interindividual differences in the metabolism and disposition of
phytochemicals may allow for more comprehensive evaluation of the role of these dietary
constituents in cancer prevention. With new molecular techniques available to characterize gut
microbial communities, the bacteria involved in the rate-limiting steps of phytochemical
metabolism can be characterized. Controlled pharmacokinetic studies that are powered
sufficiently to test effects of genotype on phytochemical metabolism may help to identify and
quantify the role of specific polymorphisms.
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Figure 1.
Sources of variation in phytochemical metabolism and disposition.
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