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INTRODUCTION

CONVENTIONAL POLYSOMNOGRAPHY CONSISTS 
IN OBTAINING RECORDINGS FROM AT LEAST 2 
ELECTROENCEPHALOGRAM (EEG) CHANNELS, AN 
electrooculogram (EOG), and an electromyogram (EMG), and 
scoring them manually using Rechtschaffen and Kales rules.1 
Although this method has become the reference standard, it has 
serious limitations. First, the recording equipment is bulky, mak-
ing “real life” ambulatory recording difficult. Second, setting up 
the device and scoring the recordings is a time-consuming and 
therefore costly task. This makes conventional polysomnography 
unsuitable for screening large populations, for instance to inves-
tigate the impact of noise on sleep quality. In addition, the time-

consuming nature of polysomnography is an obstacle to meet-
ing the rising demand, for example, for sleep apnea diagnosis, 
related to its relatively high prevalence and to its cardiovascular 
consequences. Several automated or semi-automated methods for 
faster analysis of sleep recordings have been suggested. Most of 
them, however, require a full set of EEG, EOG, and EMG record-
ings.2-14

Benoit and Prado, in contrast, developed a semi-automatic 
analysis method based on a single EEG channel.15,16 This method 
was validated in both healthy volunteers and patients.17-19 A com-
bination of multiple signal-processing techniques was then used 
to convert the method to a fully automated analysis of a single 
EEG channel recording. The analysis software is called Automat-
ic Sleep EEG Analysis (ASEEGA, Physip, Paris, France). Fol-
lowing an early pilot work,20 the present study aimed at compar-
ing sleep scoring by ASEEGA with conventional manual scoring, 
in healthy individuals. We used both our own data and publicly 
available data.

METHODS

In this section, we describe our evaluation of ASEEGA in 
healthy subjects. To further assess the performance and robust-
ness of ASEEGA, we also applied it to publicly available data 
(see Appendix for details and results).

Study Participants and Recordings

Fifteen volunteers (aged 29.2 ±  8 years, 9 women) were en-
rolled in the study through local advertising. They were adminis-
tered the Epworth sleepiness questionnaire and interviewed about 
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stage 1/stage 2/SWS). The obtained overall agreements, as quantified 
by the kappa coefficient, were 0.82, 0.81, 0.75, and 0.72, respectively. 
Furthermore, obtained agreements between ASEEGA and the expert 

consensual scoring were 96.0%, 92.1%, 84.9%, and 82.9%, respectively. 
Finally, when classifying into 5 states, the sensitivity and positive predic-
tive value of ASEEGA regarding wakefulness were 82.5% and 89.7%, 
respectively. Similarly, sensitivity and positive predictive value regarding 
REM state were 83.0% and 89.1%.
Conclusions: Our results establish the face validity and convergent va-
lidity of ASEEGA for single-channel sleep analysis in healthy individuals. 
ASEEGA appears as a good candidate for diagnostic aid and automatic 
ambulant scoring.
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their medical history, sleep quality and daytime sleepiness. Sub-
jects had to be devoid of any significant medical event, to have a 
good sleep quality and a normal Epworth sleepiness score (<11), 
and to present no night symptoms. The study was approved by 
the local ethic committee, and volunteers gave their informed 
consent. In each participant, we recorded a full-night polysom-
nogram comprising 2 EEG channels (see below), a chin EMG, 2 
EOG channels, EMGs from electrodes on the right and left tibi-
alis anterior muscles, and an electrocardiogram (ECG), using a 
commercially available recording device (Embla N7000, Embla, 
Denver, CO, USA).

EEG activity was recorded (16 bits, 200 Hz) through 2 bipolar 
channels (C4-O2 and Cz-Pz, according to the international 10-
20 standard system), hardware-filtered (DC, powerline and 90 
Hz anti-aliasing filtering), and strongly amplified (full scale: ± 
100 µV) to provide high resolution (3 nV/bit). High resolution 
is crucial for automatic analysis,21,22 since the signal of interest is 
provided by a single EEG channel. 

Automatic Analysis

We used version R. 1.3.14 of ASEEGA. The analysis and clas-
sification algorithm has been described elsewhere.23 In brief, the 
automated procedure comprises 3 steps: preprocessing, analysis, 
and classification (see Figure 1). 

Step 1: Preprocessing. 

After downsampling of the raw signal to 100.00 Hz, artifacts 
are detected automatically based on signal-power criteria in spe-
cific frequency bands. Then, to accommodate the inter-individual 
variability of EEG signals, data-driven automated tuning of the fre-
quency bands of interest is performed. In a given individual, the 
frequency band of interest can differ slightly from mean values.21,22 
For instance, alpha rhythm, usually defined as 8-12 Hz activity, may 
occur in the 7-11 Hz range. This ability of ASEEGA to define indi-
vidually tailored frequency bands should prove particularly useful 
when dealing with patients, whose signal tends to exhibit greater 
variability and instability compared to healthy individuals. In most 

of our healthy volunteers, the frequency bands matched conven-
tional definitions: δ (0-4 Hz), θ (4-8 Hz), α (8-12 Hz), and σ (12-16 
Hz). We used a 0-4 Hz δ band definition† rather than 0-2 Hz (the 
R&K definition), in accordance with Aeschbach and Borbely who 
showed that this frequency band (slow wave activity) better fits the 
description of the dynamic of slow wave sleep (SWS).24 The β band 
is split into β1 (16-18 Hz) and β2 (18-50 Hz) to refine the classifi-
cation. Finally, the EEG signal is filtered using a nonuniform filter 
bank at the previously identified frequency bands.

Step 2: Analysis 

The preprocessed signal is analyzed independently within each 
frequency band of interest.  Depending on the type of EEG fea-
tures to be estimated, one uses either autoregressive modelling, 
Fourier transform, or instantaneous frequency measurement, to 
extract spectral and temporal information, as well as to detect 
sleep microstructures (spindles, K complexes, and alpha bursts).

This analysis step also includes rough temporal localization 
of awakenings and REM episodes. Since resting wakefulness is 
usually characterized by abundant alpha frequencies and scarce 
delta frequencies, ASEEGA computes a contrast function defined 
as Cw(x)=Pα(x)Pβ1(x)/Pδ(x), where Pα(x) indicates the α power in 
the xth epoch. Similarly, regarding REM sleep, the preponderance 
of theta rhythms and high frequencies together with the low delta 
power is used to define the contrast function CREM(x)=Pθ(x)Pβ2(x)/
Pδ(x). The maxima of the time-localization functions provide a 
rough estimate of the spectral signatures of wake and REM in the 
recording.

Step 3: Classification 

Because of the EEG variability, the use of predefined sleep-
stage patterns is ill-suited to automatic sleep scoring. ASEEGA 
uses an adaptive fuzzy logic iterative system to repeatedly update 
the sleep stage pattern definitions. The entire recording is then 
analyzed based on the final sleep-stage pattern definitions.

The first sleep stage pattern classification step consists in ini-
tializing the patterns. For each sleep stage, by combining spectral 
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Figure 1—Diagram of the 3-step procedure for automatic sleep scoring based on a single EEG CzPz channel. The 3 steps are preprocessing, 
analysis, and classification.
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profiles of epochs that optimally satisfy scoring criteria and mi-
crostructure detection, ASEEGA defines a sleep stage pattern as a 
fuzzy set.‡ For example, the SWS pattern is defined by averaging 
the spectral composition of the epochs with the highest δ power 
combined with the lowest α and β powers. Stage 2 sleep is defined 
by averaging the spectral composition of the epochs with the high-
est spindle density. For the iteration (i), the ith pattern definition uses 
the penultimate (i-1) scoring step, considering only the epochs for 
which the scoring decision complies with the constraint imposed by 
the step 2 above. For example, an epoch scored as REM and con-
taining a spindle cannot be selected to define the REM pattern.

Scoring is performed after each new pattern definition. Each 
30-second epoch, also handled as a fuzzy set, is compared to each 
pattern by computing the degree of membership as the intersec-
tion of the 2 fuzzy sets. The scoring decision is based on the de-
gree of membership and on the results of the step 2 above. Epochs 
that are not assignable are temporarily scored as artifacts. The fi-
nal hypnogram is obtained after 3 sleep stage classification steps 
(initialization plus 2 repeats). Artifacts, wake episodes, and REM 
episodes are smoothed using contextual rules similar to visual 
ones. Two kinds of artifacted-epochs were distinguished:

• epochs for which the EEG signal was considered as “abnor-
mal” for a sleep EEG;

• epochs to which no sleep stage was assigned.
As a consequence of the fully-automated smoothing, an arti-

facted-epoch between 2 Wake or REM epochs is now classified as 
a Wake or REM epoch. Thus accounting for temporal precedence 
between epochs yields a substantial decrease of the number of 
rejected epochs.

Manual Scoring

The 15 polysomnograms were scored by 2 sleep specialists 
(MH and XD) who worked independently from each other and 
used Rechtschaffen and Kales rules1 on 30-second epochs. 

Epoch-by-Epoch Comparison 

The 3 analyses were compared on an epoch-by-epoch basis. 
For each recording, the hypnograms were synchronized so that 
the onset of the first epoch was identical for the 2 scorers and for 
the automatic analysis. For a given epoch, 4 situations could oc-

cur: both manual scores (M1 and M2) and the automatic score (A) 
were identical; M1 and M2 were the same but differed from A; M1 
and M2 were different; or one or both manual scorers classified 
the epoch as “movement artifact” and/or A classified the epoch 
as an artifact. For clarity and to increase the significance of the 
results, most of the epoch-by-epoch comparisons were based on 
pooled data from all 15 study participants.

Scoring Reference 

The comparison between the automatic and manual sleep scor-
ing was assessed by considering different kind of references, based 
on the 2 independent manual scorings mentioned above. In all 
comparisons, epochs scored as artifacts were discarded. First, we 
compared M1 to M2, A to M1, and A to M2. Then, to evaluate over-
all agreement among the three scorings, we performed 2 additional 
comparisons: an overall comparison of A, M1, and M2; and a com-
parison of A to M1 and M2 confined to those epochs assigned the 
same score by the 2 manual scorers (M1∩M2). M1∩M2 was used as 
the reference standard throughout the validation procedure.

Comparison Levels 

A, M1, and M2 were compared at 4 different levels of sleep state 
discrimination: 2-state scoring (wake or sleep; with the sleep cat-
egory combining stage 1, stage 2, SWS, and REM), 3-state scor-
ing (wake/REM/NREM), 4-state scoring (wake/REM/stage 1 or 
2/SWS), and 5-state scoring (wake/REM/stage 1/stage 2/SWS). 

Statistics

To evaluate quantitatively the automatic scoring obtained with 
ASEEGA, we computed several complementary measures which 
correspond to the most common criteria used in the literature. 
They are listed and defined hereafter.

Percentage Agreement

 Epoch-by-epoch agreement was defined as the percentage 
of epochs that were assigned the same state. Scoring agreement 
was determined for all pairwise comparisons and for the A versus 
M1∩M2 comparison.
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Table 1—Contingency Table

 M1 & M2
  Artifact Wake REM Stage 1 Stage 2 SWS
 Artifact 2 6 11 1 1 27
 Wake 213 1,609 59 88 37 0
 REM 286 52 1,749 24 139 0
 Stage 1 211 136 105 85 250 0
 Stage 2 1,141 134 191 41 4,534 369
 SWS 313 20 2 1 467 2,303

Contingency table of 5-state epoch classification: automated analysis versus manual scoring (A vs. M1∩M2). Epochs with “artifacts” by ASEEGA 
analysis were discarded (first row). Epochs labeled as “movement” by at least one of the manual scorers together with epochs that were assigned 
different scores by the 2 manual scorers were discarded (first column).

A
SE

E
G

A
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Sensitivity and Positive Predictive Value

In comparing A and M1∩M2, we also computed the sensitivity 
and positive predictive value (PPV) associated with each state. As 
defined by Altman,25 sensitivity is the proportion of positives that are 
correctly identified by A, while PPV is the proportion of epochs with 
positive test results that are correctly diagnosed.§ These parameters 
complement each other. Sensitivity reflects the performance of AS-
EEGA compared to the current reference standard. PPV estimates 
the reliability of automatic scoring, should this method be used more 
widely, in the absence of a standard reference for comparison.**

Cohen’s Kappa 

Cohen’s kappa (κ)26 was used to assess agreement for the 
pairwise comparisons and for the overall comparison of A, M1, 

and M2. Kappa corrects for the probability of agreement due to 
chance alone and quantifies agreement among 2 or more scorers. 
In our study, the 2 manual scorers, who were both sleep special-
ists working in the same unit, produced similar scores. As a result, 
κ values associated with the overall comparison chiefly reflect the 
performance of ASEEGA. In addition, we computed the global 
κ values for each individual study participant, which we denoted 
κ*. These global values provided an assessment of the variability 
in ASEEGA performance across individuals.

Bland and Altman Plots 

The reliability of the sleep structure provided by ASEEGA was 
assessed qualitatively by constructing Bland and Altman plots27 
for sleep latency (time from lights off to the first stage-2 epoch), 
wake after sleep onset (WASO), REM sleep percentage, SWS 
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Table 2—Automatic vs. Manual Scoring

  Wake Sleep REM NREM SWS Stages 1,2 Stage 1 Stage 2
2 states Se 82.5 98.1
 PPV 87.6 97.2 
3 states Se 82.5  83.0 96.0
 PPV 87.9  86.4 94.0
4 states Se 82.5  83.0  86.2 85.8  
 PPV 88.0  86.4  82.4 84.7 
5 states Se 82.5  83.0  86.2  35.6 83.5
 PPV 89.7  89.1  82.5  14.8 86.1

Sensitivity (Se, %) and positive predictive value (PPV, %) for each wake and sleep state according to the various comparison levels (2-, 3-, 4-, and 
5-state hypnograms).

Sleep State

Comparison level

Figure 2—Representative 5-state hypnograms obtained using ASEEGA (bottom) and manual scoring (scorer 1, top panel; and scorer 2, middle 
panel). For this subject, agreement between M1 and M2 was 79% (κ = 0.70), 73% between M1 and A (κ = 0.62), and 77% between M2 and A (κ = 
0.66). M1 and M2 scores differed in 198 epochs. Finally, agreement between A and M1∩M2 was 83%.
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duration and number of stage shifts. M1 and M2 were similar for 
these 5 parameters. For clarity, only comparisons with M1 are re-
ported here.

To summarize, the epochs for which the 2 experts disagreed 
were included in both the pairwise comparisons (including Bland 
and Altman plots, Fig. 3) and the overall comparison (global kap-
pa), but were discarded when comparing ASEEGA to the defined 
reference (the expert-consensus hypnogram). These comparisons 
are complementary and thus prevent bias in the evaluation, either 
for or against our approach.

Results

According to M1, mean (± SD) sleep period time (SPT) was 
456 ± 32 min and mean total sleep time was 415 ± 42 min. On 
average, the study participants spent 112 ± 29 min in SWS, 202 
± 46 min in stage 2, and 24 ± 8 min in stage 1. The mean propor-
tion of SPT spent in REM sleep was 17% ± 6%. Mean WASO 
was 42±29 min and mean arousal index was 17.7 ± 7/h. The re-
lationship between the scorings and the different sleep stages can 
be summarized in contingency tables. The most general one, ob-
tained for the five-state classification, is reported in Table 1. All 
the metrics detailed below were computed from the contingency 
tables obtained for the different levels of classification. Moreover, 
as an illustration example, Figure 2 shows the details of the results 
from one subject who took part in this study.

Epochs Kept for the Analyses

The comparisons between scorers as well as the agreement and 
kappa coefficients have been computed based on the total of 14,607 
epochs from the 15 study participants. Of these epochs, 48 (0.3%) 
were classified as artifact by ASEEGA and 27 (0.2%) were clas-
sified as “movement time” by one or both manual scorers. Some 
epochs were rejected for more than one reason; the total number 
of discarded epochs was 52, leaving 14,555 epochs for the com-
parisons. Increasing the comparison level from 2-state scoring to 5-
state scoring resulted in a slight decrease in agreement between M1 
and M2. For instance, an epoch scored as REM by M1 and as stage 1 
by M2 was considered to reflect agreement between the 2 scorers in 
the 2-state scoring but disagreement in higher-level scorings.

Two-State Scoring: Wake/Sleep

Agreement was 97.2% (κ = 0.89) between M1 and M2, 95.2% 
(κ = 0.80) between M1 and A, and 94.1% (κ = 0.76) between M2 

and A. For the overall comparison, κ was 0.82 (κ*=0.79 ± 0.09, 
mean ± SD). M1 and M2 scores differed for 423 epochs. Agree-
ment between A and M1∩M2 was 96.0%.

Three-State Scoring: Wake/REM/NREM 

Agreement was 94.4% (κ = 0.88) between M1 and M2, 89.6% 
(κ = 0.77) between M1 and A, and 89.5% (κ = 0.78) between M2 
and A. For the overall comparison, κ was 0.81 (κ* = 0.80 ± 0.06). 
M1 and M2 scores differed for 834 epochs. Agreement between A 
and M1∩M2 was 92.1%. 

Four-State Scoring: Wake/REM/Stages 1 and 2/SWS 

Agreement was 87.9% (κ = 0.82) between M1 and M2, 79.6% 
(κ = 0.70) between M1 and A, and 81.2% (κ = 0.72) between M2 
and A. For the overall comparison, κ was 0.75 (κ* = 0.74 ± 0.06). 
M1 and M2 scores differed for 1779 epochs. Agreement between 
A and M1∩M2 was 84.9%.

Five-State Hypnogram: Wake/REM/Stage1/Stage 2/SWS 

Agreement was 85.3% (κ = 0.80) between M1 and M2, 76.0% 
(κ = 0.67) between M1 and A, and 78.2% (κ = 0.69) between M2 
and A. For the overall comparison, κ was 0.72 (κ* = 0.71 ± 0.07). 
M1 and M2 scores differed for 2160 epochs. Agreement between 
A and M1∩M2 was 82.9%.

Sensitivity and Positive Predictive Value

Sensitivity and PPV values for each of the 4 levels of compari-
son are reported in Table 2.

Bland and Altman Plots

Figure 3 shows the Bland-Altman plots comparing A and M1 
estimates of the sleep parameters. No systematic trend was found 
between the difference and the mean of any of the sleep param-
eters. In most cases, similar results were obtained when A was 
compared to M2 (data not shown). However, it appears that the 
percentage of time spent in REM is substantially different for 2 
subjects out of 15. In the first case, the respective estimations 
are 17% for A, 10% for M1, and 15% for M2, respectively.  In 
the second case, M1 and M2 estimations are much closer (25% 
and 22% respectively) while the automatic estimation using A is 
15%.  However, the latter recording yields the worst between-
expert-agreement (67%). Our conclusion is that those 2 extreme 
cases that yield a substantial variability between experts might 
be due to a poor recorded signal and could be seen as outliers.  
Similarly, concerning the time spent in SWS and assuming the 2 
visual scoring can be taken as repeated measurements, we com-
puted the coefficients of repeatability (CR).27  Obtained CR was 
66 min, showing that this sleep parameter is less reliable than any 
other.  For the A-M1 comparison, 14 out of 15 points were found 
in the corresponding range. For the worst dataset, A=99 min and 
M1=179 min, but M2 found 98 min. 

Finally, as shown in the last graph of Figure 3, the automatic 
analysis detects less stage shifts than the visual one, yielding a 
less fragmented hypnogram.
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Table 3—Level of Agreement and Kappa Values

 Agreement Kappa
 Excellent > 0.8
 Good 0.61 – 0.80
 Reasonable 0.41 – 0.60
 Poor 0.21 – 0.40
 Bad 0 – 0.20
 Very Bad < 0

Qualitative interpretation of kappa values in terms of level of agree-
ment between scorers, as proposed by Landis and Koch.29
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Quantitative Interpretation of the Cohen’s Kappa

We propose here 2 ways of interpreting the obtained kappa val-
ues. First, since calculated out of a large number of observations 
(epochs), an asymptotic standard error can be associated with our 
kappa values28 and the corresponding z statistics can be computed. 
Whatever the comparison in our study, the z proved highly signifi-
cant against the mean-centred and reduced normal law.

A more heuristic way of interpreting the Kappa values was pro-
posed by Landis and Koch29 and is reported in Table 3. Note that 
according to this table, all the observed agreements appear to be 
good, if not excellent.

DISCUSSION

Our study demonstrates that fully automated single-EEG-channel 
analysis provides reliable 5-stage sleep scoring that exhibits 82.9% 

agreement with a manually scored standard reference, defined 
as the consensus between 2 scorers who used Rechtschaffen and 
Kales rules. ASEEGA was more than 82% sensitive for detecting 
wakefulness, sleep stage 2, slow wave sleep, and REM sleep; and 
the associated PPV values also exceeded 82%. ASEEGA correctly 
identified the vast majority of epochs, even when 5 sleep stages 
were distinguished. Moreover, the kappa coefficient κ associated 
with the pooled dataset was never below 0.72, indicating a high 
level of coherence between the 2 manual scorers and ASEEGA. 

To assess the reliability and validity of ASEEGA, its performance 
must be carefully compared to those obtained by the manual scor-
ers. Defining the standard reference is the first task. Several studies 
compared 5-stage manual scoring by experts working at different 
sleep centers. Interscorer agreements ranged from 61% to 96% for 
healthy individuals30,31 and from 65% to 78% for patients.30,32 In-
ter-laboratory agreement was significantly lower than intra-labora-
tory agreement. In the Sleep Heart Health Study,33 the upper bound 
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Figure 3—Bland-Altman plots of sleep parameters showing the differences between ASEEGA scoring and manual scoring by scorer 1 versus the 
corresponding mean, calculated for sleep latency (min), wake after sleep onset (WASO, min), REM sleep (%), slow wave sleep (SWS, min) and 
number of stage shifts. The mean difference and the limits of agreement ( ± 1.96 SD) are represented as dotted lines. A similar figure could be 
drawn with the results from scorer 2.
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of interscorer agreement was estimated by training the scorers in 
the use of the same scoring rules, in order to minimize interscorer 
disagreement. With recordings from patients, mean pairwise agree-
ment among 3 scorers was 87% and mean intrascorer agreement 
was 88%.34 These values are closely similar to those obtained in 
our study with the 5-state scoring system. Importantly, the 2 scorers 
were neither involved in the development, nor in the tuning of the 
algorithm. They are sleep specialists, belonging to the same medi-
cal unit and use the same scoring technique. Their scorings were 
independent of each other. Therefore, interscorer agreement in our 
study was probably overestimated compared to the conditions of 
everyday practice. Such overestimation would create bias against 
ASEEGA. Despite this potential bias, ASEEGA proved an effective 
and robust tool. Note that considering only 2 independent scorers is 
debatable31 and here corresponds to a compromise between having 
more than one reference to be able to evaluate interscorer variabil-
ity, on the one hand, and coping with practical constraints of having 
several medical experts to analyse the whole cohort hypnograms, 
epoch-by-epoch, on the other hand.

Of the many attempts to automate sleep staging, some studies 
focus on patient population or do not perform R&K hypnogram 
scoring,4,5,9,14,35 which prevents any direct and fair statistical com-
parison with our results. In this study, we focus on evaluating the 
R&K scoring of our original approach, on a full cohort of healthy 
subjects, and thus compare our results with studies that involved 
epoch-by-epoch comparison to manual scoring in healthy individ-
uals. Most of these methods relied on 2 EEG channels, one EOG, 
and one EMG. The validation studies, which involved variable 
numbers of individuals and 4 to 6 sleep states, showed 69% to 
90% agreement with manual scoring.2,3,6-8,10,11,13 Combining sleep 
stages 3 and 4 into a single SWS sleep state is common prac-
tice and yields a 5-state scoring system. We used this approach. 
ASEEGA performed similarly to the previously reported methods 
but required only a single EEG channel.

Differentiating REM from stage 1 or wakefulness by automatic 
sleep analysis has been reported to be difficult.21,22 REM sleep cri-
teria in the R&K rules used for manual scoring include presence of 
rapid eye movements and muscle atonia.1 However, EEG spectral 
analysis showed a distinctive frequency combination during REM 
sleep, with very low delta and sigma power co-existing with great-
er power in higher frequencies (15-35 Hz).24,31 This combination 
of criteria has been suggested as a specific EEG marker for REM 
sleep,36-38 providing the rationale for the CREM contrast function of 
ASEEGA, in which the ratio between β2 (18-50 Hz) and δ powers 
serves to discriminate between REM sleep and other sleep stages, 
without EOG or EMG. Similar automated sleep analysis and REM 
sleep detection methods using a single EEG channel have been in-
vestigated in rats,39 and the results support the ability of complex 
EEG analysis to detect REM sleep without EOG recordings.

Although REM, stage 1, and wakefulness can be distinguished 
based on their spectral composition,40 ASEEGA uses 2 original 
algorithms, a feature that may explain its good performance. First, 
ASEEGA can identify the baseline resting EEG frequency of each 
individual, which may differ slightly from the usual value. For 
instance, a baseline frequency with a maximal power at 7 or 13 Hz 
is classified by ASEEGA as wakefulness, although these values 
are below and above the usual range, respectively. Subsequently, 
ASEEGA automatically adjusts the spectral criteria for spindle 
frequency. For instance, if the baseline resting EEG frequency 
peaks at 13 Hz, the frequency criteria for spindle are automati-

cally shifted to 14-18 Hz. In this healthy subject study, if most 
recordings did not require any frequency band tuning (alpha main 
rhythms ranged from 9.5 Hz to 11.2 Hz), one recording requested 
a shift of +0.5 Hz (alpha main rhythm was detected at 12.0 Hz) 
and one requested a shift of -0.5 Hz (alpha main rhythm was de-
tected at 8.8 Hz). The second original algorithm is a self-learning 
paradigm that ensures repeated optimization of the sleep stage 
patterns based on the data recorded up to each optimization time 
point. This enables the algorithm to optimize pattern specificity 
by relying on the epochs that contain the most clearly distinguish-
able sleep stages. 

This study was limited to healthy volunteers and was done 
without a previous habituation night. The volunteers reported 
poor sleep conditions in the laboratory. In accordance with this 
subjective feeling, the number of arousals per hour of sleep was 
high. However, it is obviously not tenable to fully infer the al-
gorithm performance in a real clinical setting from the current 
results. A full evaluation study on patients is required and will be 
the focus of a subsequent work.

Nevertheless, to further assess and demonstrate the abilities 
of ASEEGA in healthy subjects, we also applied it to a publicly 
available sleep database (see the Appendix for all details). The 
recording characteristics of the test database did not comply with 
the algorithm recommendations, especially in terms of record-
ing sites (Pz-Oz instead of Cz-Pz) and analogical gain (50 times 
lower in the public dataset). As stated previously, these 2 param-
eters are of great importance, since ASEEGA is based on a single-
channel signal only.  However, the performance obtained on the 
2 cohorts are very similar for a 2-state classification (Wake/Sleep 
scoring). Interestingly, only when higher levels of discrimination 
are required, the results obtained on the public dataset are poorer 
than the ones obtained on the new corpus.  The latter illustrates 
that, the more stages one wants to discriminate, the higher the 
importance of the quality of the signal one feeds the algorithm 
with; namely in terms of amplitude resolution and recording site.

In summary, we compared the ASEEGA automated sleep 
analysis program based on a single EEG channel to conventional 
manual scoring of a full polysomnogram by sleep specialists. 
Sensitivity and PPV of ASEEGA for sleep stage detection were 
similar to those provided by automatic approaches that rely on 
multichannel recordings, which is very promising for future clini-
cal applications. These results in young healthy individuals need 
to be extended to older healthy individuals and to patients. Ap-
plications that can be anticipated based on the different levels of 
analysis include field studies and large-scale population studies.
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FOOTNOTES

† Note that this might cause a slight increase in the misclassifi-
cation of stage 2 epochs that would then be labeled as SWS, espe-
cially in the presence of several K complexes. However, this has 
to be tempered when dealing with older subjects whose δ rhythm 
may increase in frequency. At the expense of some classification 
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errors, our objective here is to be generic and to adopt a fair trade-
off in order not to miss fast δ activity.

‡ A fuzzy set is a collection of objects with membership values 
between 0 (complete exclusion) and 1 (complete membership). 
The membership values are continuous and express the degrees to 
which each object is “compatible” with the properties or features 
that are specific to the collection. Thus using a partial quantifica-
tion of membership, fuzzy logic enables us, during the iterative 
classification step, to deal with epochs that could possibly belong 
to different sleep stages.

§ Sensitivity and PPV differ by their denominator only. In our 
context, sensitivity is the ratio between the number of well clas-
sified epochs and the total number of epochs genuinely in that 
same state. PPV is the ratio between the number of well classified 
epochs and the total number of epochs classified in that same state 
by our approach (A).

** PPV is also the conditional probability of obtaining the cor-
rect classification by automatic scoring.
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APPENDIX

The algorithm had been tested on the Physionet public data-
base that provides sleep recordings and corresponding hypno-
grams in European Data Format (http://www.physionet.org/phys-
iobank/database/). It includes the recordings (16 bits, 100 Hz) of 
8 healthy subjects (21-35 years old) with no medication.  We used 
the Pz-Oz channel only; which was the closest recording site to 
ASEEGA requirements (Cz-Pz). 

The overall agreements (from ~8500 epochs for the 8 record-
ings) between ASEEGA and the known reference were 95.4%, 
88.3%, 74.5%, and 71.2%, for the 2-state to 5-state scoring, respec-
tively. The corresponding kappa coefficients were 0.83, 0.76, 0.63, 
and 0.61, respectively. Finally, the sensitivity of ASEEGA to detect 
wakefulness, in a 5-state classification, was 85.2% (PPV = 87.5%). 
Similarly, the sensitivity to detect REM is 63% (PPV = 91.7%).
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