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Abstract
Adaptation occurs in a variety of forms in all sensory systems, motivating the question: what is its
purpose? A productive approach has been to hypothesize that adaptation helps neural systems to
efficiently encode stimuli whose statistics vary in time. To encode efficiently, a neural system must

Annotations Sharpee et al., 2006:
This paper applies a novel information theoretic reverse correlation method [31] to obtain cat V1 receptive fields during viewing of a
white noise stimulus and of natural movies. The receptive fields differed in the two cases in their low-pass properties, in such a way as
to transmit similar low frequency power in the two cases. The information transmitted about the stimulus was determined to change on
the order of ~100 sec.
Maravall et al., 2006:
It is shown that adaptation to stimulus variance also occurs in neurons in primary somatosensory cortex; here, rat barrel cortex. Due to
local phase invariance of the response, features and gain curves were extracted using covariance analysis. While features did not change
with variance, the ranges of the gain curves were found to scale proportionally to the stimulus standard deviation in the majority of
neurons, maintaining information transmission.
Nagel and Doupe, 2006:
The responses of neurons in avian field L are analyzed during changes in mean and variance of the randomly varying amplitude of a
broadband noise input. The filters of an LN model change systematically with changes in the mean. As in [11] and [14], while the firing
rate changes slowly following a change in stimulus variance, the filters and gain curves change nearly instantaneously.
Gilboa, Chen, and Brenner, J Neurosci 2005:
Following from the observation of Toib, Lyakhov, and Marom [56] that mammalian brain sodium channels display power-law like
recovery from inactivation, this article models sodium channel inactivation using a Markov chain of one activation state and many
inactivation states, where neuronal excitability is related to the fraction of available channels. The characteristic time scale of adaptation
is found to depend on stimulus duration by a power-law scaling. The key aspect of this model is that the time scale of recovery depends
on how its large pool of degenerate inactive states is populated, which in turn is affected by stimulus history.
Borst, Flanagin, and Sompolinsky, PNAS, 2005:
In the fly visual system, previous work has demonstrated that the H1 neuron adapts its input/output relationship as stimulus statistics
change. These authors find that this seemingly complicated adaptation can be explained by the intrinsic properties of a Reichhardt
correlator motion detector, where such rescaling is a consequence of the system nonlinearity acting on a multidimensional stimulus. This
gain change appears in a reduced dimensional model as a result of other, correlated, dimensions of the stimulus that are not included in
the LN model yet affect the response differently at different variances.
Hosoya et al. (2006):
This study explores adaptation to complex spatial or temporal correlations in salamander and rabbit retina, showing that the receptive
fields of many RGCs change following stimulation with these correlated stimuli such that the response to novel stimuli is enhanced
compared to the response to the adapting stimulus. The authors reject the hypothesis of fatigue of pattern matching cells in favor of a
model of Hebbian plasticity at inhibitory amacrine-to-RGC synapses. This conclusion is intriguingly at odds with other studies that find
adaptation in the retina to simpler correlations (mean, variance) in the absence of inhibitory transmission [34].
Manookin and Demb (2006):
This study adds to our understanding of the relationship between network and intrinsic components of temporal contrast adaptation in
retina. The authors conclude that recovery from a high contrast stimulus, characterized by a slow afterhyperpolarization in guinea pig
RGC membrane potential and firing rate, is inherited largely from presynaptic mechanisms. In addition, they find a small contribution
of intrinsic mechanisms in the RGC. This work is consistent with previous findings in salamander retina [13,61].
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change its coding strategy, or computation, as the distribution of stimuli change. Information theoretic
methods allow this efficient coding hypothesis to be tested quantitatively. Empirically, adaptive
processes occur over a wide range of timescales. On short timescales, underlying mechanisms include
the contribution of intrinsic nonlinearities. Over longer timescales, adaptation is often power-law-
like, implying the coexistence of multiple timescales in a single adaptive process. Models
demonstrate that this can result from mechanisms within a single neuron.

Adaptation as efficient coding
Barlow’s efficient coding hypothesis suggests that, given a finite capacity to transmit
information, neural systems employ an optimally efficient coding strategy to represent the
inputs that they typically process [1-3, Box 1]. However, when collected over relatively short
time or length scales, the local statistics of many natural stimuli differ greatly from their global
distribution. For example, luminance and contrast in natural visual environments vary over
orders of magnitude across time in a day or across space in a complex scene. A sensory system
that matched its distribution of outputs to the global distribution of stimuli would then be
inefficient in transmitting the stimulus’ local distribution. Under these circumstances, one
might expect the system’s coding strategy to adapt to local characteristics of the stimulus
statistics.

Recent experimental designs have begun to test the efficient coding hypothesis in the context
of adaptation. In these experiments, the distribution of a random time-varying stimulus, rather
than a single stimulus parameter, is varied. This design allows one to examine the coding
strategy that the neural system uses to represent an entire stimulus distribution, and to relate
changes in coding strategy to changes in stimulus distribution. The framework underlying these
experiments presents the task of adaptation as essentially an inference problem: the timescale
for the change in coding strategy cannot be shorter than the time required for the system to
“learn” the new distribution.

In order to analyze experiments of this type, one must describe the coding strategy of the system
during changes in the stimulus distribution. To do so, it is necessary to reduce the system’s
entire input-output mapping to a simpler characterization. Linear-nonlinear (LN) models have
often been successful in capturing changes in the computation of an adapting system (Box 2).

Systems adapt to a variety of stimulus statistics
The simplest instantiation of a stimulus probability distribution is one in which the stimulus
takes one of two possible values. If one of these values is presented more frequently than the
other, a system may adapt to give a stronger response to the rarer stimulus. This effect was
observed in cat auditory cortex A1 in response to two tones presented with different
probabilities [4,5]. A potential substrate for this effect was demonstrated in a cultured network
by Eytan et al. [6], who varied the relative frequency of current injection inputs applied at
different locations. Such stimulus-specific adaptation may implement a kind of novelty
detection, in which the strength of the response is adjusted according to the information it
carries.

More generally, the efficient coding hypothesis might be taken to suggest that stimulus
encoding is sensitive to the variations in stimulus statistics seen in natural stimuli. The
properties of natural visual scenes, in particular, have been extensively studied [7]. A simple
model for natural stimuli is of local Gaussian fluctuations with a long-tailed mean and variance
modulated on longer time or length scales [8].
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Inspired by this description of natural stimuli, a class of experiments has examined adaptation
to a change in the mean or variance of a Gaussian white noise stimulus. Using a switching
paradigm in which a random stimulus is chosen from a distribution whose parameters change
periodically between two values (figure 2A), Smirnakis et al. [9] showed that retinal ganglion
cells exhibit an adaptive change in firing rate when the variance of a flickering light stimulus
changes. In the fly motion sensitive neuron H1, Brenner et al. [10] computed an LN model for
different variances of a randomly varying velocity stimulus. They showed that the nonlinear
gain function adapted such that the scaling of the stimulus axis was normalized by the stimulus
standard deviation, and that this serves to maximize information transmission about the
stimulus. Further, this gain change occurs in ~100 ms, rapidly maximizing information
transmission during continuous changes in stimulus variance [11]. A separate slower adaptive
process modulates the overall firing rate on much longer timescales. Analogously, retinal
ganglion cells display contrast gain control [12-16], which occurs on a much faster timescale
than rate changes due to contrast adaptation [9,14].

Adaptation to stimulus variance has also been observed in several higher brain regions. In rat
barrel cortex, when the variance of a white noise motion of the whiskers was changed, the
relevant features remained approximately unchanged, but the gain curves showed a change in
scaling by the stimulus standard deviation [17]. In field L, the avian analog of primary auditory
cortex, Nagel and Doupe [18] observed rapid changes in filters and gain curves as well as a
slower modulation of the overall firing rate, similar to observations in H1 and RGCs, as the
distribution of sound intensity was varied. While individual neurons in inferior colliculus
responding to sound amplitudes showed a variety of response changes during adaptation, Dean
et al. [19] used Fisher information to demonstrate that the population as a whole shifted
responses to best encode the high probability sounds, even when the distributions were
relatively complex, such as bimodal. Neural responses in macaque inferior temporal cortex
adapted to the width of the distribution of image stimuli along arbitrarily chosen stimulus
directions [20].

Beyond white noise
In the LGN, Mante et al. [21] examined the interaction between adaptation to the mean and
the variance (mean luminance and contrast) of drifting grating stimuli and found that the
changes in filters due to luminance and contrast adaptation are independent. Suggestively, their
analysis of natural images also showed independence of luminance and contrast. The same
group found no adaptation to higher order statistics—the skewness and kurtosis—of a random
checkboard stimulus in LGN [22]. However, Hosoya et al. [23] generalized a previous finding
of rate adaptation to the spatial scale of a flickering checkerboard [9] to demonstrate adaptation
to a variety of arbitrary spatiotemporal correlations in visual stimuli in RGCs, and showed that
the new filters that evolve after exposure to these correlations act to remove the correlations
and so perform predictive coding [24,25].

Determining the effect of complex changes in stimulus distribution is difficult to address due
to the biases introduced into white noise analysis by non-Gaussian stimuli [26], which are
difficult to separate from observed dependences of sampled receptive fields on the stimulus
ensemble [27-30]. Sharpee et al. [31] introduced an information theoretic reverse correlation
method which finds the stimulus dimensions that maximize mutual information between
spiking responses and the stimulus. This method was used to find significant differences
between the features encoded by V1 neurons in a white noise ensemble and a natural stimulus
ensemble [32].
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Multiple timescales
How might the goal of maintaining efficient information transmission constrain the dynamics
of adaptation? In tracking changing stimulus statistics, there are two relevant timescales for
any system: the characteristic timescale of changes in the stimulus distribution, and the
minimum time required by an ideal observer to estimate the parameters of the new distribution.
The first timescale is established by the environment, while the second is determined by
statistics and sets a lower bound on how quickly any adapting system could estimate parameters
of the new distribution. Given these constraining timescales, an adapting system should choose
an appropriate estimation timescale for computing local stimulus statistics. For example,
consider a system that adapts to the local stimulus mean. If this system estimates the local mean
by averaging over only a few samples, the system would amplify noise and transmit little
information about its stimulus [33]. Conversely, a system that averages over a timescale much
longer than the timescale of changes in stimulus mean will not be optimally adapted to the
local stimulus ensemble.

This argument assumes that the neural system can choose an adaptation timescale to match the
dynamics of stimulus statistics. Experimentally, it appears that two separable phenomena
describe the dynamics of adaptation to variance or contrast, at least in early visual and auditory
systems. As discussed above, the first of these components rapidly rescales the system’s input-
output gain following a change in stimulus statistics [11-16,18,34]. The second component of
adaptation dynamics is a slow change in the system’s mean firing rate [9,11,13,15,18,35,36].
It is not yet clear what, if any, relationship exists between these two phenomena. In the fly H1
neuron, these effects appear to be independent [11], but such a result does not appear necessary
a priori. At least in some cases, the adaptive rescaling of input-output functions in rat barrel
cortex appears to follow the slow timescale rate adaptation [17]. Perhaps consistent with this,
Webber and Stanley found that transient and steady-state adaptation in this area could be
modeled with a single state variable [37].

The timescale of the fast gain change is often on the order of the timescale of the system’s
relevant feature, and does not appear to depend on the timescale of switches in stimulus
ensemble. In at least some cases, fast gain changes in response to changes in stimulus variance
or correlation time are a consequence of the system’s static nonlinearity with no change in
system parameters [38-44]. Whether such effects should rightly be called adaptation is
something of a philosophical question. There is no doubt that finite dimensional stimulus/
response characterizations such as LN models are limited and adaptation may appear to change
model parameters. On the other hand, these models may, in some cases, capture all stimulus
dependence if appropriately extended.

Slower changes in overall excitability have variable dynamics and may be subserved by a wide
variety of mechanisms. Spike frequency adaptation (SFA) occurs over many timescales in
cortical neurons [45], and has been analytically described for simple model neurons [46,47].
By specifying only the initial and steady-state firing rate-input (f-I) curve as well as the effective
time constant, SFA can be described without knowledge of particular neuronal dynamics
[48,49]. Slow currents have been implicated in altering the gain of f-I curves, allowing neurons
to remain sensitive to input fluctuations at high mean currents [50-52].

Power law adaptation
In some cases, the dynamics of slow changes in excitability might be matched to the dynamics
of stimulus changes. Many researchers using a switching paradigm with a single switching
timescale have reported the dynamics of this slow gain change as an exponential process with
a fixed time scale [5,9,13-15,35]. However, in the fly visual neuron H1, when the time between
stimulus changes was varied, the apparent adaptation timescale scaled proportionally [figure
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3A,11,53] . Thus, the dynamics of slow gain changes in fly H1 are consistent with a power-
law rather than an exponential process [36,54]. Power law dynamics are significant because
there is no privileged timescale: dynamics are invariant with respect to changes in temporal
scale, and such a system could therefore adjust its effective adaptation timescale to the
environment.

Although studies in other systems have not explicitly tested for multiple time scales, results
from studies of temporal contrast adaptation in salamander and mammalian (rabbit and guinea
pig) retina suggest that the apparent time constant of the slow gain change indeed varies as a
function of the period between stimulus switches (figure 3B-C).

Few studies provide direct evidence for the biophysical mechanisms underlying multiple
timescale dynamics. Power law dynamics can be approximated by a cascade of many
exponential processes [36,54,55]. Thus, a leading hypothesis is that multiple timescale
dynamics are the result of a cascade of exponential processes in a cell or network. Multiple
timescales exist in the multiplicity of channel dynamics present in single neurons [45]. Even
in single channels, power-law recovery from inactivation has been shown in isolated NaII and
NaIIa channels [56]. This behavior is captured by a stochastic sodium channel model that
includes a Markov chain of multiple inactivation states [55].

Intrinsic properties or circuit mechanisms?
A leading candidate for a mechanism of contrast gain control in V1 is divisive normalization,
in which the output of a given neuron is modulated by feedback from the responses of neurons
with similar receptive fields [57,58]. However, many of the mechanisms we have discussed
here may operate at the level of single neurons [59]. Recent work has made considerable
progress in elucidating where in particular circuits adaptation occurs. In salamander retinal
ganglion cells, rapid contrast adaptation is partially inherited from the adaptation of synaptic
inputs [13,60] while a second component is contributed by intrinsic mechanisms [61].
Manookin et al. [35] also find that recovery from high contrast stimulation in guinea pig RGCs,
characterized by a slow “afterhyperpolarization,” is mediated in large part by inherited changes
in synaptic inputs with an additional intrinsic component. In mouse retina, adaptation to dim
mean background luminance occurs in rod photoreceptors and at the rod bipolar-to-AII
amacrine cell synapse [62]. In this case, the dominant site of adaptation was predicted by the
likely site of saturation in response due to convergence of signals in the retinal circuitry. In rat
barrel cortex, Katz et al. [63] showed that a subthreshold component of adaptation is whisker-
specific, while responses in barrel cortex are multi-whisker, implying that the adaptation occurs
in intracortical or thalamocortical connections as opposed to intrinsic mechanisms in the barrel
cortical neurons.

Conclusion
A growing body of evidence suggests that representations at all levels throughout sensory
processing pathways are plastic, depending on the recent history of the stimulus, on a range of
timescales varying from virtually instantaneous to timescales more typically associated with
synaptic changes. This plasticity can increase the information transmission rate of the signal.
One would thus like to determine whether constraints on timescales are imposed by the time
required to learn dynamic efficient representations. It is becoming clear that some components
of what we think of as advanced processing may be occurring at low levels. Furthermore, some
types of sophisticated apparent learning effects may be a result of intrinsic nonlinearities. A
view of sensory systems as a simple feed-forward relay of filtered sensory information from
transducers to cortex is no longer appropriate. Instead, we must consider the statistics of the
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natural world, plasticity at multiple levels of sensory processing, and the consequences for
encoding of sensory information at each stage.

Efficient coding (Box 1)

Maximizing efficiency with a fixed dynamic range requires that the system maps its inputs
to its outputs such that all outputs are equally likely [figure 1,25,64]. The optimal coding
strategy thus depends on the statistics of the stimulus that the system represents.

Capturing adaptive computation (Box 2)

To effectively characterize adaptation, one must begin with a characterization of
computation. A powerful method for characterizing neural computation is to approximate
the neural system as first linearly filtering the stimulus by an identified relevant feature or
set of features, and then to generate spikes according to a nonlinear function of the stimulus’
similarity to the feature(s) (figure 2). Models of this simple type are known as linear/
nonlinear (LN) models, and have had considerable success in capturing some aspects of
neural processing [26].

In this simplified framework, adaptation to stimulus statistics might affect the features that
linearly filter the stimulus, or the nonlinear function that determines the probability to fire
(figure 2B). A change in response gain (without a change in the feature) can be manifested
as either a vertical scaling of the linear feature or a horizontal scaling of the nonlinearity.
Changes in the feature for different stimulus conditions occur, for example, in the retina;
in low light levels, the receptive fields of retinal ganglion cells show increased temporal
integration and decreased inhibitory surround [25].

One can sample these potentially time-dependent components using reverse correlation
either with spikes conditioned on the phase of their arrival time with respect to the stimulus
cycle if the stimulus is changing periodically, or with an adaptive filter [65].
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Figure 1. An example of efficient coding
(a) Given a stimulus distribution (top), and a fixed output range, the maximally efficient
mapping from stimulus to response is the integral of the stimulus distribution (bottom), known
as the cumulative distribution. This mapping transforms equal probability in the stimulus
distribution (shaded areas) to equal response ranges, making all responses equally likely. (b)
When the stimulus distribution changes, for example from p1 to p2 (top), the maximally
efficient mapping also changes. The new mapping, r2(s), is the cumulative distribution of
p2(s). In this case, both the mean and the variance of the stimulus distribution change, leading
to a shift in the half-maximum and a decrease in gain (slope) of r2(s) compared to r1(s),
respectively.
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Figure 2. Neuronal computation modeled using a linear/nonlinear (LN) model
The linear filter(s) and nonlinear threshold function of the model are estimated by using reverse
correlation between spikes and stimuli. (a) The spike times of a neuron are recorded in response
to some stimulus. In this example, a filtered Gaussian white noise stimulus is presented, where
the variance of the stimulus changes periodically between two values, but the white noise is
generated anew in each variance cycle. A raster plot of spike times produced in response to
several different instantiations of the white noise process are shown below. The stimulus
preceding each spike is used to find the feature(s) and threshold function of the LN model by
reverse correlation. (b) Computation is then modeled by linearly filtering incoming stimuli
with the previously determined feature(s). Filtered stimuli are then passed through the threshold
function, which gives the probability of firing an action potential as a function of time. To
examine how the LN model changes with the variance context, spikes are sampled from a
particular time bin with respect to the changes in the variance (shaded box) to compute time-
dependent features and threshold functions.
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Figure 3. The apparent timescale of adaptation depends on the dynamics of changes in the stimulus
ensemble
(a) In this example of a switching experiment, the variance of a Gaussian white noise stimulus
is changed periodically between two values (top). Following an increase in stimulus variance,
the average firing rate of a motion sensitive H1 cell in the fly visual system (bottom) increased
transiently and then relaxed towards a baseline (gray trace). As the period of switches in
stimulus variance was increased, the time constant of the slow relaxation in firing rate increased
proportionally from 5s period (red trace) to 40s period (gray trace). (b) The reported time
constant of slow relaxation in firing rate [9] or input currents [13] of RGCs or input currents
to bipolar cells [60] following an increase (red) or decrease (blue) in contrast of a full field
flickering stimulus increases with increasing switching period. Where Rieke [60] reports a sum
of exponentials, we have plotted the time constant of the best fitting single exponential. In this
and (c), dashed lines are linear regression fits. (c) The reported time constant of slow relaxation
in firing rate of rabbit RGCs [9,34] or the firing rate [16] or input currents [35] of guinea pig
RGCs following an increase (red) or decrease (blue) in contrast of a full field flickering stimulus
increases with increasing switching period. An arrow identifies the exceptional stimulus [35]
in which a non-periodic 4s sinusoid grating was presented instead of a flickering field. Where
Brown et al. [34] report time to 66% recovery, we plot the time constant of an exponential with
equal time to 66% recovery. The results of (b-c) are expected if the observed systems modify
their rate of gain change according to stimulus history, and are consistent with power law, not
exponential, dynamics.
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