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Abstract
Most cortical visual neurons do not respond linearly with contrast. Generally, they show saturated
responses to stimuli of high contrast, a feature often characterized by a divisive normalization
function. This nonlinearity is generally thought to be useful in focusing the dynamic response
range of the neuron on a particular region of contrast space, optimizing contrast gain. Some
neurons not only saturate but also supersaturate; at high contrast, the response of the neuron
decreases rather than plateaus. Under the contrast gain control theory, these cells would seem to
reflect a nonoptimal normalization pool that provides excessive inhibition to the neurons. Since
very few data on supersaturation are available, this article examines the frequency with which
such neurons occur in macaque visual cortex by considering an extension of the Naka–Rushton
equation with the capacity to represent nonmonotonic functions. The prevalence of gain-control
theories for saturation has occluded an additional computational function for saturation, namely, in
detecting the conjunction of certain features. A saturating nonlinearity is a critical part of the
selective detection of compound stimuli over their components. In this role, the existence of
saturating contrast response functions might be considered necessary rather than simply optimal.
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Introduction
Most cortical visual neurons in cat area 17 and macaque areas V1 and V2 (Albrecht &
Hamilton, 1982; Maffei & Fiorentini, 1973) do not respond linearly with respect to the
contrast of the stimulus on their receptive fields. A few cells show some degree of expansive
nonlinearity at low contrast, which might serve to sharpen tuning (Heeger, 1992). Most
show a compressive nonlinearity at high contrast such that their response saturates or
plateaus.

Although saturation might represent some basic limitation on the neuron's biophysical
capabilities to respond more strongly, this seems unlikely for several reasons. Whereas some
cells might plateau at a response rate of 30 impulses per second (ips), other neurons are fully
capable of responding well in excess of 200 ips. In fact, even a single neuron will saturate at
different response rates, dependent on other characteristics of the stimulus. For example, a
cell that saturates at some given contrast level for optimal stimulus orientation will, for non-
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optimally oriented stimuli, typically saturate at the same contrast but reach a lower peak
response rate (Albrecht & Hamilton, 1982). Therefore, contrast response saturation seems to
result from a process that actively controls the response rate of a cell. This might be
achieved by a set of inhibitory connections from a pool of neurons, the normalization pool,
that increasingly inhibit the neuron as contrast rises (Carandini, Heeger, & Movshon, 1997;
Heeger, 1992). The normalization process results in saturating contrast response functions.
This may effectively control the gain of the contrast response function, and may serve to
reduce redundancy in the natural image (Schwartz & Simoncelli, 2001).

There is evidence that optimizing the dynamic range of the neuron is at least one of the
functions of saturation. Neurons alter their contrast response functions according to recent
levels of contrast (Ohzawa, Sclar, & Freeman, 1985), enabling them to center the rising
slope of the contrast response function on the appropriate range. Also, the contrast response
functions across the population of fly visual neurons seem to be optimized for the range of
contrasts found in natural scenes (Laughlin, 1981), as are the functions in cat LGN and the
magnocellular neurons of macaque LGN (Tadmor & Tolhurst, 2000). In macaque V1,
however, this is not the case (Clatworthy, Chirimuuta, Lauritzen, & Tolhurst, 2003). Here,
neurons respond optimally to a range of contrasts higher than generally observed in the
natural environment and show highly variable degrees of saturation.

An additional problem for the hypothesis that visual cortical neurons saturate to optimize
their dynamic range is that some V1 cells “supersaturate”. That is, their responses actually
decrease at very high stimulus contrasts. This behavior has been noted by numerous authors
(Albrecht & Hamilton, 1982; Bonds, 1991; Ledgeway, Zhan, Johnson, Song, & Baker,
2005; Li & Creutzfeldt, 1984; Maffei & Fiorentini, 1973; Mancilla, Fowler, & Ulinski,
1998; Tyler & Apkarian, 1985) and has been simulated in a circuit model of V1 neurons
(Somers et al., 1998). However, it has not been properly quantified, and its computational
implications are rarely considered (but see Ledgeway et al., 2005). One reason that
supersaturation has received relatively little attention is our tendency to characterize
response functions with the equation used by Naka and Rushton (1966), which is incapable
of representing nonmonotonic data.

The aims of this article are twofold: to characterize the contrast response curves of neurons
in V1 and V2 of the macaque using an adaptation of Naka and Rushton's equation, such that
supersaturation can be appropriately represented, and to reconsider the role that the
nonlinear responses of these neurons (both saturating and supersaturating) may have in
visual processing.

Experiment 1: Characterizing supersaturation
Methods

Collection of neuronal data—Recordings were taken from 541 neurons in the visual
cortex of 31 anesthetized, paralyzed macaques as part of a larger series of experiments. Most
of the data shown here represent a reanalysis of data that have been previously published
(Solomon & Lennie, 2005; Solomon, Peirce, & Lennie, 2004; Webb, Dhruv, Solomon,
Tailby, & Lennie, 2005) or are in preparation for publication. Details of the surgical
preparation are described in greater detail elsewhere (Solomon & Lennie, 2005). All
procedures conformed to the guidelines approved by the New York University Animal
Welfare Committee.

Anesthesia was induced with ketamine hydrochloride (Vetalar, 10 mg/kg−1) and maintained
during surgery with thiopental sodium. The monkey was intubated, the head placed in a
stereotaxic frame, and a craniotomy made over the occipital cortex, centered on or near the
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lunate sulcus. Postsurgical anesthesia was maintained by continuous infusion of sufentanil
citrate (4–12 μg·kg−1·hr−1) in physiological solution (Normosol-R, Abbott Laboratories,
Illinois, USA) with added dextrose (2.5%). Muscular paralysis was then induced and
maintained by continuous infusion of vecuronium bromide (100 mg·kg−1·hr−1). The monkey
was respirated artificially to keep end-tidal CO2 near 33 mm Hg. Electroencephalographic
and electrocardiographic data were monitored continuously throughout surgery and the
experiment. Rectal temperature was kept near 37°C using a heating blanket. Recordings
were made using either tungsten-in-glass (Alan Ainsworth Electrodes, UK) or epoxy-coated
tungsten electrodes (FHC Inc., Maine, USA) with an impedance of 1–5 MΩ. Spikes were
isolated from single neurons using a combination of thresholding and template-matching
techniques.

Histological track reconstructions showed that 263 of the neurons were in V1 and 205 were
in V2. For the remaining 73 cells, the area could not be precisely determined (e.g., because
they fell too close to the V1/V2 border), and those cells are not considered further in this
study.

For each neuron, the optimal stimulation parameters were determined for circular patches of
drifting sinusoidal grating varying in location, size, spatial frequency, and orientation. The
contrast response function was then measured for each neuron using optimal stimulus
parameters for the drifting gratings. This was generally conducted with an achromatic
grating, unless the neuron responded poorly to achromatic stimuli, in which case a
sinusoidal grating in the neuron's preferred color was used. The vast majority neurons were
probed with a blank screen and six Michelson contrast levels ranging from 0.031 to 1.0 in 1-
octave steps. For a few cells, additional contrasts were tested. Cells' responses were
analyzed in terms of either the response rate in impulses per second (f0) or the amplitude of
modulation of that response at the frequency of the stimulus drift rate (f1), whichever was
larger.

Modeling contrast response functions—Most groups (e.g., see Albrecht & Hamilton,
1982; Sclar, Maunsell, & Lennie, 1990) characterize contrast response functions using the
hyperbolic ratio equation of Naka and Rushton (1966), which is closely related to the
Michaelis–Menten equation for enzyme kinetics1 (Michaelis & Menten, 1913):

(1)

where R is the output response of the neuron, B is the baseline response of the neuron, Rmax
represents the maximum response of the neuron, c50 represents the contrast at which the
response is halfway between baseline and maximum, n is simply referred to as the exponent,
and c is the contrast presented to the neuron.

To model the response of a neuron that is capable of supersaturating, we must add an
additional parameter:

(2)

where s is an additional parameter allowing the suppressive exponent to vary at a different
rate to the excitatory exponent. The traditional Naka–Rushton equation is the specific form

1In fact, the equation given by Naka and Rushton did not include the exponent n and was therefore identical to that of Michaelis and
Menton. Equation 1 is, however, used by most physiology laboratories and still typically referred to as the Naka–Rushton equation.
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of this, with s = 1. The characteristics of the function are similar to Equation 1 in that the
exponents control the shape of the function, R controls its amplitude, and c controls its
contrast scaling. Unfortunately, with s ≠ 1, Rmax and c50 values do not relate simply to the
intuitively appealing maximal response and half-maximum contrast of the function,
respectively. The Rmax value remains the point at which the curves asymptote, although for
nonmonotonic forms, this is obviously less than the maximal response. The c50 value for
nonmonotonic functions represents the contrast at the curve's “shoulder” rather than at its
half-maximal response. Examples can be seen in Figure 1.

Data from the population of neurons were fit with both functions using Matlab's fmincon()
function, aiming to minimize the chi-square fit term given by

(3)

where i is the index of this particular contrast level, e is the expected response at this
contrast level given the current model parameters, o is the observed response, and σ2 is the
trial-wise variance in responses at this contrast. Where there was zero variance in responses
(arising from no response on any trial), the σ2 was set to 0.001 to prevent the error term
from expanding to infinite. In fitting, the exponent terms of the models were bounded in the
region 0.3–4.0.

There is a problem in trying to test which of a pair of models with different numbers of free
parameters fits a dataset “better”. One general solution is to measure how well the data are
fit by the model and then impose some form of penalty on models for having more
parameters. Aikake's Information Criterion (AIC; Motulsky & Christopoulos, 2004) is one
commonly used method. The AIC value for a model fit to the data is calculated from

(4)

where n represents the number of data points being modeled, p represents the number of
parameters in the model, and RMS is the root-mean-square error of the model fit. The
optimal model under this method is taken to be the one with the lowest AIC value (nearest to
negative infinity). A related method is the Bayesian Information Criterion, which is identical
except that the penalty term is log(n)p instead of 2p. In this study, there were nearly always
seven contrast levels, and because log (7) ≈ 2, the methods are equivalent.

An alternative method, referred to as the normalized chi-square by Cavanaugh, Bair, and
Movshon (2002), takes the χ2 error term (Equation 3) and normalizes by the degrees of
freedom for the model (Hoel, Sidney, & Stone, 1971):

(5)

As with the AIC, the best fitting and most efficient model is taken to be that with the lowest
χN

2. In practice, for the given data and models, this method typically inflicts a more
stringent penalty on models with additional parameters.

Quantifying supersaturation—Ledgeway et al. (2005) quantified the degree to which
the response of neurons rises monotonically with respect to contrast using a monotonicity
index (MI) defined as
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(6)

where Rmax is the maximum response of the neuron, R100 is the response at maximal
contrast, and R0 is the baseline response. This index takes a value of 1 where the neuron's
response rises monotonically and less than 1 for neurons demonstrating supersaturation. A
neuron whose response at the maximal contrast falls fully back to baseline rate takes an MI
of 0. In the current study, the MI was calculated for both the raw data and the model fit to
the raw data.

Results
Comparing the quality of fit for the models—Figure 2 shows a comparison of model
fits for a series of sample neurons ranging in contrast response from very weak saturation to
extreme supersaturation (the behavior shown in Figure 2f is unusual). For the neuron with
weak saturation (Figure 2a), the Naka–Rushton equation characterized the neuron's response
function very well, such that the additional parameter of the modified version was

unnecessary. This subjective decision is in agreement with the  error term, which is lower
for the Naka–Rushton equation (0.106) than for the modified version (0.117). The neurons
shown in the remaining panels were all better fit by the modified Naka–Rushton model. In
the supersaturating functions, it is clear that this is because of the inability of the Naka–
Rushton function to provide a nonmonotonic response. However, the cell shown in Figure
2b shows a behavior that was also common, where the neuron did not show any sign of
supersaturation but still showed a significantly improved fit with the modified model. This
type of behavior can often only be shown for neurons with very consistent responses (note
that the error bars in Figure 2b are almost obscured by the data points). The AIC error term,
which is less stringent on models with additional parameters, was smaller for all of the six
neurons shown in Figure 2.

For both models, the quality of the fits was extremely high across the population of neurons;
the Naka–Rushton model explained, on average, 96.9% of the variance in responses and the
modified model explained 98.7% of the variance. According to the AIC error term, the
modified function performed better than the Naka–Rushton function in 175 of 264 V1
neurons (66.3%) and in 141 of 205 V2 neurons (68.8%). Even the normalized chi-square
term suggests that it was an improvement for nearly half of the neurons tested (47.2% of V1
neurons and 45.9% of V2 neurons).

Occurrence of supersaturation—Measuring its occurrence from the raw responses of
the neurons, we find supersaturation in 45 of 263 V1 neurons (17.1%) and in 53 of 205 V2
neurons (25.9%). This probably represents an underestimate of the frequency with which it
occurs due to the relatively sparse sampling at high contrasts. In particular, cells may well
peak between 50% and 100% contrast, between which no stimuli were generally presented.
Using the best model fit for the neuron, we find supersaturation in 65 neurons in V1 (24.7%)
and 57 extrastriate cells (37.8%). Therefore, we find that roughly 20–25% of the neurons are
nonmonotonic in their contrast response overall. Figure 3 shows the monotonicity indices
for all nonmonotonic neurons. There is a smooth distribution, with very few neurons being
extremely nonmonotonic—only 8 V1 neurons (3.0%) and 7 V2 neurons (3.4%) had a
response at full contrast below 50% of their maximum response.
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Experiment 2: The importance of contrast nonlinearities
Although the saturation of neurons in LGN might be explained by the need to optimize
responses to the input contrasts and the need to match that to natural scene statistics
(Tadmor & Tolhurst, 2000), this does not account for the shape of the functions found in
later visual areas (Clatworthy et al., 2003). In particular, the above finding that 20–25% of
primate V1 neurons are nonmonotonic in their contrast response functions would suggest
that contrast gain controls are only part of the story for nonlinear contrast responses. This
raises the question of what other purpose (or purposes) they might serve.

An additional potential use for the saturating functions is in detecting the conjunction of
certain features. Peirce and Taylor (2006) recently described the existence of mechanisms
responding selectively to the presence of a plaid, the conjunction of a pair of overlapping
gratings. The mechanism we envisaged for such a detector is similar to that proposed by
Olzak and Thomas (1999) and involves a bank of linear, or quasilinear, filters followed by
some output nonlinearity (Olzak and Thomas break the saturating nonlinearity into two
separate nonlinearities, although for our more limited purposes, this is unnecessary). The
nonlinear outputs of the first-level units are then summed by some conjunction detector.

In keeping with the literature, Olzak and Thomas (1999) suggest that the nonlinearities are
important for gain control and normalization. They are, however, also essential for another
aspect of the mechanism they describe, namely, for the summing circuit to discriminate
between the case of one input channel being stimulated at maximum contrast and that of two
input channels each stimulated at 50% (see Figure 4). For this method of discriminating a
plaid from one of its components, some form of compressive nonlinearity is essential rather
than merely optimal. Furthermore, the neurons in the input layer of the model (e.g., V1
cells) are likely to reduce their response when a second stimulus is present, through the
effect of cross-orientation inhibition (e.g., Bonds, 1989; Freeman, Durand, Kiper, &
Carandini, 2002; Morrone, Burr, & Maffei, 1982), which exacerbates the problem. These
factors can be overcome by appropriate compressive nonlinearities on the outputs of the
neurons potentially like those typically found in V1.

Methods
In considering the extent to which the nonlinearities observed in real neurons might be
useful in the selective detection of conjunctions, a further index (conjunction selectivity
index [CSI]) was generated. This measures how much more strongly a summing circuit
would respond to a full-contrast plaid (for which the neuron being tested provided one of the
input channels) versus a single full-contrast grating (for which this neuron is the entire
input). This index is naturally defined as

(7)

where R50 represents the response to a grating of 50% contrast and R100 represents the
response to a full-contrast grating. In both cases, the response is taken as either the
amplitude of modulation at the temporal frequency of stimulation or the spike rate over and
above the baseline rate of the neuron, whichever is greater. The index is bounded by zero
and positive infinity. A CSI of 0 represents a linear neuron, for which a subsequent summing
circuit would respond identically to a plaid and grating; a CSI of 1 indicates perfect
saturation in the contrast range 50–100% such that the summing circuit's response to the
plaid is 100% greater than the response to a grating. A CSI greater than 1 indicates a
supersaturating cell, capable of providing inputs to a very selective summing circuit.
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It should be noted that the CSI, as described, makes the assumption that the presence of the
second grating in the stimulus does not affect the response of the neuron, which we know to
be untrue in many neurons. In particular, cross-orientation inhibition causes many cells to
reduce their response to the preferred grating in the presence of an additional grating
stimulus (e.g., Bonds, 1989; Freeman et al., 2002; Morrone et al., 1982). The CSI values
here represent the upper limit of the potential conjunction selectivity of the system in such
cells. For some cells at least, the effect of the saturation is enough, however, to counter this
effect of cross-orientation suppression. Indeed, for the sample cell shown by Freeman et al.
(2002, their Figure 2A), the responses to the plaid and the full-contrast grating were 42 and
65 ips, respectively, giving a “true” CSI of 0.30, even in the presence of suppression.

Results
The extent to which neurons might be useful inputs to conjunction-selective mechanisms is
remarkably variable. Figure 5 shows the CSI for V1 simple cells (defined as those whose
amplitude of modulation is greater than their maintained spike rate during stimulation), V1
complex cells, and V2 cells. The index represents the extent to which a summing circuit,
using this neuron as an input, would be able to discriminate between two weakly stimulated
channels and one strongly stimulated channel. The three classes of neuron seem to differ
very little in this respect. A number of neurons (80 of the 541 cells studied) show a negative
CSI, indicating that rather than saturating, the neuron is actually showing an expansive
nonlinearity in the contrast range 0.5–1.0. The majority, however, were nonlinear in a
manner useful for conjunction-selective mechanisms. The median CSI was 0.50, such that a
full-contrast, two-component plaid might provide a subsequent circuit with 50% more
stimulation than a full-contrast grating. Ninety neurons (16%) supersaturated, such that they
would provide more than 100% extra summed output during presentation of a plaid.

General discussion
Previous studies have shown that supersaturation, although not often discussed, is a
surprisingly common occurrence in the cat visual cortex (Ledgeway et al., 2005; Li &
Creutzfeldt, 1984). The current study shows that it is also very common in macaque visual
cortex. There are several reasons why the nonmonotonicity has been largely ignored. The
first is simply that extremely nonmonotonic neurons are rare, and minor deviations from
monotonicity might occasionally result from noise in the measurements. The second is that
high contrasts are sampled sparsely, if at all, by most laboratories. The third is that
supersaturation is not captured by the standard function used to represent contrast response
functions. The current study adds a second exponent parameter to the traditional Naka–
Rushton model, which improves model fits for nearly all neurons and is more efficient, in
terms of fit quality normalized by degrees of freedom, for roughly half the neurons studied.
Critically, it captures the fact that neurons do not necessarily show monotonically increasing
responses to contrast. Although the traditional model serves as a reasonable first
approximation to the responses for many cells, its inability to supersaturate leads necessarily
to failures in characterizing the 20–25% of neurons found to show this behavior.

A final reason is that we have had no real explanation for the existence of such a response.
Under the dominant hypothesis that the contrast response function serves to optimize the
dynamic response range of the neuron, the existence of cells that supersaturate is something
of a mystery and might reflect an inappropriately strong contribution of the normalization
pool. If this were the case, then it seems surprising that such a large percentage of the
neurons supersaturate. If, however, we consider the saturating characteristic of the contrast
response as having an additional function in generating selectivity for the conjunction of
certain features, then the existence of neurons that supersaturate is less problematic; such
cells would be more selective in their detection of compounds.
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This coding mechanism is not necessary for all feature combinations, only those for which
the inputs are not independent (it might be considered advantageous in other circumstances,
but not necessary). For instance, where the features are spatially overlapping gratings
(plaids), the contrast of each component is limited by the contrast of the other, and a
saturating nonlinearity is critical in selectively detecting the compound. For features that are
independent (e.g., occurring in different eyes or different parts of the retina), a simple linear
combination might suffice in detecting the compound, at least for high net contrasts. The
expansive, saturating, and supersaturating contrast response curves might therefore be
viewed as arising from neurons involved in different forms of processing or different types
of feature rather than as suboptimal, optimal, and erroneous forms of contrast gain control
mechanisms, respectively. This, of course, supposes that conjunction-selective neurons do
exist. Although the psychophysical evidence suggests that such mechanisms are present in
the human visual system (Peirce & Taylor, 2006), the author is not aware of any
electrophysiological evidence as yet for plaid, form-selective neurons (which respond to a
particular plaid more than to either of its isolated components).

This is also not the only way to perform a nonlinear conjunction-selective combination of
signals. An obvious alternative is to combine signals multiplicatively rather than additively
(Torre & Poggio, 1978). Computationally, this seems a very different proposal, but its
biological implementation may actually involve the summation of two saturating
(specifically log-transformed) signals (Tal & Schwartz, 1997). Potentially, these
transformations could be performed within a neuron on the postsynaptic potentials, and there
is some evidence for this in certain neurons in the fly (Gabbiani, Krapp, Koch, & Laurent,
2002), owl (Pena & Konishi, 2001), and rabbit (Taylor, He, Levick, & Vaney, 2000). No
evidence has been shown for such transformations in the primate, however, and it may not
be necessary because the outputs of neurons in the previous stages of processing have
already endowed signals with a compressive nonlinearity.

Neurons in the LGN show less extreme saturation (especially the P cells) and do not
supersaturate. Their contrast response function seems to be well suited to the optimal coding
of natural contrasts (Tadmor & Tolhurst, 2000). This difference with cortical neurons
presumably reflects some difference in the role of the contrast response function for cortical
and subcortical neurons. It may, for example, reflect a greater degree of independence in
stimulation for LGN neurons, resulting from less spatial overlap between receptive fields
than found for the larger receptive fields of the cortex.

The utility of the nonlinear combination of certain signals is not a new concept;
computational-modeling and image-processing techniques have frequently used these
methods. In visual neuroscience, however, their importance has been somewhat obscured by
the consideration of nonlinearities for gain-control mechanisms. Although we can never
know the true computational purpose of such signal transformations, this study points to the
fact that contrast gain control is not likely to be their sole purpose. It also highlights the
problem of using, as a model to characterize the contrast response function, an equation that
fundamentally fails to account for the response characteristics of a large proportion of the
cortical visual neurons we encounter.
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Figure 1.
The form of the modified Naka–Rushton function as the suppressive exponent, s, progresses
from 1 (equivalent to the original Naka–Rushton equation) to 1.7, with all other parameters
fixed (Rmax = 100, c50 = 0.3, n = 2).
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Figure 2.
Comparing the fit quality of the standard Naka–Rushton function (broken line) with the
modified form (solid line) for various cortical neuron samples with varying degrees of
saturation.
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Figure 3.
Nonmonotonicity index for neurons in V1 and V2. Nonmonotonicity indices of neurons
(with values that are less than 1) are shown. A value of 1 represents a monotonic neuron; a
value of 0 represents a neuron whose response at maximum contrast was the same as its
response at zero contrast.
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Figure 4.
The effects of saturating (compressive) nonlinearities on the inputs to a conjunction detector.
(A) A linear summing mechanism stimulated at 50% in each input channel will respond
equally to stimulation at 100% in either channel, not responding selectively to the
conjunction. (B) Adding a nonlinearity to the input channels, as found in V1 neurons, causes
the conjunction to provide greater stimulation than either component is capable of alone.
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Figure 5.
The CSI for V1 simple cell neurons (top), V1 complex cells (middle), and V2 cells (bottom).
Note that the populations differed very little in this index, all showing a median CSI of
roughly 0.5.
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