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Precis

Cardiac development and postnatal growth depend upon activation of AKT, but initial strategies to
improve myocardial repair utilizing AKT were stymied by undesirable corollary alterations in
myocardial structure and function. These unfortunate precedents were based upon high level
expression of constitutively activated AKT, predominantly in the cytoplasm of the cell. Based upon
subsequent studies establishing that activated AKT accumulates in the nucleus we reasoned that the
location of AKT, not simply the activity level, would be a critical determinant of the phenotypic
outcome resulting from AKT activation. Using myocardial-specific expression of nuclear-targeted
AKT (AKT/nuc), the proliferation of myocardial stem and progenitor cell populations is enhanced,
casting new light upon the implementation of AKT activity as a molecular interventional approach
for treatment of cardiomyopathic damage resulting from acute injury, chronic stress, or the
debilitating changes of aging.

AKT properties: a multifunctional player in cardiomyocytes and the
myocardium.

Ask a dozen cardiovascular researchers what they find most intriguing about AKT signaling
and you're likely to get a dozen different responses. Whether studying cell survival, growth,
or metabolism, the involvement of AKT is inescapable. As a critical nodal point in signal
transduction, AKT continues to be a popular target for researchers looking to manipulate
cellular responses involving growth factors, apoptotic stimuli, mechanical stress, hormones,
energy utilization, protein synthesis, proliferation, differentiation, motility and gene
transcription (to name a select few). Thus far this dizzying array of consequences for altering
AKT activity has been somewhat easier to follow in the context of mature cardiomyocytes that
behave as post-mitotic, highly organized, non-motile, and non-polarized cells. Recognition of
cell death as a contributing factor in heart failure prompted studies to promote survival signaling
in cardiomyocytes. Indeed, AKT is responsible for salutary effects of insulin-like growth
factor-1 (IGF-1) or estrogen that have both been touted as cardioprotective agents to blunt
apoptotic cell death, reduce maladaptive remodeling, and enhance hemodynamic performance
in response to cardiomyopathic challenge. The spectrum of phenotypic effects resulting from
AKT activity can vary widely depending upon duration, intensity, and localization as
demonstrated in several elegant studies that document profound hypertrophic remodeling
(Matsui et al. 2002, Shiojima et al. 2005, Taniyama et al. 2005), increased contractility
(Condorelli et al. 2002), altered glucose metabolism (Matsui et al. 2006), and cardiomyopathic
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challenge resulting in suppressed (Fujio et al. 2000) or enhanced (Nagoshi et al. 2005)
susceptibility to apoptotic cell death. In addition to these diverse effects of AKT activation,
the recent advent of regenerative medicine in myocardial biology has uncovered yet another
facet where AKT-mediated effects could potentially benefit the myocardium by promoting
survival, proliferation, and trafficking of stem cells and cardiac progenitor cell populations.
And, although the subject of AKT's influence upon cardiac stem cell populations is a relatively
nascent topic, signposts are springing up in cardiovascular literature and elsewhere to support
arole for AKT in regulation of cardiomyocyte cycling and cardiac progenitor cell proliferation
which is the primary focus of this brief review.

AKT in stem cells: helping the garden grow

A decade ago connections were established between stimulation of hematopoetic stem cells
and AKT activation (Testa and Bellacosa 1997, Zhang and Vik 1997), with many additional
regulators of stem cell renewal identified in subsequent years(Akala and Clarke 2006). AKT
shares responsibility for enhancing stem cell growth and survival with another serine /
threonine kinase called Pim that possesses similar target substrate specificity (Bachmann and
Moroy 2005, Hammerman et al. 2005, Wang et al. 2001). AKT activity maintains stem cells
by promoting both viability and proliferation (Hammerman et al. 2005, Kim et al. 2005), which
is counterbalanced by equally important inhibitory molecules such as PTEN or PHLPP to
prevent oncogenesis (Brognard et al. 2007, Gao et al. 2005, Groszer et al. 2001, Yilmaz et al.
2006, Zhang et al. 2006) and promote differentiation (Otaegi et al. 2006). Concurrent findings
appear in the cardiovascular literature where AKT has been linked to proliferation of human
cardiac progenitor cells (Tateishi et al. 2007) as well as cardiomyocytes derived from
embryonic stem cells (McDevitt et al. 2005, Roggia et al. 2007). In turn, activation of AKT in
stem cells is associated with c-met (the receptor for hepatocyte growth factor) (Forte et al.
2006, Okano et al. 2003, Roggia etal. 2007), IGF-1 (Ye and D'Ercole 2006), estrogen (Imanishi
et al. 2005), and Notch receptor (Androutsellis-Theotokis et al. 2006). Perhaps not
coincidentally, these factors and their corresponding signaling cascades also share the
characteristic of conferring protection in the face of cardiomyopathic insults.

AKT to the rescue: myocardial repair and regeneration

Cell death was recognized as a contributing factor in the pathogenesis of cardiomyopathic
injury and heart failure over a decade ago (Cheng et al. 1995, Gottlieb et al. 1994). Ensuing
research identified and characterized numerous molecular pathways that control apoptotic cell
death. Despite frustrating problems with use of AKT for treatment of heart failure, beneficial
effects of IGF-1 were recognized both in vitro (Fujio et al. 2000, Wang et al. 1998) and in
vivo (Chao et al. 2003, Li et al. 1997). Paradoxically, IGF-1 exerted anti-apoptotic activity via
AKT activation but did not provoke the hypertrophic and cardiomyopathic effects that had
plagued efforts to use AKT (Li et al. 1997, Reiss et al. 1996). IGF-1 even showed promise as
a treatment regimen for patients in heart failure (Donath et al. 1998, Donath and Zapf 1999,
Fazio et al. 1996). Unfortunately, IGF-1 exerts multiple effects in addition to inhibiting cell
death and as a paracrine factor can alter cell metabolism and function throughout the body.
Ideally, an optimal approach to therapeutic intervention would combine the protective effect
of AKT kinase with the activation properties of IGF within the local environment of the
myocardium. To reconcile the discrepancy between the IGF-1 action and AKT activation, the
cellular action of AKT constructs would need to be modified.

AKT activation by cardioprotective agents such as IGF-1 or estrogen shows one important
distinction from the mutant-activated AKT constructs: nuclear accumulation. Physiologic
AKT activation provokes transient membrane association, phosphorylation by P13-K, and
subsequent accumulation of active AKT within the nucleus of the cell. Artificially created
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activated constructs (such as myristolated or phosphomimetic mutants) do not undergo this
temporal redistribution and instead accumulate predominantly throughout the cytoplasm, in
proximity to the membrane and, to a lesser extent, within the nucleus. Transgenic mouse models
employing these constitutively active AKT constructs reveal important effects upon
hypertrophic cardiac remodeling, angiogenesis, and enhanced contractility. While both
valuable and informative from an experimental standpoint, these observations made with
constitutively active AKT mutants contrasts sharply with the behavior of AKT in response to
the paracrine stimuli that normally regulate activation, such as IGF-1. Cardioprotective effects
of IGF-1 in studies of infarction and ischemia-reperfusion damage (Fujio et al. 2000, Li et al.
1997, Su et al. 2003) set the stage for demonstrating the ability of IGF-1 to inhibit development
of heart failure (Welch et al. 2002). Collective evidence was pointing to a beneficial effect of
AKT activity under appropriate stimulation. Thus, my laboratory pursued the postulate that
nuclear targeting of wild-type AKT kinase activated by endogenous cellular phosphorylation
mechanisms would provide beneficial cardioprotective effects without promoting maladaptive
remodeling typical of mutant AKT constructs.

Nuclear AKT: the good without the bad or the ugly

If our postulate was correct, then nuclear targeting of AKT would confer beneficial phenotypic
characteristics of IGF-1 treatment without cardiomyopathic side effects observed with
previously created mutant AKT constructs. In the first of a series of nuclear-targeted AKT-
related publications, a wild-type AKT was used to maintain near-physiologic levels of kinase
activity with targeting mediated by a concatameric nuclear localization sequence. Nuclear
accumulation of AKT produced profound anti-apoptotic activity without evidence of
hypertrophic growth in either cultured cardiomyocytes or genetically engineered mice that
specifically expressed nuclear targeted AKT (Shiraishi et al. 2004). Inhibition of apoptosis met
or exceeded that of myristolated AKT, and prevention of ischemia/reperfusion damage in
vivo was comparable to the potent effect of preconditioning. Striking similarities between
cardiac-specific expression of nuclear-targeted AKT or IGF indicated the identification of a
pivotal requirement for AKT activation, allowing for beneficial characteristics of IGF-
mediated protection without maladaptive hypertrophy or undesirable paracrine-signaling side
effects. Indeed, subsequent publications have demonstrated that nuclear accumulation of AKT
is actually anti-hypertrophic (Tsujita et al. 2006), in agreement with findings obtained with
AKT knockout mice (DeBosch et al. 2006).

Pursuant to these studies, it seemed plausible that there was more to nuclear AKT accumulation
than just inhibition of cell death. Morphometric analyses of hearts from transgenic mice created
by a-myosin heavy chain-driven expression of nuclear-targeted AKT showed an increase in
the number of cardiomyocytes that were smaller in volume, likely owing in part to the
aforementioned anti-hypertrophic effects of nuclear AKT accumulation. The combination of
more but smaller cardiomyocytes preserved overall cardiac mass and geometry in nuclear-
AKT transgenic mice, but what was the mechanistic basis for the hypercellular phenotype
resulting from nuclear AKT expression? In comparison, cardiac-specific expression of IGF-1B
also led to hypercelluarity but no reduction in cell volume, resulting in increased cardiac mass.
The commonality of increased cardiomyocyte numbers in both nuclear-targeted AKT and
IGF-1B transgenic mice pointed toward examination of cellular proliferation. Since mature
cardiomyocytes are notoriously reluctant to undergo mitotic replication, efforts were directed
toward characterizing the effect of nuclear AKT upon not just cardiomyocytes but also the
cardiac progenitor cell population. There was reason to believe that nuclear AKT was
fundamental to the effects mediated by IGF-1B, since cause and effect relationships linking
enhanced telomerase activity to nuclear accumulation of AKT induced by IGF-1B had been
established, with telomerase activity increased following expression of nuclear-targeted AKT
construct in cardiomyocytes (Torella et al. 2004). Since telomerase maintains cell replication,
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antagonizes cell death, and is expressed predominantly in germ cells and progenitor / stem cells
(Flores et al. 2006), the underlying basis for myocardial hypercellularity could be linked to
potentiation of progenitor cell proliferation in our nuclear-targeted AKT transgenic mice. The
timing was fortunate for this hypothesis, as the concept of myocardial stem cells and resident
progenitor cell populations responsible for generating new myocytes was commanding
increasing attention and acceptance by the cardiovascular community.

The heart of nuclear-targeted AKT: cardiac progenitor cells

Presumably the nuclear-targeted AKT construct could promote hypercellularity by a
combination of increased cell survival as well as enhanced cell cycling. Previous studies had
already established the anti-apoptotic action of nuclear-targeted AKT for cardiomyocytes, but
the impact of the nuclear-targeted AKT construct upon stem / progenitor cell proliferation in
the myocardium had not been examined. Therefore, a study was fashioned to assess myocardial
cell proliferation in nuclear-targeted AKT transgenic mouse hearts relative to nontransgenic
controls (Gude et al. 2006). The presence of c-kit antigen identified stem cells; cycling cells
were assessed by immunolabeling for Ki67 (a marker of cells typically undergoing mitotic
replication), and cardiac lineage commitment was confirmed by coincident expression of the
transcription factor GATA4. The postnatal period is a time of rapid cardiac growth and cellular
proliferation, wherefore samples from young postnatal myocardium were examined to validate
the experimental design and provide further insight into this critical period of myocardial
growth. Indeed, neonatal two day old myocardium is enriched for c-kit cells as well as cycling
cardiac progenitor cells, as revealed by coincident labeling for both Ki67 and GATA4 that
declines rapidly by 2-3 weeks of age. As this age-associated reduction occurs within the first
few weeks after birth, the number of cycling cardiac progenitor cells was doubled in our
nuclear-targeted AKT transgenic heart samples relative to nontransgenic controls from 2 weeks
on to at least 6 weeks (the latest time point assessed in our study). Furthermore, the number of
cardiomyocyte progenitor cells in young adult mice co-expressing c-kit as well as
cardiomyocyte-specific transcription factors Nkx 2.5 or MEF2C were increased approximately
three fold. Collectively, these findings indicate that nuclear-targeted AKT expressed in the
heart expands the population of cycling cardiac progenitor cells. Upon examination of cytokine
and growth factor expression induced by nuclear-targeted AKT, a panoply of mMRNA
inductions were observed in transgenic mice, with an overall expression profile reminiscent of
the neonatal myocardium suggesting that nuclear-targeted AKT evokes a phenotypic effect
similar to that of a young growing postnatal heart (Gude et al. 2006).

Mechanistically speaking, there are a few ways to account for expansion of the cardiac
progenitor and cardiomyocyte population by nuclear-targeted AKT: 1) influencing cell cycle
regulatory proteins to favor myocyte proliferation, 2) inhibition of myocyte cell death or
enhancement of cell survival, and 3) increasing proliferation of the early committed
cardiomyocyte progenitor cell pool. Expansion of the cardiac progenitor population could be
due to induction of transgene expression from a very early stage of cardiomyocyte lineage
commitment since transgenic mice expressing cardiac-specific nuclear-targeted AKT were
created with the a-myosin heavy chain promoter. The coincidence of nuclear-targeted AKT
transgene in cells expressing c-kit antigen is indicative of progenitor cardiomyocyte status, and
extensive analyses revealed a small percentage of such cells representing only a few percent
of the total c-kit* population examined in the myocardium. Nuclear-targeted AKT expression
in these myocyte progenitor cells presumably serves to increase intracellular proliferative and
survival signaling, thereby increasing their number as well as that of their progeny that will
ultimately lose c-kit expression upon continued progression to cardiomyocyte commitment.
These early myocyte precursors may undergo additional rounds of replication, further
expanding the number of cells entering the myocyte pool. Once entrenched in the
cardiomyocyte lineage, the continued expression of nuclear-targeted AKT promotes survival
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and inhibits hypertrophy. The combination of increasing proliferation of the precursor pool
and blunting hypertrophic growth together account for the ultimate phenotype of the nuclear-
targeted AKT transgenic heart: smaller and more numerous myocytes with preservation of
cardiac size and mass that is capable of enhanced resistance to cardiomyopathic injury and
augmented hemodynamic function.

Healing a broken heart: prospects for enhancing stem cell therapies with AKT

Revolutionary ideas of stem cell biology are challenging perceptions of the cardiovascular
community toward myocardial remodeling, repair, and aging (reviewed in (Anversa et al.
2005, Bruneau and Black 2007, Cho et al. 2006, Christoforou and Gearhart 2007, Evans et al.
2007, Germani et al. 2007, Gupta et al. 2007, Liao et al. 2007, Lyon and Harding 2007,
Mummery 2007, Pallante and Edelberg 2006, Schuleri et al. 2007, Sohn et al. 2007). This
recent departure from established precepts of cardiac biology is being driven by the discovery
of stem cells with the capacity to differentiate and integrate into the functioning myocardium.
With the demonstration that such cells exist, longstanding beliefs in cardiac biology become
open to reinterpretation, and novel directions for therapeutic intervention in heart failure have
been proposed. Of course, controversies related to the efficiency of engraftment,
transdifferentiation, interactions with endogenous cell populations, and contributions of cell
fusion continue to be played out in the literature (reviewed in Ang et al. 2006, Balsam and
Robbins 2005, Kocher et al. 2007, Kucia et al. 2004, Mathur and Martin 2004, Taylor 2004),
but these issues are more relevant to mechanism and efficacy and not to the existence of
progenitor cells with regenerative potential. Thus, if the heart is an organ capable of self-
renewal, then the possibility exists to harness this potential for improving myocardial structure
and function. To achieve this goal, the biology of myocardial stem cells needs to be understood
and treatment approaches optimized by judicious manipulation of the stem cell population and
their environment. Predictably, the initial flurry of experiments to restore cardiac function by
adoptive transfer of stem cells yielded mixed results, owing in part to our relatively meager
understanding of the mechanistic basis for myocardial regeneration. Chasing the ultimate goal
of stem cell-based repair will require augmentation of normal cellular function to achieve
optimal results, with manipulation of signal transduction as a promising strategy for improving
efficiency of myocardial regeneration and repair. Cardioprotection is enhanced by induction
of AKT in adoptive transfer of either bone marrow stem cells exposed to hypoxia (Uemura et
al. 2006) or mesenchymal stem cells genetically modified to constitutively express activated
AKT (Gnecchi et al. 2005) in the infarcted heart. A follow-up to the latter study invoked a
requirement for secreted frizzled-related protein-2 (Mirotsou et al. 2007) and in both cases the
donated cell population is presumed to generate paracrine factor(s) that inhibit cell death and
maladaptive remodeling. While AKT activation may prolong donated cell survival or perhaps
increase proliferation for a few days, the lack of persistence or conversion to a cardiogenic
phenotype for transferred cells indicates that AKT is not promoting retention of donated cells
in these studies. However, it is important to bear in mind that these were relatively short-term
experimental designs, the potential contribution of endogenous stem / progenitor populations
recruited by the donated cell population was not examined, and the AKT was a constitutively
activated type rather than nuclear targeted. Moreover, the type of AKT activation employed
was deliberately transient rather than engineered for endurance.

Multiple studies have implicated AKT as a critical mediator of cardiac regeneration in the
damaged heart (Elmadbouh et al. 2007, Gude et al. 2006, Hur et al. 2007, McDevitt et al.
2005, Tateishi et al. 2007). However, a measured approach to cell-based regenerative treatment
involving AKT needs to consider and incorporate multiple criteria such as: 1) AKT activation
(type, duration, intensity), 2) characteristics of the cells being used for therapeutic intervention,
3) type and extent of cardiomyopathic injury, 4) timing and dosage of treatment, and 5) direct
(e.g. engraftment) versus indirect (e.g. paracrine) mechanisms. Of course, any evaluation of
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AKT as atherapy (either as a target of gene therapy or an element of cell-based therapy) needs
to be tested in real disease models beyond transgenic and small animal experimental systems.
Furthermore, ongoing investigations of AKT-mediated effects will undoubtedly uncover
additional downstream mediators of protective and proliferative signaling with a narrower
scope than the diverse cellular functions of AKT. The foreseeable future will require progress
toward AKT activity that is both regulated and focused, involving carefully selected cells with
permanent genomic incorporation of optimally designed AKT purposefully created to facilitate
cardiac repair. Toward that end, the engineering of cardiac stem cells modified to incorporate
nuclear-targeted AKT into the genome results in markedly increased proliferation in vitro as
well as enhanced regenerative activity upon reintroduction to the infarcted myocardium (Figure
1). Ex vivo manipulation of stem cells will enable the use of optimized populations of cells to
rebuild and repair the damaged myocardium. All this is not as far-fetched as it may sound, as
selective salutary effects of nuclear-targeted AKT upon survival and proliferation of
cardiomyocytes / cardiac progenitor cells raise optimism that we are closer than ever to the
goal of regenerating the heart.
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Figure 1.

Cardiac stem cells genetically modified to express nuclear-targeted AKT at one month post-
infarction. Such genetic modifications by AKT may pave the road to enhancing cardiac
progenitor cell proliferation and survival. Unmodified c-kit+ cardiac stem cells (red in overlay)
under normal conditions (A) or genetically engineered to express nuclear-targeted AKT (myc-
tagged; blue in overlay) together with bicistronic green fluorescent protein (GFP) in culture
(B). Genetically modified cells as shown in (B) adoptively transferred to infarcted recipient
mice persist and commit to the myocyte lineage after adoptive transfer to syngeneic mice (C
and D) as identified by presence of GFP (green in overlay). Cardiac commitment is indicated
by expression of tropomyosin (red in overlay) together with GFP (arrows). Blue in tissue
sections represents nuclei.
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