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Abstract
HIV encephalitis (HIVE) is a neurodegenerative disease seen in approximately one in four terminally
infected patients. Macaques infected with the simian immunodeficiency virus develop encephalitis
(SIVE) very similar to the human disease. Neurodegeneration in both these conditions occurs from
the effects of toxic viral proteins and neurotoxins derived from activated brain macrophages.
Activated macrophages in the brain of macaques with SIVE can be labeled in vivo using positron
emission tomography (PET) using PK11195, a ligand that binds the peripheral benzodiazepine
receptor (PBR). However, the functional significance and mechanisms mediating increased PK11195
binding in activated brain macrophages are not known. Using post mortem tissues from macaques
with SIVE and macrophages cell cultures activated with lipopolysaccaride (LPS), we show that
[3H](R)-PK11195 binding is increased in activated macrophages. Increased [3H](R)-PK11195
binding in LPS activated macrophages was reversed by pharmacologically inhibiting class III
phosphatidylinositol-3 kinase (PI3-kinase), but was not altered by inhibiting the mitogen-activated
protein kinase (MAP-kinase) pathway. Our results suggest that activated macrophages in lentiviral
encephalitis show increased [3H](R)-PK11195 binding in a PI3-kinase dependent fashion which may
help elucidate the function of PBR in activated brain macrophages in HIVE and other
neuroinflammatory diseases.
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Introduction
About 25% of immunosuppressed patients infected with HIV develop neurological deficits
ranging form cognitive impairments, motor abnormalities, behavioral symptoms to frank
dementia (HIV-associated dementia) [6,20]. HIV encephalitis (HIVE) is considered to be the
pathological substrate of HIV-associated dementia and is characterized by the presence of
microglial nodules, multinucleated giants cells formed by fusion of HIV infected macrophages,
and HIV-infected and activated macrophages [3]. Brain macrophages (including resident
microglia and infiltrating macrophages) constitute the cell type productively infected with HIV
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in the brain and are hypothesized to be central to neurodegeneration as sources of viral proteins
and toxic substances that initiate synaptic damage and neuronal death [7].

The macaque model for HIVE closely resembles the human disease. Like humans, only a
percentage of macaques infected with Simian Immunodeficiency Virus (SIV) develop
encephalitis [14]. We have previously shown that PK11195, a ligand that binds the peripheral
benzodiazepine receptor (PBR) expressed normally in low levels in the brain, show higher
binding in vivo in SIVE using positron emission tomography (PET) compared to SIV infected
macaques without encephalitis [32]. These data are in agreement with a large body of work
that report increased PK11195 binding corresponding to activated brain macrophages, as
determined using PET, in several acute and chronic neuroinflammatory conditions such as
stroke [27], multiple sclerosis [2], Alzheimer’s disease [4], Parkinson’s disease [22], and
Huntington’s disease [24].

Increased PK11195 binding to PBR in these diseases has been extensively characterized mainly
as a diagnostic tool to detect activated brain macrophages using PET. However, the functional
significance of increased PK11195 binding to PBR sites as well as the cellular mechanisms
mediating increased PK11195 binding in activated brain macrophages have not been
elucidated. Using the macaque model of HIVE along with cell culture systems, we show that
[3H](R)-PK11195 binding is increased in activated brain macrophages and is reversed by
pharmacologically inhibiting the PI3-kinase pathway. These results may help elucidate the
functional significance of increased PBR binding sites in activated brain macrophages in
neuroinflammatory disorders.

Methods
Macaque model of HIVE

Archival brain tissues from the frontal cortex were obtained from pigtailed macaques infected
with SIV (SIVDeltaB670) without encephalitis (n=3) and with SIVE (n=4). Encephalitis was
defined by the presence of microglial nodules; multinucleated giant cells and SIV infected
macrophages determined by staining for the viral protein SIV gp120 [14]. Frontal cortical
tissues from 2 uninfected macaques were used as an additional control.

Autoradiography
Autoradiography was performed as described earlier [32]. Briefly, 15 μm thick frozen sections
obtained from the frontal cortex of SIVE macaques were placed on SuperfrostTm glass slides
(Sigma) and incubated in ice-cold 50 mM HEPES (pH 7.4) containing 1 nM [3H](R)-PK11195
for 30 min. Specificity of binding was ensured by the inclusion of 1 μM PK11195 in parallel
sections. The sections were mounted with a layer of autoradiographic LM-1 emulsion
(Amersham, UK), following which they were developed after 4 weeks and imaged on the
confocal microscope.

Immunohistochemistry and quantification
Cellular localization of [3H](R)-PK11195 in frozen brain sections from SIVE macaques was
evaluated by combining immunostaining and autoradiography. Sections were first
immunostained with GFAP (1:1000, mouse monoclonal, DAKO, Carpinteria, CA) or against
a lysosomal-associated marker for activated macrophages CD68 (1:100, mouse monoclonal,
Serotec, Raleigh, NC), incubated with Cy5-conjugated anti-mouse IgG at a concentration of
1:200 (Jackson Immunoresearch Laboratories Inc., West Grove, PA) and then processed for
autoradiography with [3H](R)-PK11195 following which they were imaged on the confocal
microscope.
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Quantification of CD68 was performed on the confocal microscope on paraffin embedded
sections obtained from the same animals used for filtration binding analyses in a manner similar
to that described previously [32]. Sections were scanned and quantified on a laser confocal
microscope equipped with an argon laser with 458 nm, 477 nm, 488 nm and 514 nm primary
emission lines. (LSM 510, Zeiss, Heidelberg, Germany). Each section was scanned along the
z-axis to define the middle optical plane used in quantification (262,144 pixels/plane; 1 pixel=
0.25 μm2). Scanning parameters such as laser power aperture, gain, and photomultiplier tube
settings were kept constant for each wavelength. An individual blinded to the experimental
design imaged 10 areas (40X) encompassing 106,100 μm2. For each cell phenotype scanned,
contribution to signal intensity from autofluorescence was minimized using a threshold that
was kept constant. In each area the average pixel fluorescence, along with the pixel counts for
a given cell phenotype marker that exceeded the threshold, were enumerated. The average pixel
fluorescence was multiplied by the total number of pixels to represent the total florescence for
in that area. The total fluorescence values determined from the 10 scanned areas were averaged
to represent a measure of the cell phenotype.

Brain sections were imaged on the confocal microscope after combined immunostaining and
autoradiography. The autoradiographic silver grains were visualized by transmitted light and
then pseudocolored on the confocal microscope for better visualization.

Tissue culture
Human peripheral blood mononuclear cells (PBMC) were isolated from buffy coats obtained
from the blood bank (Central Blood Bank, Pittsburgh, PA). PBMC were grown for 5 days in
complete medium consisting of AIM-V medium (Gibco BRL, Grand Island, NY) and 10%
heat inactivated-fetal calf serum (Gibco). Non-adherent cells were washed thoroughly after 5
days and adherent macrophages were cultured for an additional two days in complete medium.
Macrophage cultures were activated with 1μg/ml LPS (Sigma) for 48hrs. Parallel macrophage
cultures were pretreated with either 10μM/L of PI3-kinase inhibitor LY294002 (Sigma) or the
mitogen-activated protein kinase (MAP-kinase) inhibitor UO126 (Cell Signaling, Beverly,
MA) for two hours after which they were activated with 1 μM LPS for 48 hrs in the presence
of either inhibitor.

Filtration radioligand binding assays
Brain tissues were weighed and homogenized in ice-cold 50 mM HEPES (Sigma) buffer (pH
7.4). LPS activated and control macrophage cultures were harvested and homogenized in ice-
cold 50 mM HEPES. Saturation binding experiments were performed by incubating tissues
(total protein concentration ranging from 150 to 200 μg) with 0.5–64 nM [3H](R)-PK11195
(sp. Act., 89.9 Ci/mmol; NEN Life Sciences Products, Boston, MA) at 4°C for 2 hr in a final
volume of 250 μl of HEPES. Nonspecific binding was determined by the inclusion of 10 μM
PK11195 (Sigma). The reaction was terminated by the addition of ice-cold buffer in a vacuum
cell harvester (Brandel, Gaithersburg, MD). All samples were run in duplicate. Bmax in fmoles
per mg protein, reflective of the total number of binding sites and KD in nM reflective of ligand
binding affinity were determined using PRISM software (Graphpad, San Diego, CA).

Statistical analysis
Data were analyzed using PRISM software (Graphpad, San Diego, CA). Student’s t tests or
one-way ANOVA tests with post-test Bonferroni correction and 95% confidence intervals were
used to analyze data. Nonparametric correlational analyses using 95% confidence intervals
were performed to quantify the relationship between [3H](R)-PK11195 binding and activated
macrophages assessed by CD68 staining. Results from correlational analyses are represented
by r, the Spearman’s coefficient.
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Results
[3H](R)-PK11195 is higher in SIVE compared to controls

[3H](R)-PK11195 Bmax values, reflective of the number of binding sites was significantly
higher in SIVE (n=4) compared to SIV infected without encephalitis (n=3) and non-infected
animals (n=2) (p=0.0097, Figure 1 A–C). The KD reflective of ligand binding affinity did not
differ between the three conditions (p=0.5731, Figure 1D). These results were confirmed in
brain sections as [3H](R)-PK11195 autoradiography was greater in SIVE compared to SIV
infected macaques without encephalitis (Figure 1F & E). [3H](R)-PK11195 binding in SIVE
corresponded to the distribution of microglial nodules (Figure 1F) in contrast to the diffuse
binding seen in SIV infected macaques without encephalitis (Figure 1E).

[3H](R)-PK11195 binding in SIVE correlates with activated brain macrophages
[3H](R)-PK11195 autoradiography combined with immunostaining showed that [3H](R)-
PK11195 overlapped with regions rich in CD68 labeled activated macrophages (Figure 2A),
but not with reactive astrocytosis labeled with GFAP (Figure 2B). We next quantified the
degree of microglial activation using CD68 in same regions in the same macaque tissue used
for filtration binding analyses and correlated these values with [3H](R)-PK11195 Bmax values.
The abundance of CD68 staining activated macrophages correlated with [3H](R)-PK11195
binding (Figure 2C, r=0.8684, p=0.0112).

LPS activated macrophages show increased [3H](R)-PK11195 binding compared to controls
To determine if [3H](R)-PK11195 binding is increased in activated macrophages, primary
human macrophages were cultured and activated with 1μM LPS for 48 hrs (Figure 3A & B).
[3H](R)-PK11195 Bmax values, reflective of the number of binding sites, was significantly
higher in macrophages activated with LPS compared to non-activated macrophages (p=0.0017,
Figure 3C–D and Figure 4A). The KD reflective of ligand binding affinity did not differ
significantly between activated and control macrophage cultures (p=0.0896, Figure 4B).

Increased [3H](R)-PK11195 binding in LPS activated macrophages is reversed by the PI3-
kinase inhibitor LY294002

We sought to determine the cellular signaling pathways that mediate increased [3H](R)-
PK11195 binding in activated macrophages. Macrophages treated with the PI3-kinase inhibitor
LY294002, but not the MAPK inhibitor U0126 reversed LPS induced increase in [3H](R)-
PK11195 Bmax (p<0.0001, Figure 4A). The KD did not significantly differ with either
treatment from controls (p=0.5166, Figure 4B).

Discussion
We examined [3H](R)-PK11195 binding in a macaque model of HIVE and cell culture systems
and found that [3H](R)-PK11195 binding corresponded to activated brain macrophages. SIVE
tissue showed increased [3H](R)-PK11195 binding compared to SIV infected, non-
encephalitic and non-infected brain tissues (Figure 1). Increased [3H](R)-PK11195 binding
overlapped with and correlated with the abundance of CD68 labeled brain macrophages (Figure
2). In tissue culture experiments, we found increased [3H](R)-PK11195 binding in
macrophages activated with LPS compared to control macrophages (Figure 3). Finally,
increased [3H](R)-PK11195 binding in LPS treated macrophages was reversed by a
pharmacological inhibitor of PI3-kinase, but not of by a pharmacological inhibitor of MAP-
kinase (Figure 4). These results suggest that [3H](R)-PK11195 binding in activated brain
macrophages may be regulated by the PI3-kinase pathway.
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Our results showing increased [3H](R)-PK11195 binding corresponding to brain macrophages
are similar to others in rat models of stroke [19], ischemia [28] and facial nerve axotomy [1],
multiple sclerosis [2,33], SIVE [16], and hippocampal lesions in mice [25]. While the
functional significance and mechanisms that mediate increased [3H](R)-PK11195 binding to
PBR in brain macrophages are not known, it is thought that PBR is part of a hetero-oligomeric
complex comprised of the voltage-dependent anion channel and an adenine nucleotide carrier
forming the putative mitochondrial permeability transition pore [17]. In tissues synthesizing
steroids, PBR is involved in transport of cholesterol from the outer to the inner mitochondrial
membranes [23]. As a constituent of the mitochondrial permeability transition pore, it is
thought to regulate cell death [17] and mitochondrial respiration [11]. PBR overexpression in
many cell types has been shown to protect against various apoptotic insults including the
cytopathic effects of sindbis and myxoma viral infections [8,12]. Forced PBR expression in
neurons in vivo and jurkat cells in vitro protects these cells from apoptosis [12,29]. PBR
upregulation in testicular leydig cells protects them from cytokine-induced toxicity [30]. PBR
also protects peripheral phagocytes against oxidant induced cell death [5]. Several proteins
involved in apoptosis including Bcl-2, Bcl-Xl and Bax physically interact with the voltage
dependent anion channel and the adenine nucleotide carrier [10]. PBR can thus influence cell
death processes either by directly affecting the molecular components of the pore or indirectly
by interfering with interactions with apoptotic proteins.

The PI3-kinase pathway is a key regulator of cell survival [21]. Further, PI3-kinase/Akt
activation is an important survival-regulation pathway in brain macrophages [13], peripheral
macrophages and other hemopoietic cell [18,31]. Moreover, inhibition of the PI3-kinase
pathway in peripheral macrophages causes these cells to die due to loss of mitochondrial
transmembrane potential [15]. Our data suggests that PBR is directly regulated by PI3-kinase,
and since PBR is a constituent of the permeability transition pore and may play a role in
maintaining mitochondrial transmembrane potential, it is possible that PBR is an essential
player in regulating macrophage cell survival in the CNS in HIVE. Very little is known about
how macrophages survive in the brain in HIVE in vivo. In the SCID mouse model of HIV
encephalitis, macrophages survive for several months in the brain [26]. HIV infected
macrophages also survive in culture for as long as 60 days [9]. Since macrophages mediate the
pathology of HIV encephalitis, it is conceivable that a longer life span of macrophages would
lead to exacerbation of the neurodegenerative process seen in HIVE. PBR expression in
activated brain macrophages may prolong their life span by influencing mitochondrial
permeability transition and preventing apoptosis of these cells in the CNS. The full functional
significance of increased PBR binding sites in brain macrophages in HIVE and other
neuroinflammatory conditions remains to be determined.
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Figure 1. [3H](R)-PK11195 binding is significantly higher in SIVE compared to controls
(A & B) Filtration binding (representative saturation binding curves, A and scatchard plot,
B) with [3H](R)-PK11195 was higher in frontal cortical tissues from SIVE (n=4, black squares)
compared to SIV infected, non-encephalitic (SIV, n=3, clear squares) and non-infected controls
(n=2, gray squares).
(C & D) The Bmax (fmols/mg), reflective of the total number of binding sites was significantly
higher in SIVE (black bars) compared to SIV infected non-encephalitic (SIV, n=3, clear bars)
and non-infected controls (n=2, gray bars). (p=0.0038, C). The KD (nM) reflective of the
binding affinity of the ligand to PBR did not significantly differ amongst the three conditions
(p=0.2492, D). Data was analyzed using one-sided ANOVA.
(E & F) [3H](R)-PK11195 autoradiograms (black grains) of sections from frontal cortex show
higher specific binding in SIVE (F) compared to SIV infected, non-encephalitic macaques
(E).
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Figure 2. [3H](R)-PK11195 binding in SIVE corresponds to activated brain macrophages
(A, B) Sections obtained from the frontal cortex processed for autoradiography with [3H](R)-
PK11195 (green) were immunostained to label activated macrophages with CD68 (A, red) or
astrocytes with GFAP (B, red). [3H](R)-PK11195 specific binding overlaped with CD68 but
not with GFAP immunostaining.
(C) [3H](R)-PK11195 Bmax values (X-axis, fmols/mg) correlated significantly with the
abundance of activated macrophages assessed by quantification of CD68 staining (Y-axis)
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Figure 3. Macrophages activated with show higher binding with [3H](R)-PK11195
Primary human macrophage cultures (n=3) were activated with (B) or without (A) LPS.
Filtration binding (representative saturation binding curves, C and scatchard plots, D) with
[3H](R)-PK11195 was higher in LPS activated macrophages (black squares) compared with
untreated cultures (white squares).
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Figure 4. Pharmacologic inhibition on the PI3-kinase pathway with LY29002 reverses increase in
[3H](R)-PK11195 binding in LPS activated macrophages
(A) Bmax, reflective of the total number of binding sites, with [3H](R)-PK11195 was higher
in primary human macrophages activated with LPS (black bars) compared to untreated controls
(clear bars). Treatment with the PI3-kinase pathway inhibitor LY294002 (grey bars) but not
MAP-kinase inhibitor U0126 (hatched bars) reversed increase in Bmax values in LPS activated
macrophages (n=3, each, p<0.001).
(B) The KD (reflective of the binding affinity) was not significantly different in all the
conditions (p=0.2284). Data analyzed using one-sided ANOVA.
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