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ABSTRACT To maintain normal physiology, cells must properly process diverse signals arising from changes in temperature,
pH, nutrient concentrations, and other factors. Many physiological processes are controlled by temporal aspects of oscillating
signals; that is, these signals can encode information in the frequency domain. By modeling simple gene circuits, we analyze
the impact of cellular noise on the fidelity and speed of frequency-signal transmission. We find that transmission of frequency
signals is ‘‘all-or-none’’, limited by a critical frequency (fc). Signals with frequencies ,fc are transmitted with high fidelity,
whereas those with frequencies .fc are severely corrupted or completely lost in transmission. We argue that fc is an intrinsic
property of a gene circuit and it varies with circuit parameters and additional feedback or feedforward regulation. Our results
may have implications for understanding signal processing in natural biological networks and for engineering synthetic gene
circuits.

INTRODUCTION

To maintain their normal physiology, cells must process

diverse signals such as temperature, pH, and nutrient con-

centrations. This process can be conceptualized as consisting

of three steps: encoding, transmission, and decoding. One

strategy employed to encode information is using the am-

plitude domain of a signal. Such amplitude signals are pre-

dominantly based on concentrations of signaling molecules.

Alternatively, information may be encoded in the fre-

quency domain of an oscillatory signal. Oscillatory signals

have been observed in diverse cellular processes, such as

circadian clocks (1), segmentation clocks (2), Ca21 signaling

pathways (3,4), p53 DNA repair pathways (5), NF-kB

pathways (6), and cell cycles (7–9). These signals can

directly control the spatiotemporal dynamics of downstream

cellular processes, and are likely to be the prevalent

mechanism for regulating cellular processes where oscilla-

tions are involved. For example, the frequency of Notch

protein oscillations in the posterior presomitic mesoderm

(PSM) of mice controls cyclic expression of downstream

genes such as HES1 (10) and Lfng (11), which in turn

modulates periodic patterning in somite development (12–

14). Loss of these oscillations, through perturbation of either

the Notch protein or the downstream genes, will cause

chaotic segmental organization (15–18). In mammalian

circadian clocks, the mCLK/BMAL1 protein oscillations

control cyclic expression of an albumin-D-binding protein

containing a basic leucine zipper. The albumin-D-binding

protein regulates critical cellular processes, such as circadian

sleep consolidation and rhythmic EEG activity (19). Dis-

ruption of the oscillation frequency may be detrimental to the

circadian rhythm and ultimately to human physiology (20).

In other cases, frequencies of oscillatory signals are

correlated with activities of specific cellular processes that

further suggest frequency encoding. During inflammatory

response of T-lymphocytes, [Ca21] oscillation frequencies

of ;0.01/s were found to maximize expression of

interleukin-2 and interleukin-8 cytokines (21). During

growth and differentiation of HeLa cells, [Ca21] oscillation

frequencies of ;0.008/s significantly increased the activity

of Ras proteins (22). Similarly, the frequency of NF-kB

oscillations was proposed to regulate the activity of down-

stream genes involved in cell division, apoptosis, and

inflammation response (6). In addition, chemical networks

with specific architectures may function as frequency

decoders (23). Table S1 lists many biological systems

where frequency signal encoding is potentially adopted.

Regardless of encoding strategies, cellular signals are

processed in the presence of noise, which arises from

reactions between small number of molecules and perturba-

tions inside a cell or from the environment (24–32). The

presence of noise presents an important challenge for cellular

signal processing. To understand the effects of noise on

biological systems, considerable research has been per-

formed to study noise generation and propagation (33,34),

noise frequency modulation by negative feedback (35,36),

and noise filtering in bacterial chemotaxis pathway (37).

However, little is understood about how cellular noise

impacts transmission of frequency signals. There is evidence

for small amplitude oscillations in genome wide transcrip-

tion of yeast respiratory cycles (38,39), which could be

affected by cellular noise. Therefore, if cells do use

frequency encoding, what are the basic characteristics of

frequency-signal processing, in terms of processing speed

and fidelity? How do these characteristics depend on the
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biochemical parameters and the architecture of underlying

cellular networks? More generally, have cells evolved to take

advantage of different strategies to properly control the

transmission?

We address these questions by analyzing the impact of

cellular noise on frequency-signal transmission in simple

gene circuits. By using both analytical and numerical

methods, we define a metric—critical frequency—that quan-

tifies the speed limit of frequency-signal transmission. We

argue that the critical frequency is an intrinsic property of a

cellular network. Strategies to vary the critical frequency will

introduce a tradeoff between speed and metabolic cost of

signal transmission: an increase in transmission speed will

come with an increase in metabolic cost. Our results further

indicate that the critical frequency is dependent on network

architectures. Our findings suggest a classification scheme

for gene regulatory motifs, such as feedback regulations,

based on their performance in transmitting frequency signals.

Furthermore, insights into fundamental fidelity and speed

limits may guide gene circuit designs for cellular computing

in the long term (40). Finally, this work presents a general

framework for analysis of frequency signal transmission in

other types of cellular networks, such as signaling networks

and metabolic networks.

METHODS

To elucidate the questions raised above, we analyzed transmission of

frequency signals in simple gene circuits by mathematical modeling. To

start, we consider a one-stage gene circuit where an output protein (P) is

driven by an oscillatory input signal (A) (Fig. 1 A). In the cellular context, the

input oscillations may be directly derived from environmental conditions

(e.g., day-night cycles) or endogenous cellular oscillators (e.g., circadian

clocks). Without loss of generality, we assume that the oscillation in Fig. 1 A

is characterized by a sinusoid function (Fig. 1 B):

A ¼ A0 1 1 0:5 sin
2pt

T0

� �� �
; (1)

where A0 defines both the average signal strength (A0 ¼ 10 in the base

model) and the corresponding oscillation amplitude, and T0 is the oscillation

period. The choice of A0 does not affect the general conclusions of the

following studies (results not shown).

Fig. 1 B illustrates the two approaches we took to analyze transmission of

the frequency signal. The first approach was to decompose the output P time

course into its mean and standard deviation, which is an application of a

linear genetic network method (41,42). The output signal P would oscillate

when the gene circuit was driven by the oscillatory input signal A (Eq. 1).

We define the mean as the oscillatory component and the standard deviation

as the noise component, which tends to obscure or mask the oscillatory

component (see Supplementary Materials). We anticipate that the frequency

signal is transmitted accurately if the oscillation amplitude (a) exceeds the

noise level (s). For simplicity in terminology, we call a and s the amplitude

and noise level, respectively, of the output signal.

FIGURE 1 Analysis of frequency signals with noise. (A) A one-stage gene circuit where the output protein P is controlled by a transcription activator, A. (B)

An oscillatory input signal can generate an output signal with oscillations compounded with noise. The mean and standard deviation of the output signal of the

linearized model can be analytically computed. Here, we define the mean value as the oscillatory component and the standard deviation as the noise component.

Alternatively, the stochastic simulations of the output signal for the nonlinear system can be analyzed by the FFT method to obtain its dominant frequency

(see Methods for more details).
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To complement the analytical method, we analyzed the P time course for

its dominant frequency using numerical methods. If the signal transmission

was accurate, this dominant frequency would be the same (within numerical

errors) as the input frequency. The dominant frequency of the P time course

was calculated by using the fast Fourier transform (FFT) method. Methods

of numerical simulation and data analysis are detailed in Supplementary

Materials. Briefly, the steady-state portion of the P time course for each

simulation was analyzed using the FFT method (see Supplementary

Materials, Fig. S1). Results from the FFT analysis were then used to extract

the dominant output frequency. This output frequency would correspond

to the signal frequency ‘‘perceived’’ by downstream processes.

RESULTS

The critical frequency

By linearizing the mathematical model of the gene circuit

and then decomposing the output using established methods

(41–43) (also see Supplementary Materials), we could obtain

the average output level (b):

b ¼ kmkpA0

gmgp

; (2)

where km is the transcription rate constant, kp is the trans-

lation rate constant, gm is the mRNA decay rate constant, and

gp is the protein decay rate constant.

When changing a circuit parameter, we maintained the

average output level at a constant (500 molecules) by ad-

justing the kp. For instance, if gm is increased 10-fold, b can be

kept constant by increasing kp 10-fold. By doing so, we

ensured that different circuit configurations or parameter

settings would on average elicit the same average level of

downstream gene expression (whether or not the input fre-

quency was maintained through transmission).

The amplitude of the output oscillations (a) follows:

a ¼
kmA0kp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgmgp � w

2Þ2 1 w
2ðgm 1 gpÞ2

q
2ðg2

m 1 w
2Þðg2

p 1 w
2Þ

; (3)

where w ¼ 2pfin and fin is the frequency of input signal. The

corresponding average noise level (s) is

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmA0kpðgm 1 gp 1 kpÞ

gmgpðgm 1 gpÞ

s
: (4)

Eq. 3 defines a decreasing function of a with increasing input

frequency (fin). This dependency reflects the low-pass filter

characteristic of linear gene circuits (44). In contrast, s is

independent of fin (Eq. 4). Although the noise level oscillated

in response to an oscillatory input (see Supplementary

Material), we only used s for analysis because the amplitude

of noise oscillations was negligible (Fig. S2). Therefore,

a would decrease below s for sufficiently high fin (Fig. 2 A).

In this region, frequency signals will be masked by the noise.

The intersection between the s curve and the a curve thus

defines a critical frequency (fc), beyond which the circuit will

fail to transmit the input signals. For the given circuit con-

figuration, fc was ;0.02/min.

The results of the decomposition method were consistent

with those from stochastic simulations. Specifically, we

FIGURE 2 Critical frequency for the one-stage gene

circuit. (A) The amplitude of output oscillations decreased

with fin. fc was calculated as the intersection between the

‘‘average noise level’’ curve and the ‘‘oscillation ampli-

tude’’ curve. (B) Calculations of fout for varying fin using

stochastic simulations. (C) Fraction of stochastic simula-

tions that generated correct fout (i.e., where fout ¼ fin).
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varied fin from 0.002/min to 0.033/min. For each fin, we

carried out 200 stochastic simulations using the Gillespie

algorithm (45). We then determined the dominant frequency

for each output time course (fout) using FFT (Fig. 1). Fig. 2 B
shows a parity plot between fin (x axis) and corresponding

fout (y axis). The estimated fc (0.02/min) using the decom-

position method corresponds to a transition region in the

parity plot. In most simulations, when fin was ,0.02/min, fout

was equal to the corresponding fin. We consider these signals

to be accurately transmitted despite cellular noise. Beyond

0.02/min, however, the average fout started to deviate from

the corresponding fin and the deviation increased drastically

with further increase of fin (Fig. 2 B, shaded region).

The drastic deviation was due to the fact that most output

time courses gave incorrect fout. To gain better insight, we

analyzed the percentage of the outputs that oscillated at the

correct fout for each fin. This analysis can be considered as

quantifying the fraction of a cell population that could cor-

rectly transmit the frequency signal, where behavior of each

cell was represented by one stochastic simulation. It pro-

vided a quantitative measure of signal transmission fidelity

for each fin (Fig. 2 C). Again, the estimated fc defines a

transition point that corresponds to a drastic reduction of

cells that generated the correct fout. When fin was ,0.02/min,

nearly 100% of the cells produced the correct fout, indicat-

ing high fidelity in signal transmission. However, for fin . fc,
the percentage decreased drastically, indicating that the

majority of cells failed to transmit the frequency signal

accurately.

We also calculated signal/noise ratio (SNR) of each cell to

assess the fidelity of frequency-signal transmission (Fig. S3).

The SNR was calculated by dividing the power spectrum

density (PSD) at fin by the maximum PSD of output signals.

We assumed that a SNR of 1.0 would ensure accurate

transmission of a signal. Again, the fc calculated from the

analytical method corresponds to a sharp transition point

where SNR dropped drastically due to the decreasing PSD at

fin and the increasing PSD at noise frequencies. In this region

(Fig. S3, shaded region), downstream processes may have

a lower probability of reading the frequency signals due to

the dominant PSD of the noise frequencies.

Therefore, both the analytical method and the ‘‘brute-

force’’ method by stochastic simulation revealed an intrinsic

property of frequency-signal transmission in the simple gene

circuit: it is ‘‘all or none’’, with the transmission fidelity

limited by fc (Fig. 2, A–C). The analytical method also

suggests how the fc emerges as the interplay between the

amplitude and the noise level of each output oscillation. For

subsequent analyses, we present results from the analytical

method, unless noted otherwise.

Frequency multiplexing

Frequency multiplexing is a mechanism where multiple

frequencies are encoded in one signal. For example,

frequency of [Ca21] oscillations regulate several cellular

processes, such as exocytosis (46), gene expression (21,47),

cell growth, and differentiation (22), suggesting the possi-

bility that multiple frequencies are multiplexed in [Ca21]

signals (48). To analyze the impact of noise on frequency

multiplexing, we modeled transmission of a composite

signal carrying three distinct fin that are ,fc (Fig. 3 A), which

generated a corresponding multiplexed output (Fig. 3 B).

Frequency-domain analysis indicated that this composite

signal was transmitted with absolute fidelity, where the three

input frequencies (Fig. 3 C) were reproduced by the output

(Fig. 3 D). The PSD of the three frequencies were at least 10-

fold higher than the PSD of noise frequencies. These findings

suggest an advantage of frequency encoding whereby

multiple frequencies can be encoded in a composite signal

and transmitted to downstream target genes or proteins with

high fidelity. In addition, frequency signals may also be more

cost-effective than amplitude signals. It has been shown that

an oscillatory [Ca21] signal is more effective than a constant

[Ca21] signal in inducing translocation of the nuclear factor

NF-AT (49). In light of these observations, our results sug-

gest that encoding multiple frequencies in cellular signals

may be an efficient yet accurate signaling strategy.

Nevertheless, processing of a multiplex signal requires an

efficient frequency decoder that can respond to a specific

range of frequencies. Although frequency decoders have

been suggested both theoretically (23,50) and experimentally

(21), the underlying mechanisms of frequency decoding in

nature have not been well established experimentally. In this

study, we have assumed that a SNR ,1.0 (Fig. S3) would

likely impact processing of the corresponding frequency

signal by a downstream frequency decoder.

Modulation of fc by circuit parameters

Circuit parameters such as transcription (km) and translation

(kp) rate constants, as well as mRNA (gm) and protein (gp)

decay rate constants, can affect the dynamics of gene cir-

cuits. Increasing decay rate constants can speed up enzy-

matic kinetics (51) and increase noise frequencies in simple

gene circuits (36). Based on these studies, we hypothesized

that increasing mRNA and protein decay rate constants can

increase fc of a gene circuit. Indeed, Fig. 4 shows that

increasing gm, gp, or both, led to a significant increase in fc,
thus permitting faster signal transmission. Fig. S4, A and B,

highlights the interplay between the oscillation amplitude

and the noise level that gave rise to the fc curve. In all cases,

increasing gm or gp, as well as kp, increased the oscillation

amplitude more significantly than the noise level, which led

to an increase in fc.

Effects of feedback regulations

Regulatory mechanisms, such as negative feedback, positive

feedback, and feedforward, are prevalent in cellular networks.
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They have been shown to impact generation, propagation,

and control of cellular noise (24,26). For instance, negative

feedback can reduce the noise in gene expression and

improve response speed to a steady-state input (43,52–54).

Here, we examined how regulatory mechanisms might

impact frequency-signal transmission by simultaneous mod-

ulation of the oscillatory and noise components of the signal.

Negative feedback was established by a protein that

represses its own transcription; positive feedback was

established by a protein that enhances its own transcription.

We first analyzed feedback with an OR gate in regulating

gene expression. In these models, the protein and the

activator were assumed to bind to separate, independent

binding sites (Fig. S5, A and B). These models were

linearized (Eqs. S2–S4 and S6–S8) to allow decomposition

of output signals. To study the effects of network architec-

tures, we perturbed the dissociation constant (Kd) of the

binding reaction between the output protein and its operator

site. The strength of feedback regulation increases with an

increase in 1/Kd. While varying feedback strength, we also

changed the translation rate constant accordingly to maintain

the same average protein output level. Qualitative aspects of

our conclusions remained true for low to intermediate

feedback strength (1/Kd , 10�3 nM�1) if other parameters

(e.g., decay rate constants of the protein or mRNA) were

changed to balance the average output level.

Fig. 5 A shows that negative feedback increased fc. This is

because the negative feedback increased the oscillation

amplitude but modulated the noise level in a biphasic manner

(Fig. S6 A). The noise level decreased with increasing

feedback strength (1/Kd) when the latter was small. However,

when the feedback strength was sufficiently large (1/Kd .

10�3 nM�1), its further increase would increase the noise. The

noise increased with strong negative feedback because of the

constraint to maintain the same average output level. In

particular, very strong negative feedback would lead to a very

small number of mRNA molecules. To maintain the average

output level, cells would have to amplify protein production

from the small number of mRNA molecules. Yet, fast

FIGURE 4 Effects of mRNA or protein dynamics on fc demonstrate the

dependence of fc on the speed of mRNA dynamics and the speed of protein

dynamics. The speed of mRNA or protein dynamics was modulated by

proportionally changing the translation rate constant, kp, and the mRNA or

protein decay rate constant (gm or gp), keeping other parameters constant. It

was normalized with respect to the base case (gm¼ 0.2/min, gp¼ 0.02/min).

The color bar represents log10(fc).

FIGURE 3 Transmission of a multiplexed signal.

(A) A multiplexed input signal. (B) The corresponding

output signal computed by stochastic simulation. (C)

Power spectra of the input signal. (D) Power spectra of

the output signal. Power spectra of the output signal

indicate that all three frequencies were transmitted with

complete fidelity. Even though power spectra de-

creased when the input frequency increased, they were

still at least 10-fold higher than the power spectra of

background noise. Three frequencies (0.005/min,

0.0067/min, and 0.01/min) were multiplexed in a

composite signal with an amplitude of five molecules

for each input frequency.
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translation coupled with slow transcription has been shown to

amplify noise in the protein level (55,56). If we introduced

negative feedback without ‘‘balancing’’ it by increasing the

translation rate, negative feedback would reduce noise, as

reported previously (43). Although increased fc can be

accounted for by the interplay between modulations of the

noise amplitude and the oscillation amplitude (Fig. S6 A), a

frequency shift of noise due to negative feedback (36) might

also have contributed to this fc increment. Previous study

using an oscillatory input signal has also shown that noise

fluctuations resonate at a specific frequency due to negative

feedback (41). This resonance, however, would not affect our

conclusions here, because it occurred at a frequency much

higher than fc (results not shown).

In contrast, positive feedback reduced fc (Fig. 5 A). In

particular, it reduced the oscillation amplitude while mod-

ulating the noise level in a biphasic manner (Fig. S6 B). The

noise level increased with increasing positive feedback strength

when the latter was weak (small 1/Kd); it would decrease with

the latter if it was sufficiently large (1/Kd .10�3 nM�1). This

noise reduction at high positive feedback strength was due to

the balancing reduction in the translation rate constant (re-

sults not shown) to maintain the same average output protein

level. However, increasing positive feedback strength (balanced

by reducing translation rate constant) also led to a decrease in

the oscillation amplitude and this decrease was always greater

than the noise reduction. As a consequence, overall positive

feedback would always result in a decrease in fc. Further

increase of the positive feedback strength led to a decrease in

the noise level and a similar decrease in the oscillation am-

plitude. This would result in a plateau for fc.
To verify results from the linearized models of feedback

regulations, we simulated the corresponding full nonlinear

models by using the Gillespie algorithm (see Supplementary

Materials). Similar to the case of the unregulated circuit, we

calculated fout for a range of fin (5-min intervals) by using

FFT to determine a critical point where the mean fout

deviated significantly from the corresponding fin (Fig. 2 B).

This ‘‘brute-force’’ method generated results qualitatively

consistent with those of the linearized models (Figs. 5 A and

S7, A and B). Generally, negative feedback increased fc but

positive feedback reduced it. Hence, the linear models were

accurate and they were useful to decipher the underlying

mechanisms that limit the speed of signal transmission.

In addition to feedback regulation with OR gates, we

analyzed feedback regulation with AND gates. In a negative-

feedback loop with an AND gate (see Supplementary

Materials, Eq. S5), the protein competes with the activator

for the same binding site, hence represses its own transcrip-

tion activation. In a positive-feedback loop with an AND

gate (Eq. S9), the protein binds to the activator and enhances

its own transcription. In either case, the model could not be

solved analytically; thus, we resorted to numerical simula-

tions. Interestingly, we found that feedback regulation with

AND gates showed results qualitatively different from those

of feedback regulation with OR gates. In particular, negative

feedback with an AND gate had biphasic effects on fc: it only

increased fc if the feedback strength was small (1/Kd ,

0.0025 nM�1); further increase in 1/Kd, however, would lead

to a decrease in fc. Similar to the positive feedback with an

OR gate, the positive feedback with an AND gate also

reduced fc. However, when 1/Kd increased to 0.01 nM�1,

fc was increased by the positive feedback. In the feedback

regulation with AND gates, the noise curves changed in a

pattern similar to that of their counterparts with OR gates.

For negative feedback, noise first decreased and then

increased with increasing feedback strength (Fig. S7 C).

For positive feedback, noise first increased and then

decreased with increasing feedback strength (Fig. S7 D). In

either case, however, amplitude of output oscillations did not

change significantly with feedback strength, due to compe-

tition between the protein and the activator (for negative

feedback) or their nonlinear interaction (for positive feed-

back). As a consequence, fc depended solely on the inverse

of the noise curve: fc increased when noise decreased, and

vice versa.

Effects of feedforward regulations

We further investigated signal transmission in a two-stage

circuit (Fig. S5 C). Without regulation, the two-stage circuit

fc (0.007/min) was lower than that of the one-stage circuit

FIGURE 5 Effects of circuit architectures on fc. (A)

Dependence of fc on negative feedback and positive

feedback. A high 1/Kd value corresponds to stronger

feedback regulation. Cooperativity of feedback regulation

(n) was fixed at 2. (B) Dependence of fc on feedforward rate

constant (normalized with respect to the base value of

0.1/min). See Supplementary Material for description of

models.
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(0.02/min). In general, fc decreased progressively with

increasing cascade length (results not shown). This finding

is consistent with low-pass property of long-cascade circuits

(33,57). However, the fc of the two-stage cascades can be

increased by incorporating a feedforward regulation. To

illustrate this point, we here considered a coherent Type

1 feedforward regulation with an OR gate (58). In this

circuit, either the activator molecule or the protein generated

from the first stage can activate the second stage (Fig. S5 C).

Our results indicated that increasing feedforward rate

constants increased fc (Fig. 5 B). At small feedforward rate

constants (,0.1/min), fc did not change significantly due to

negligible changes in the oscillation amplitude and noise

level (Fig. S8). In this region, the contribution of feedfor-

ward regulation toward the expression level and the noise

level of the second stage were masked by the signal and

noise from the first stage. At higher feedforward rate

constants, fc increased drastically because the oscillation

amplitude increased significantly faster with respect to the

noise level. Essentially, strong feedforward regulation (with

an OR gate) creates a ‘‘short cut’’ between the input signal

and the output. However, more detailed analysis is required

to elucidate the effects of other types of feedforward motifs

(58) on frequency signal transmission.

DISCUSSION

Our work builds upon previous studies on characteristics of

noise generation, propagation, and modulation (33,34). In

addition to analysis in the amplitude domain, recent work has

shown that noise frequency structures are affected by

autoregulation in gene circuits driven by a constant input

(35,36). Along another line, it has been suggested that noise

characteristics of a circuit in response to an oscillatory input

may help infer the underlying network properties (41). Here,

we have extended and applied these concepts to analyze the

impact of cellular noise on the transmission of frequency

signals, introducing the concept of critical frequency (fc).
The critical frequency defines the fundamental speed limit

of signal transmission in a gene circuit: a higher fc will allow

faster response. Only signals with frequencies below fc can

be transmitted with high fidelity (Fig. 2, B and C). We further

note that signals with different frequencies can be multi-

plexed as long as all these frequencies are ,fc. Thus, fc also

defines the capacity or the bandwidth of a circuit in

processing frequency signals. This fundamental speed limit

for signal transmission may be a general, intrinsic property of

diverse cellular networks, including signaling cascades and

metabolic pathways. Simulations indicate that a critical

frequency also exists for a MAPK signaling pathway (Fig.

S9) or in a gene circuit consisting of repressors (results not

shown). However, aspects of our predictions may differ

when considering some nonlinear gene circuits. For exam-

ple, negative feedback will introduce instability and amplify

noise if the time delay is considerably long (59). Stochastic

resonance can occur in nonlinear circuits driven by noise

(60).

The speed of reliable signal transmission can be con-

strained by the associated metabolic cost. In the unregulated

gene circuit, for instance, increasing fc always requires an

increase in the oscillation amplitude (Fig. S4). This increase

will require faster protein or mRNA production and turnover

and, as such, will incur faster consumption of energy and

resources. In this scenario, cells may need to properly

balance the speed of signal transmission and the correspond-

ing metabolic cost to maximize their fitness. It has been

suggested that energy consumption can constrain evolution

of proteins (61) and organization of viral genomes (62,63). It

will be interesting to explore whether evolution of the

cellular networks involved in frequency-signal transmission

has been constrained by the available energy and resources.

In nature, the speed of signal transmission will be further

influenced by extrinsic noise, which arises from other

cellular processes or from the extracellular environment

(25,64). The extrinsic noise will increase the total noise level

and further decrease the fc (Fig. S10). In general, signals with

low frequencies can be transmitted in noisier environments.

For example, transmission of a signal with fin of 0.001/min in

the linear gene circuit (Fig. 1 A) will not be affected even if

the noise level increases appreciably. However, the full

picture may be more complex: the frequency of extrinsic

noise may also affect the fidelity of frequency signals. It has

been suggested that extrinsic noise contains low-frequency

signals (31,65). Perhaps these slow fluctuations and the

intrinsic noise together define an optimal frequency band-

width for frequency-signal transmission. Further analysis

will be needed to elucidate these questions.

We have illustrated the high fidelity in the transmission of

frequency signals if their frequencies are below the critical

frequency of a given gene circuit. In natural systems,

applicability of this signal-transmission strategy depends on

the complexity and adaptability of the available cellular

infrastructure. We expect frequency signals to be more likely

adopted by higher organisms that can provide sufficiently

complex infrastructure, including encoders, decoders, and

metabolic capacities to transmit frequency signals. Consis-

tent with this notion, we have found many examples where

frequency signals may play an important role in regulating

physiological functions in higher organisms, including

immune response, metabolism, and sleep cycle (Table S1).

In contrast, frequency-signal transmission will likely be less

common in prokaryotes, as they lack long regulatory gene

cascades to provide the adequate infrastructure and energy

needed to transmit diverse frequency signals (66). Yet, for

critical processes, frequency signals appear to be adopted

even in bacteria. In cell-division regulation, for example, the

oscillatory dynamics of MinD and MinE proteins at partic-

ular frequencies determine the formation of septum in the

middle of cells (67,68). Consistent with our findings, it has
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been suggested that this complex process is highly noise-

resistant (69). Nevertheless, this signal transmission strategy

will require higher metabolic costs due to its complex

cellular architecture. After this study, it will be interesting to

examine the tradeoff between energy requirements and sig-

naling fidelity of frequency decoders in biological systems.

Finally, we note that our modeling predictions can be

tested experimentally by implementing and measuring the

responses of synthetic gene circuits in model organisms such

as bacteria and yeast. To obtain fc, the gene circuits can be

modulated by using oscillatory concentrations of small

inducer molecules, such as isopropyl-ß-D-thiogalactopyr-

anoside. In the long term, the high fidelity of frequency

signals and the ability to multiplex frequency signals

suggests a promising means of programming reliable cellular

computation using synthetic gene circuits (40).
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