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The Hemimethylated Replication Origin of Escherichia coli
Can Be Initiated In Vitro
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Unmethylated, fully methylated, and hemimethylated orC-containing plasmids were assayed as substrates
for DNA replication in vitro by using a system reconstituted with pure proteins. In contrast to the in vivo
situation, all three substrates were initiated efficiently; the fully methylated plasmid was about twice as active
as the other two.

The minimal chromosomal origin of replication in Esche-
richia coli, the 245-bp oriC sequence, contains 11 GATC
sequences (18, 25). GATC is the recognition sequence for
Dam methyltransferase (10, 14), which methylates the ade-
nine in the N-6 position. As oriC is replicated, each fully
methylated parental strand becomes paired with a newly
synthesized and therefore unmethylated strand to yield a
hemimethylated duplex, whereupon Dam methyltransferase
methylates the unmethylated GATC sites in the nascent
strand.
Evidence is mounting from in vivo experiments that

GATC methylation is a regulatory event in the initiation of
DNA replication. (i) Plasmids dependent upon oriC for
replication (minichromosomes) transform dam mutants
poorly (19, 24), and hemimethylated minichromosomes ac-
cumulate after transformation (22). (ii) Hemimethylated but
not fully methylated oriC can be found sequestered in the
membrane (20). In cells growing rapidly, methylation of oriC
after passage of the replication fork takes 8 to 10 min (6, 20),
a lag that may provide an eclipse period during which oriC is
not available for reinitiation. (iii) In a dam mutant cell, all
origins present are not initiated simultaneously (4), in con-
trast to the synchrony of initiation observed in wild-type
cells (23). Synchronous initiation requires a specific level of
Dam methyltransferase activity (3), consistent with a model
in which the rate of methylation of hemimethylated sites in
oriC is critical for the timing of initiation.

In vitro experiments have failed to demonstrate any major
deficiencies of undermethylated oriC as a substrate in initi-
ation, although unmethylated minichromosomes are some-
what poorer substrates for replication than are fully methyl-
ated ones (12, 19, 24). Recently, hemimethylated plasmids
were shown to be replicated in a crude enzyme system at
about half the rate of fully methylated ones (15). In the
present work we investigated the significance of the methyl-
ation status of oriC in an in vitro replication assay employing
pure protein components.
The bacterial strains used for propagating the oriC-con-

taining plasmid pTB1l1 (2) were AB1157 dam' (1) and
GM2927 dam-13::Tn9 (17). In cells carrying the latter muta-
tion, no evidence of 6-methyl-adenine could be found in the
DNA (21). Restriction enzymes were from Pharmacia, Dam
methyltransferase was from New England BioLabs, and E.
coli DNA ligase was from Toyobo Biochemicals. Enzymes
were used according to the suppliers' instructions.
Unmethylated or fully methylated pTB1l1 plasmids were

propagated in strains GM2927 and AB1157, respectively.
The methylated plasmids were digested with HincII; the
unmethylated plasmids were digested with EcoRV. These
restriction enzymes each cleave the plasmid at one site in the
linker region. The digested linear plasmids were denatured,
mixed, and renatured essentially as described earlier (11).
The renatured plasmids were of three kinds: fully methylated
and unmethylated linear molecules and hemimethylated mol-
ecules in which the single-stranded overhang allowed the
formation of circular plasmids. These circles were closed
covalently by treatment with E. coli DNA ligase, which is
unable to ligate the blunt-ended linear molecules. Covalently
closed circles were purified by equilibrium density gradient
centrifugation. Insignificant degradation of the purified,
hemimethylated circles was observed after digestion with
the restriction enzymes DpnI and MboI, which cleave fully
methylated and unmethylated DNA, respectively.

oriC-containing plasmids differing in their methylation
status were tested as substrates for the initiation of DNA
replication in the standard reconstituted DNA replication
assay (2, 13), with the following modifications: the standard
reaction (25 ,ul) contained 170 ng of DnaA protein, 21 ng of
HU protein, and no RNA polymerase. DNA gyrase, which
allows rapid supercoiling of the relaxed hemimethylated
templates, is a standard ingredient in the assay. The radio-
actively labeled precursor was [a-32P]dCTP (Amersham,
England). All constitutents were mixed at 0°C and incubated
at 37°C for a predetermined period of time. Total nucleotide
incorporation (picomoles of DNA synthesized) was mea-
sured by liquid scintillation counting after precipitation with
trichloroacetic acid and filtration onto Whatman GF/C fil-
ters.

After a brief lag, replication of minichromosomes is com-
plete within a few minutes in the assay reconstituted with
pure proteins (2, 13). Replication of unmethylated and hemi-
methylated plasmids was efficient and at about half the rate
of fully methylated plasmids (Fig. 1). Hemimethylated plas-
mids methylated by Dam methyltransferase to full resistance
to MboI cleavage were replicated as efficiently as those
purified from a dam' strain (Fig. 1). The relative template
efficiencies of the plasmids in the three states of methylation
proved to be similar at all DnaA concentrations (Fig. 2).

Thus, initiation of replication of hemimethylated and
unmethylated oriC in a reconstituted pure protein system is
efficient and about half that of a fully methylated template. It
may be inferred that proteins necessary for initiation (DnaA,
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FIG. 1. Replication of minichromosome pTBlOl in different

states of methylation. Replication was in the standard reconstituted
assay with DNA templates that were unmethylated (0), fully
methylated (0), hemimethylated (O), and fully methylated in vitro
from the hemimethylated state by dam methyltransferase (D).

DnaB, DnaC, primase) are not appreciably sensitive to the
methylation status of the oriC region. This result is in
agreement with replication assays in cruder systems employ-
ing unmethylated plasmids (12, 19, 24) and hemimnethylated
plasmids (15). The lack of initiation of hemimethylated
origins in vivo implies that E. coli contains a factor, absent
from our replication system, that inhibits initiation of hemi-
methylated oriC. In accordance with this, recent evidence
shows that the outer membrane of E. coli contains a factor
that inhibits specifically the initiation of hemimethylated
oriC (16). This factor may sequester hemimethylated origins
in a membrane-bound state (20) that protects them from Dam
methyltransferase action (6, 20). In vivo, unmethylated
minichromosomes are replicated better than hemimethylated
ones (21), in contrast to the results presented here, further
arguing that the in vivo and in vitro effects of methylation are
distinct.
Base pairing of 6-methyl-adenine with thymine occurs
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FIG. 2. Dependence on DnaA protein for replication activity.
Replication was in the standard reconstituted assay with different
amounts of DnaA protein and plasmid pTB1l1 that was unmethy-
lated (0), fully methylated (0), and hemimethylated (O). The
reaction time was 30 min.

only in the energetically unfavorable trans configuration (8).
The lowered thermal stability of fully methylated DNA
compared with that of partly methylated or unmethylated
DNA (7, 9) has been demonstrated directly for oriC (26). The
initial unwinding of oriC occurs within a segment containing
three consecutive repeats of a 13-mer nucleotide sequence
(5), each with the methylatable GATC site. Facilitation of
unwinding mediated by the methylation of these GATC sites
may be the basis for the enhanced efficiency of initiation of
fully methylated oriC compared with those of the unmethy-
lated and hemimethylated forms.
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