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Summary
The propensity adjustment provides a strategy to reduce the bias in treatment effectiveness analyses
that compare non-equivalent groups such as seen in observational studies (Rosenbaum and Rubin,
1983). The objective of this simulation study is to examine the effect of omitting confounding
variables from the propensity score on the quintile-stratified propensity adjustment in a longitudinal
study. The primary focus was the impact of a misspecified propensity score on bias. Three features
of the omitted confounding variables were examined: type of predictor variable (binary vs.
continuous), constancy over time (time-varying vs. time-invariant), and magnitude of the association
with treatment and outcome (null, small, and large odds ratios). The simulation results indicate that
omission of continuous, time-varying confounders that are strongly associated with treatment and
outcome (i.e., an odds ratio of 1.75) adversely impacts bias, coverage, and type I error. Omitted time-
varying continuous variables had somewhat more effect on bias than omitted binary variables. Time-
invariant confounding variables that are not included in the propensity score have a much less effect
on results. This evaluation only examined continuous treatment effectiveness outcomes and the
propensity scores used for stratification included just four variables. Relative to the use of the
propensity adjustment in applied settings that typically comprise numerous potential confounding
variables, the impact of one omitted continuous, time-varying confound in this simulation study could
be overstated.
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1. Introduction
An observational design typically includes subjects who are more representative of patients
with a particular illness. For instance, observational studies tend to have less restrictive
inclusion and exclusion criteria than those used in randomized controlled clinical trials (RCT).
As a result the observational design can provide greater generalizability than seen in RCTs.
However, because an investigator observes, but does not manipulate treatment, the data analyst
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in an observational study is faced with non-equivalent groups. For instance, those who receive
more intensive treatment are likely to have had more severe symptoms, a history of failed
treatments, or more comprehensive health insurance coverage.

The propensity adjustment is a strategy to compare non-equivalent groups such as in analyses
of treatment effectiveness in observational studies through stratification, matching, or covariate
adjustment (Rosenbaum and Rubin, 1983). The propensity score, e(x), which represents the
conditional probability of group assignment given demographic and clinical characteristics,
forms the basis for the propensity adjustment. The propensity adjustment has been shown to
reduce bias in the treatment effectiveness estimate relative to unadjusted analyses.

Recent work has examined the application of the propensity for treatment intensity to
longitudinal data (Leon and Hedeker, 2005). This approach can incorporate repeated
assessments of non-randomized, time-varying, ordinal doses of treatment over the course of a
chronic illness. The analyses involve two stages: a propensity model and a treatment
effectiveness model. Simulation studies have documented that a vast majority of the bias seen
in unadjusted analyses is accounted for with an adjustment for the propensity for treatment
intensity when the effectiveness evaluation involves either a mixed-effects grouped-time
survival analysis (Leon, Hedeker and Teres, in press) or a mixed-effects linear regression
analysis (Leon and Hedeker, in press).

The extent of balance between non-randomized treatment groups on demographic and clinical
characteristics that is achieved with the propensity adjustment can be readily evaluated. Yet,
it is not feasible to examine balance across treatment groups on confounders that are unknown
or unmeasured. Nevertheless, an implicit assumption of the propensity strategy is that the
propensity score is adequately specified. Rosenbaum (2002) has described sensitivity analyses
that examine the range of bias in propensity-adjusted parameter estimates that could result from
a misspecified propensity score. Drake (1993) examined the effect of misspecification of the
quintile-stratified propensity adjustment in a simulation study of cross-sectional data in which
the outcome variable is either continuous or binary and showed that considerable bias can
remain if a key confounder is omitted from the propensity score. Here, that work is extended
in several ways.

The objective of the current study is to examine the effect of omitting confounders from the
propensity score on the quintile-stratified propensity adjustment in a longitudinal study.
Initially the two stages of the adjustment procedure are described: the longitudinal propensity
and treatment effectiveness models. A simulation study then evaluates the impact of propensity
score misspecification.

2. Longitudinal Implementation of the Propensity Adjustment
2.1. Propensity Model for the Longitudinal Study of Ordinal Doses

Elsewhere we have described a modification of the Rosenbaum and Rubin (1983) propensity
model to examine the longitudinal study of K time-varying ordinal doses denoted by the
variable Tij (Leon and Hedeker, 2005). The Rosenbaum and Rubin (1983) notation is adapted
here. The ordinal propensity score is specified for subject i (i =1,…N), at time j (j =1,…Ji),
and dose k (k = 0,…K − 2). Here, to be consistent with the notation of a dichotomous logistic
regression model, the index starts at 0 and goes to K − 2:

Leon and Hedeker Page 2

Comput Stat Data Anal. Author manuscript; available in PMC 2008 August 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Where xij is a vector of covariates hypothesized to be related to intensity of treatment (i.e.,
ordinal dose) as well as an intercept term. The subject-specific random effect, νi, is normally
distributed in the population with mean 0 and variance .

The propensity score can be estimated using an ordinal mixed-effects logistic regression model
(Hedeker and Gibbons, 1994):

(1)

where γk represents the threshold for dose k, xij is the p × 1 vector of covariates and an intercept,
and β represents the corresponding regression coefficients. Given subscript j, vector x can
include both time-varying and time-invariant covariates, each of which must be assessed prior
to the start of a particular course of treatment. Accordingly, this model allows for changes in
an individual's propensity score and dose over time. If a temporal trend in repeated dosing is
hypothesized, the model can also include time effects. For purposes of identification the first
threshold γ1 is typically set to zero (or the intercept is set to zero). Threshold values γk are
increasing and reflect the marginal cumulative logits. Specifically, there are K−1 cumulative
logits (indexed as k = 0,…K − 2) for the K ordinal doses and, assuming proportional odds, each
covariate is assumed to have the same effects across these logits (McCullagh, 1980).

Neither the intercept, which is a constant, nor the threshold is needed for the propensity-based
ranking that is used for stratification. It is not necessary to include the thresholds, γk, for dose
k (k = 0,…K − 2) in this expression under the proportional odds assumption, because the
thresholds do not vary by subject, time, or comparisons among ordinal doses. A logistic
response function can be used to express the mixed-effects propensity score for subject i at
time j:

(2)

The propensity score, e(xij,νi), which ranges from 0 to 1, represents the probability of receiving
a higher dose (T) of treatment based on the contribution of covariates, x, and subject effects,
νi. A high propensity score indicates that the observation has characteristics associated with
more intensive doses; whereas a low propensity score indicates that the observation has the
characteristics of someone not likely to receive a higher dose at a particular point in time. Based
on the propensity score for subject i at time j, each observation is classified into a propensity
quintile, q(1), …, q(5),. Quintile-stratified treatment effectiveness analyses are then conducted.

2.2. Longitudinal Treatment Effectiveness Analyses
The k treatment groups are compared on a longitudinal continuous dependent variable, yij,
using a mixed-effects linear regression model. The model is specified as:

(3)

where α0 is the intercept term, α1 is the coefficient for dummy-coded treatment dose Tij1,
αk−1 is the coefficient for dummy coded treatment dose Tij,K−1, θi is a subject-specific random
intercept, distributed as , and εij is the error term for subject i at time j, distributed
independently as . The null hypotheses tested below represent the dose-specific
effectiveness evaluations, H0k: αk=0 for k = 0,…K −1. If a temporal influence on treatment
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effectiveness is hypothesized, the model could also include a term representing the slope over
time and possibly an interaction of treatment by time.

As stated earlier, the effectiveness analyses are conducted separately for each quintile. The
quintile-specific results can be pooled using the Mantel-Haenszel procedure (as described by
Fleiss, 1981) in which each quintile-specific parameter estimate is weighted by the inverse of
its squared standard error. In order to pool the results, however, it is assumed that there is not
a treatment by propensity interaction. A procedure to test that assumption, based on the
likelihood ratio test, is described elsewhere (Leon and Hedeker, 2005).

3. Simulation Study
The impact of propensity score misspecification on the performance of the quintile-stratified,
longitudinal propensity adjustment in a mixed-effects linear regression model was examined
in a Monte Carlo simulation study. The primary focus was to examine the impact on bias of
three features of the omitted confounding variables including:

1. type of predictor variable (binary vs. continuous)

2. constancy over time (time-varying vs. time-invariant)

3. magnitude of the association with treatment and outcome (specified as null, small,
and large odds ratios).

In addition, we examined type I error, statistical power and coverage probability.

3.1. Simulation Specifications
This simulation study distinguishes between true, eT(xij,νi), and estimated eE(xij,νi), propensity
scores. Simulated data were generated based on eT(xij,νi), yet those data were subsequently
analyzed stratified into quintiles based on eE(xij,νi). The data were generated in the following
manner. Initially, true propensity scores were calculated for each observation were based on
vector xT,

which includes the intercept, x0, and eight randomly generated predictor variables:

1. two time-invariant, continuous variables (x1, x2)

2. two time-invariant, binary variables (x3, x4)

3. two time-varying, continuous variables (x5, x6)

4. two time-varying, binary variables (x7, x8)

Each of these variables was generated based on an underlying standard normal distribution. In
addition, the correlation between all pairs of the propensity model predictor variables, , was
set at either 0.20 or 0.40. For each binary variable the underlying standard normal was
dichotomized to yield an even split of zeros and ones. The odds ratios for the eight predictors
of dose in the propensity model varied (1.0, 1.25, 1.75), representing null, small, and large
associations with treatment intensity, respectively. The true propensity score, eT(xij,νi), based
on those odds ratios, yielded the observed time-varying ordinal doses based on the threshold
concept (Agresti, 2002). A sample size of 250 subjects was examined and each subject had
eight repeated observations during the hypothetical longitudinal study. The intraclass
correlation coefficient (ICC) ρx for each time-varying predictor (x5 - x8) over time was specified
as 0.40.
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3.2. Treatment Effectiveness Simulation
The effect of each of three doses, relative to dose 0 (i.e., the control), on the continuous outcome
was specified in mixed-effects linear regression model (2), with between dose standardized
effects of 0, .22, and .56, representing null, small and moderate treatment effects (in standard
deviation units). The association of each covariate (x1 – x8) on both the continuous effectiveness
outcome and dose was specified to be approximately equivalent. The ICC, ρk, among the
repeated doses was specified to be equal to the ICC, ρY, among the repeated assessments of
outcome such that ρk = ρY = .40. One thousand data sets were generated for each combination
of simulation specifications.

3.3. Propensity Score Misspecification
In an effort to evaluate the effect of misspecification, the estimated propensity score,
eE(xij,νi), was used for quintile stratification in the treatment effectiveness analyses and was
calculated based on vector xE:

In this way, four confounds (x2, x4, x6, x8,) were ignored in the stratification process, even
though they were components of the true propensity score. (Note that in the simulation when
odds ratios of 1.0 are specified for the omitted confounds, the true and estimated propensity
scores are equivalent.)

3.4. Evaluation of Model Performance
Performance of the models was evaluated using the following criteria: type I error, statistical
power, coverage, standardized bias, and root mean square error (RMSE). Type I error and
statistical power represent the respective proportions of true and false null hypotheses that were
rejected. Coverage is defined as the proportion of simulated data sets for which the 95%
confidence interval for the respective parameter estimate included the specified value.

Standardized bias, , was the primary criterion in this study because it expresses
bias in units of uncertainty of the parameter estimates across simulated data sets. Demirtas
(2004) suggests that if the absolute value of standardized bias exceeds .40, efficiency, coverage
and error rates are adversely affected. RMSE combines accuracy and precision and is defined

as . All evaluation criteria were based on the Mantel-Haenszel pooled results.
MIXOR software (Hedeker and Gibbons, 1996a) and MIXREG software (Hedeker and
Gibbons, 1996b) were used for analyses of the propensity and effectiveness models,
respectively. The simulations were designed to emulate the two-staged approach described
above such that the results of a propensity model are used to estimate a propensity score which,
in turn, is incorporated in the treatment effectiveness analyses. An example of SAS Code to
implement this simulation is available from the first author.

3.5. Simulation Results
3.5.1. Standardized Bias—Initially, consider as benchmarks, the performance of the
procedure with correctly specified propensity models (two italicized models each: odds ratios
of 1.25 and 1.75 for x1, x3, x5, x7) in Table 1  and Table 3 , in which the
omitted confounding variables have a null effect (odds ratios of 1.0 for x2, x4, x6, x8). The
standardized bias in these models is less than 25% of a standard error (median absolute
standardized bias: 11.3%), indicating that propensity score-based stratification accounted for
substantial bias. The standardized bias, however, is elevated when time-varying confounding
variables with associations with treatment of large magnitude (odds ratio of 1.75 for x6 or x8)
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are omitted from the propensity score, and thus the stratification process. (Standardized bias
in excess of 40% is bolded in Tables 1 and 3.) This effect is most prominent for x6 (the
continuous, time-varying confound) and is seen for parameter estimates for each of the three
doses, relative to the control, with standardized bias ranging from about 40% to over 180%.
Despite the standardization, there is a tendency for somewhat greater standardized bias with
larger doses. The largest of these standardized biases arise from the omission of two time-
varying confounding variables of large magnitude. In contrast, standardized bias is only slightly
elevated with small, time-invariant omitted confounders (odds ratios of 1.25 for x2 or x4). The
bias increases somewhat with the omission of either larger time-invariant confounders (odds
ratios of 1.75 for x2 or x4) or small time-varying confounding variables, yet the standardized
bias is typically smaller than 35% standard error units, and most often much smaller, unless
large time-varying confounding variables are also omitted. Standardized bias is somewhat
muted when the correlation among propensity predictors is 0.40 (Table 3) relative to
correlations of 0.20 (Table 1), yet the pattern of values in excess of 40% is similar.

3.5.2. Root Mean Squared Error—RMSE is less sensitive than standardized bias to the
misspecified propensity score (Tables 1 and 3). Nevertheless, RMSE is somewhat elevated
when time-varying confounding variables with odds ratios of 1.75 are omitted, reflecting the
pattern described for standardized bias.

3.5.3. Type I Error—The effect of an omitted confounder on type I error mirrors that of bias
(Tables 2 and 4). That is, as the odds ratio for the omitted time-varying continuous confound
(x6) increases to 1.75, type I error increases from a nominal level to exceed 10%. An omitted
time-invariant confound has little impact on type I error.

3.5.4. Statistical Power—There is increased statistical power (> .90) for the small
standardized treatment effects when the continuous, time-varying confounding variable (x6)
of large association (odds ratio: 1.75) is omitted from the propensity score used for
stratification. This corresponds to decreased coverage (described below), suggesting increases
in both power and precision. Power appears to have reached an asymptote of 1.0 for a moderate
treatment effect (.56), given the sample size of 250 with eight repeated observations over time.

3.5.5. Coverage—The simulation-based coverage is adversely affected when the continuous,
time-varying confounding variable (x6), with odds ratio of 1.75, is ignored in the stratification
process, resulting in coverage probability of less than 90%. (Coverage that is less than 90% is
bolded in the Tables 2 and 4.) The coverage is acceptable for nearly all other simulation
specifications.

4.0. Discussion
The sensitivity of a longitudinal, quintile-stratified, propensity adjustment to incomplete
specification of the propensity model has been evaluated in this simulation study. The results
indicate that time-varying confounders can play a critical role in bias reduction in longitudinal
studies, apparently more so than confounders that do not change over follow-up. Although
omission of time-varying confounders with a small association with treatment and outcome
(i.e., odds ratio of 1.25) had minimal impact on the model performance, those with a larger
association clearly had an impact on bias, coverage, and type I error. Omitted continuous time-
varying variables had somewhat more effect on bias than did omitted binary time-varying
variables. In contrast, omitted variables that were more highly correlated with variables that
were included in the propensity score had less impact on bias than omitted variables with lower
correlations.
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This evaluation examined continuous treatment effectiveness outcomes and included only four
variables in the estimated propensity score, which served as the basis for stratification. We
acknowledge that this is somewhat oversimplified relative to the number of variables included
when the propensity adjustment is applied in practice; and thus, the impact of just one omitted
confound could be overstated. For example, studies of cardiovascular disease have included
considerably more variables in the propensity score: 18 variables (Grzybowski et al., 2003),
34 variables (Gum et al., 2001) and 102 variables (Normand 2001). Nevertheless, when one
large, time-varying confounding variable was omitted from the propensity score in the
simulation study, the parameter estimate resulted in substantial bias, reduced coverage
probability, and inflated type I error rates. The impact of an omitted time-varying confounding
variable would likely be mitigated by including a term for time in the mixed-effects outcome
analyses, to the extent that this omitted variable is associated with time.

The simulation results underscore the importance of conducting comprehensive assessments
over the course of follow-up in a longitudinal study. Most importantly, the selection of
assessments must be guided by clinicians and other researchers with expertise in the substantive
area of focus. Whether bias is introduced because a variable is inadvertently excluded from
analyses or not collected during assessment is immaterial once the analyses have been
completed. The building of a propensity model is not simply a data analytic exercise, but instead
must be an active collaboration among researchers. The availability of the variables for the
propensity adjustment, through a well-guided choice of assessments at the design stage of an
observational study, plays a critical role in bias reduction. Of course, there is a risk of a tradeoff
between in depth, time-consuming assessments and retention in a longitudinal study.

Rosenbaum and Rubin (1983) described three approaches to implementing the propensity
adjustment: stratification, matching and covariate adjustment. The use of the latter approach
is typically discouraged. The simulation study described here was limited to stratification. It
is not clear how these results compare to the impact of propensity score misspecification on
matching. Furthermore, this simulation-based evaluation of misspecification does not examine
sensitivity to hidden bias in the manner proposed by Rosenbaum (2002) in which one estimates
a range of change in the magnitude of treatment effectiveness estimates based on the strength
of the association of hypothetical omitted confounders with treatment assignment.

Observational studies, by design, will seldom, if ever, provide the complete data needed to
calculate the true propensity score; instead an estimated score will be used to implement the
propensity adjustment. This simulation study has shown that neglecting to include in the
estimated propensity score time-varying confounds that are strongly associated with treatment
and outcome had much greater impact on the performance of a quintile-stratified propensity
adjustment than omission of time-invariant confounds. In conclusion, careful propensity model
building and evaluation of group balance are essential when the adjustment is applied.
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