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ABSTRACT The formation of the monomeric a-helix represents one of the simplest scenarios in protein folding; however, our
current understanding of the folding dynamics of the a-helix motif is mainly based on studies of alanine-rich model peptides. To
examine the effect of peptide sequence on the folding kinetics of a-helices, we studied the relaxation kinetics of a 21-residue
helical peptide, Conantokin-T (Con-T), using time-resolved infrared spectroscopy in conjunction with a laser-induced
temperature jump technique. Con-T is a neuroactive peptide containing a large number of charged residues that is found in the
venom of the piscivorous cone snail Conus tulipa . The temperature-jump relaxation kinetics of Con-T is distinctly slower than
that of previously studied alanine-based peptides, suggesting that the folding time of a-helices is sequence-dependent.
Furthermore, it appears that the slower folding of Con-T can be attributed to the fact that its helical conformation is stabilized
by charge-charge interactions or salt bridges. Although this finding contradicts an earlier molecular dynamics simulation, it also
has implications for existing models of protein folding.

INTRODUCTION

Recent years have seen an increased interest in the study of

the folding kinetics of a-helices (1–29), b-hairpins (30–33),

and other small folding motifs (34–42). Not only do such

studies provide insight into the folding mechanism of protein

secondary/supersecondary structural elements, but they also

yield invaluable information that could help decipher, in a

bottom-up manner, the underlying principles that govern

protein folding. Additionally, results obtained from such

studies often serve as benchmarks for computer simulations.

Among the studied protein structures, the a-helix motif

has received considerable attention because its folding is

simplified, to an extent, by involving mainly local interac-

tions (43). For example, a variety of spectroscopic methods

have been employed to examine the nanosecond folding

dynamics of monomeric a-helices in response to a confor-

mational trigger, such as a temperature jump (T-jump) (2–

10,14,16,23), a pH jump (22), or a photo-triggering event

(17). In addition, numerous theoretical studies and computer

simulations have also been carried out, with the aim of

understanding the underlying energy landscape and mech-

anism governing a-helix folding (1,11–13,15,18–21,24–28).

However, our current understanding of the folding dynamics

of monomeric a-helices in solution is mostly founded upon

studies of alanine-based peptides. This is because alanine has

the highest helix-forming propensity and is therefore

frequently used in synthetic a-helical peptides (44). As

shown in Table 1, most of the peptides used in early kinetic

studies had rather similar sequences, in that alanine was the

dominant residue. However, in naturally occurring helical

peptides and proteins, alanine is not the most abundant

residue (45), and many interactions work together to stabilize

individual helical structures (46–48). Although studying

alanine-rich peptides has provided invaluable information on

the kinetics and mechanism of a-helix formation, a compre-

hensive understanding of how monomeric a-helices fold re-

quires the study of helical peptides with drastically different

sequences. More important, in the context of existing protein-

folding models (49), a survey of how helix folding time varies

with peptide content will help distinguish the role of secondary-

structure formation. With these goals in mind, we have stud-

ied the T-jump-induced relaxation kinetics of a 21-residue

a-helical peptide, Conantokin-T (Con-T), which is rich in

charged amino acids.

Con-T is a neuroactive peptide found in the venom of the

piscivorous cone snail Conus tulipa (50), developed for rapid

immobilization of fast-moving prey (51). Although most Conus
venom peptides contain disulfide bonds, Con-T is structurally

unusual, as it lacks the disulfide motifs and instead contains

four base-stable but acid-labile g-carboxyglutamic acids (Gla)

in its sequence (GEggYQKMLgNLRgAEVKKNA, where

g denotes Gla, a residue originally identified in blood-clotting

factors such as prothrombin (51)). The NMR structure of

Con-T (Fig. 1) indicates that it folds into a twisted a-helical

structure in aqueous solution (52). Consistent with previous

studies (52,53), our circular dicroism (CD) and infrared (IR)

results also show that at neutral pH Con-T adopts a helical

conformation; however, our IR T-jump study indicates that

the relaxation rate of Con-T is significantly slower than that

of alanine-based peptides of similar length, suggesting that

formation of salt bridges slows down the folding of a-helices.
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EXPERIMENTAL SECTION

Materials and sample preparation

Conantokin-T was synthesized based on standard Fmoc (9-fluorenylmethy-

loxycarbonyl) protocols on a PS3 automated peptide synthesizer (Protein

Technologies, Woburn, MA) and purified to homogeneity by reverse-phase

chromatography. The identity of the peptide sample was further verified by

matrix-assisted laser desorption ionization mass spectroscopy. The ex-

changeable hydrogens and residual trifluoroacetic acid from peptide syn-

thesis, which absorbs around 1678 cm�1, were removed by multiple rounds

of lyophilization against a 0.1 M DCl/D2O solution. Peptide solutions used

in both CD and IR measurements were prepared by directly dissolving the

lyophilized peptide samples in either 20 mM phosphate buffer (pH 7) or

20 mM phosphate buffer (pH 7) containing 2.0 M NaCl. The final peptide

concentrations, determined optically by tyrosine absorbance at 276 nm, using

e276 ¼ 1450 cm�1 M�1, were ;50 mM and 2 mM for CD and IR, respec-

tively.

CD measurements

The CD data were collected on an Aviv 62A DS circular dichroism spec-

trometer (Aviv Instruments, Piscataway, NJ) using a 1-mm sample cuvette.

Mean residue ellipticity was calculated using the equation [u]¼ (uobs/10lc)/N,

where uobs is the ellipticity in millidegrees, l is the optical path length (cm),

c is the concentration of the peptide (M), and N is the number of residues.

Absorption measurements

All ultraviolet (UV)-visible spectra were measured on a Lambda 25 UV-Vis

spectrometer (Perkin Elmer, Wellesley, MA).

FTIR measurements

Static Fourier transform IR (FTIR) spectra were collected on a Magna-IR

860 spectrometer (Nicolet, Madison, WI) equipped with a HgCdTe detector

using 2 cm�1 resolution. A homemade CaF2 sample cell that was divided

with a 52-mm Teflon spacer into two compartments and mounted on a

programmable translation stage was used to allow separate measurement of

the sample and the reference under identical conditions. Temperature control

with 60.2�C precision was obtained by a thermostated copper block.

Typically, 256 scans were averaged to generate one spectrum.

Infrared T-jump apparatus

The T-jump technique uses a burst of IR photons to heat up a sample solution

within a very short period of time, e.g., a few nanoseconds. As a result, the

sudden increase in temperature induces a population redistribution among

conformational ensembles that are initially at equilibrium. Hence, the time

course in which the nonequilibrium state evolves toward a new equilibrium

position contains information regarding the kinetics of folding and un-

folding. The time-resolved T-jump IR apparatus used in this study has been

described in detail elsewhere (8). Briefly, a 1.9-mm laser pulse, generated via

Raman shifting of the fundamental output of a Q-Switched Nd:YAG laser in

H2, was used to generate a T-jump of 8–10�C, and the T-jump-induced tran-

sient absorbance changes were measured by a continuous-wave IR diode

laser in conjunction with a 50-MHz HgCdTe detector and a digital oscillo-

scope. A thermostated, two-compartment sample cell with 52-mm path length

was used to allow separate measurement of the sample and buffer under

identical conditions. The buffer measurements provide information for both

background subtraction and T-jump amplitude determination. The latter was

achieved by using the T-jump-induced absorbance change of the D2O buffer

solution at the probing frequency n, DA(DT, n), and the following equation:

DA(DT, n) ¼ a(n) 3 DT 1 b(n) 3 DT2, where DT corresponds to the dif-

ference between the final (Tf) and initial (Ti) temperatures, and a(n) and b(n)

are constants determined by analyzing the temperature dependence of the

FTIR spectra of the buffer.

RESULTS

Static CD studies

As shown (Fig. 2 a), the far-UV CD spectrum of Con-T at

25�C and pH 7 exhibits the characteristic double minima of

a-helices at 222 and 208 nm, respectively, indicating that the

helical conformation is significantly populated under this

condition. Similar to those observed for other monomeric

a-helical peptides, the CD thermal unfolding transition of

Con-T measured at 222 nm is quite broad (Fig. 2 b). The

fractional helicity (fH) of Con-T was further estimated using

the relationship

fH ¼
½u�222

½uN�222 1� x

n

� �; (1)

TABLE 1 Sequences and relaxation times of several a-helices

reported previously

Peptide Sequence

Relaxation time

(ns) (Tf, (�C))* Reference

AR peptide (AARAA)4GY 184 (28) 2

AK peptide (AAKAA)4GY 194 (28) 2

AE peptide (AAEAA)4GY 147 (28) 2

AQ peptide (AAQAA)4GY 117 (28) 2

Suc-FS peptide Suc-A5(A3RA)3A 160 (27) 3

YGG-3Ai YGGK(A4K)3 130 (30) 6

W1H5-21 WA3H(A3RA)3A 240 (27) 4

D-Arg peptide YGG(KA4)3-CO-D-Arg 140 (27) 14

FS peptide A5(A3RA)3A 240 (37) 7

AKA2 YGAKA4(KA4)2G 80 (28) 5

SPE2 YGSPEA3(KA4)2-D-Arg 80 (28) 5

AKA3 YGAKA4(KA4)3G 125 (28) 5

SPE3 YGSPEA3(KA4)3-D-Arg 100 (28) 5

AR4 A5(A3RA)4A 164 (24) 23

*Tf corresponds to the final temperature.

FIGURE 1 NMR structure of Con-T (PDB code 1ONT). The charged

residues are shown. The figure was generated using the program PyMol

(http://pymol.sourceforge.net/).
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where [u]222 is the measured mean residue ellipticity at 222

nm, [uN]222 is the mean residue ellipticity at 222 nm of an

ideal peptide with 100% helicity, n is the length of the

potential helical region, and x is an empirical correction for

end effects. Using the x and [uN]222 values given by Luo and

Baldwin (54) (i.e., x ¼ 2.5 and [uN]222 ¼ �44000 deg cm2

dmol�1), the fractional helicity of Con-T at 4�C was es-

timated to be ;74%, 21% lower than that reported by Lin

et al. (53) for pH 5. The temperature at which the average

helicity reaches 50% is ;33�C. As expected, the helicity of

Con-T decreases with increasing ionic strength (Fig. 2 b).

For example, addition of 2.0 M NaCl to the peptide solution

lowers the fractional helicity to 62% at 4�C.

Static FTIR studies

Similar to those obtained with alanine-based a-helical

peptides, the amide I9 band of Con-T, which mainly arises

from the backbone C¼O stretching vibrations, is centered at

;1632 cm�1 at 3.9�C (Fig. 3 a), whereas increasing tem-

perature shifts the peak position toward a higher wavenum-

ber. Consequently, the FTIR difference spectra of Con-T (Fig.

3 b), calculated by subtracting the 3.9�C spectrum from those

obtained at higher temperatures, exhibit a negative feature

centered around 1632 cm�1 and a positive feature centered at

;1665 cm�1, respectively. The former results primarily from

loss of a-helical conformations with increasing temperature,

whereas the latter is due to the concurrent formation of the

nonhelical conformational ensemble (55,56). Since temper-

ature-induced variations in backbone solvation also shift the

amide I9 band toward higher frequency and thus contribute to

the aforementioned spectral changes, we did not attempt to

determine the thermal denaturation of Con-T using its amide

I9 band. However, these spectral features shown in Fig. 3 b
can serve as IR markers of the underlying conformational

changes and have been used in the subsequent kinetic studies

to monitor the conformational relaxation kinetics of Con-T

in response to a T-jump.

T-jump-induced relaxation kinetics

The T-jump-induced relaxation kinetics of Con-T were

probed at 1632 cm�1 using an infrared transient absorption

apparatus, which has been described in detail elsewhere (8).

Similar to those observed for alanine-based a-helical pep-

tides (14), the IR relaxation kinetics of Con-T in response to

a T-jump exhibit two distinct phases (Fig. 4). The fast phase

rises concomitantly with the response of the infrared detector

of the IR T-jump apparatus and, therefore, was not resolved

in time. In accord with our previous interpretation (5,8,32)

and also the work of Hamm and co-workers (17), we attrib-

uted this phase to an IR signal arising from a T-jump-induced

spectral shift (57). The slow phase was well resolved in the

temperature range of the experiment and was attributed to

a conformational redistribution process in response to the

T-jump. In addition, the slow phase was well fit by a single-

exponential function (Fig. 4), and the resultant rate constant

exhibits Arrhenius temperature dependence with an apparent

activation energy of ;8.9 kcal/mol (Fig. 5). Interestingly, how-

ever, the T-jump-induced relaxation rate of Con-T is distinctly

FIGURE 2 (a) Far-UV CD spectrum of Con-T at 25�C.

(b) Mean residue ellipticity of Con-T at 222 nm as a function

of temperature. Open circles correspond to peptide samples

of low ionic strength (i.e., in 20 mM phosphate buffer, pH 7),

whereas open triangles represent a peptide sample of high

ionic strength (i.e., in 20 mM phosphate buffer, pH 7, and

2.0 M NaCl).

FIGURE 3 FTIR spectra of Con-T were collected in the

temperature range 3.9–81.3�C at approximately every 7�C.

(a) Two representative spectra (in the amide I9 region),

collected at 3.9 and 81.3�C, respectively. (b) The differ-

ence FTIR spectra generated by subtracting the spectrum

collected at 3.9�C from those collected at higher temper-

atures.
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slower than that of alanine-based a-helical peptides mea-

sured under similar conditions. For example, at 27.8�C, the

relaxation time constant of Con-T is 390 ns (Fig. 4), whereas

an alanine-based a-helical peptide of the same length relaxes

in 160 ns in response to a T-jump from 10 to 28�C (3). There-

fore, these results suggest that the charge-charge interactions

or salt bridges in Con-T greatly affect the folding/unfolding

kinetics of its a-helical conformation.

DISCUSSION

The folding kinetics of a-helices has been a subject of great

interest in recent years (1–29). The goal has been not only to

measure the folding timescale for isolated a-helical struc-

tures but also to identify the key determinants of their folding

kinetics and mechanism. For example, Volk and co-workers

(2) have shown that even a single mutation in an alanine-

based peptide affects its folding kinetics; and Wang et al. (5)

have further shown that the folding times of a series of

monomeric a-helices depend on the peptide chain length as

well as end-capping motifs. Because most a-helices found in

proteins often adopt nonhelical conformations in isolation as

a result of the loss of stabilizing tertiary interactions, previ-

ous kinetics studies have focused mainly on model peptides

consisting mostly of alanines, because of their high helicity

around room temperature (Table 1). Therefore, our current

understanding of the folding dynamics of the a-helix motif is

mainly based on studies of model peptides with very limited

sequence variation (2,5). To determine whether the peptide

sequence strongly affects the folding kinetics of a-helices, es-

pecially the effect of charge-charge interactions, we studied the

T-jump-induced relaxation kinetics of Con-T, a naturally oc-

curring a-helical peptide isolated from the venom of C. tulipa
(50).

Compared to the widely studied alanine-based a-helical

peptides, a distinct feature of Con-T is that it contains a large

number of charged residues, i.e., Glu, Gla, Lys, and Arg,

which all take their respective charges at neutral pH. Gla is a

modified glutamic acid, and its primary function has been

suggested to be calcium binding (53,58). Although charged

and/or polar residues (e.g., Lys and Arg) have also been used

in alanine-based peptides, they are often introduced to in-

crease peptide solubility (44). As shown (Fig. 1), Con-T con-

tains 10 charged residues and adopts a nonlinear a-helical

structure wherein the hydrophilic residues reside on the ex-

terior surface, resulting in alternating regions of positive and

negative charges (52). As indicated (Fig. 6), these charged

residues can potentially form two i, i 1 4 and five i, i 1 3 salt

bridges (53). Indeed, a mutational study has shown that re-

placing all Gla residues with Glu significantly diminishes the

peptide helicity, indicating the stabilizing role of these salt

bridges in the helical conformation (53). Consistent with

these studies, our static CD and IR results also show that

Con-T adopts an a-helical conformation at neutral pH and

relatively low temperatures.

The folding-unfolding kinetics of Con-T were studied by

a T-jump IR technique (14). Because the helicity of Con-T

FIGURE 4 A representative T-jump relaxation trace of Con-T measured

with a probing frequency of 1630 cm�1. The corresponding T-jump is 7.4�C,

from 20.4 to 27.8�C. The smooth line is a convolution of the instrument

response function with DOD(t) ¼ A 3 [1 � B 3 exp(�t/t)], with A ¼
�0.0035, B ¼ 0.56, and t ¼ 0.39 ms.

FIGURE 5 Arrhenius plot of the T-jump-induced conformational relax-

ation rates of Con-T under different conditions: (open circles) 20 mM

phosphate buffer (pH 7); (open triangles) 20 mM phosphate buffer (pH 7)

and 2.0 M NaCl. A linear regression (solid line) to the data obtained for the

low-ionic-strength solution yields an apparent activation energy of 8.9 6 0.3

kcal/mol. Also shown for comparison are the relaxation rates of two alanine-

based a-helical peptides, AKA2 and AKA3 (5).

FIGURE 6 Schematic illustration of charge-charge interactions in Con-T.

(Solid line) i, i 1 4 salt bridges; (dotted line) i, i 1 3 salt bridges; (bold)

acidic residues; (italic) basic residues.
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depends on temperature (Fig. 2), a rapid increase in tem-

perature thus allows, via an appropriate spectroscopic probe,

the measurement of the time course of its conformational re-

laxation, which contains information regarding its folding and

unfolding kinetics (59). Specifically, the T-jump-induced re-

laxation kinetics of Con-T were probed by monitoring the op-

tical density change at 1632 cm�1, where solvated a-helices

absorb. As shown (Fig. 4), within experimental uncertainties,

the T-jump-induced conformational relaxation of Con-T fol-

lows a single-exponential time course (see below). In ad-

dition, the T-jump-induced relaxation rate of Con-T exhibits

Arrhenius temperature dependence with an apparent activation

energy of 8.9 kcal/mol, similar to that observed for alanine-

based peptides (5,14). Although several factors have been sug-

gested to contribute to such energetic barriers in a-helix for-

mation (5,18), the nature of the enthalpic cost encountered in

a-helix folding is still not entirely clear.

Although an isolated a-helix is one of the simplest struc-

tural motifs in proteins, its folding dynamics are nevertheless

complex. Both computational and experimental studies have

suggested that the folding-unfolding process of monomeric

helices may proceed in a non-two-state manner (8,17,21,26).

For example, several studies have shown that the T-jump-

induced relaxation kinetics of alanine-based a-helical pep-

tides deviate from simple exponential kinetics (5,8,10,17),

and the termini exhibit a faster relaxation rate than the middle

of the peptide (6,8). Although it is not entirely clear at the

molecular level what causes this deviation from single-

exponential relaxation kinetics, several factors, such as con-

formational distribution, folding intermediates, or multiple

folding/unfolding pathways, may contribute to this complexity.

Interestingly, Wang et al. (5) have shown that the T-jump-

induced relaxation of short helical peptides, the helical con-

formation of which is only marginally stable, is significantly

nonexponential, whereas longer helical peptides tend to ex-

hibit relaxation kinetics that are closer to single-exponential.

These studies therefore suggest that although the single-

exponential relaxation kinetics of Con-T are consistent with

a two-state folding mechanism, this interpretation may not be

rigorously true. However, if we were to assume that the fold-

ing of Con-T follows a two-state process, its relaxation rate

constant (kR) could be further separated into the correspond-

ing folding (kf) and unfolding (ku) rate constants using the

helicity (i.e., equilibrium constant Keq) estimated from the

CD measurements and the relationships: kR ¼ kf 1 ku and

Keq ¼ kf/ku. For example, at 28�C the relative helical pop-

ulation of Con-T was estimated to be ;54% and the relax-

ation time constant was measured to be 390 6 40 ns; thus the

corresponding folding and unfolding time constants are 722

and 848 ns, respectively. These results are particularly inter-

esting, considering the fact that several small helical proteins

have been shown to fold in ;1 ms (37,60).

If the folding of Con-T follows a more complicated

mechanism, the above analysis becomes invalid or less

rigorous. However, it is apparent that the T-jump-induced

relaxation of Con-T is distinctly slower than that of alanine-

based peptides under the same conditions (see Table 1). For

example, the single-exponential relaxation time of the Fs

peptide at 28�C is 160 ns (3), less than one half that of Con-T.

Furthermore, the 19-residue helical peptide AKA2 relaxes in

;80 ns at 27�C (5), which is roughly five times faster than

the relaxation time of Con-T. Moreover, Volk et al. have shown

that a series of 22-residue alanine-based a-helices exhibits

T-jump-induced relaxation times in the range of 117–194 ns

(2), which is also much shorter than that of the Con-T peptide.

Taken together, these results thus suggest that Con-T does

fold on a timescale that is slower than that of alanine-based

peptides and the requirement for formation of salt bridges in

the rate-limiting step retards the rate of helix formation. In-

terestingly, this picture is contrary to the conclusion of Wei

et al. (27), who performed molecular dynamics simulations

of Con-T folding. When compared to results of folding simu-

lations of alanine-based peptides of the same length (36), their

results suggest that Con-T folds at a faster rate as a result of

the salt bridges.

Although it is clear that native salt bridges are often ben-

eficial to the stability of the folded state (61), the underlying

effects of individual charge-charge interactions on the fold-

ing kinetics of a protein could be very different. For example,

Matthews and co-workers (62) have shown that although the

salt bridge formed between E22 and R25 in the homodimeric

coiled-coil peptide GCN4-p1 might play a critical role in

stabilizing the C-terminal nascent helices that drive the as-

sociation reaction, the remaining salt bridges stabilize the

coiled-coil architecture only after the rate-limiting step. The

study of Daggett and co-workers (63) has also indicated the

important role of salt bridges in forming long-range tertiary

contacts that assist helix formation in the engrailed home-

odomain. On the other hand, several studies have indicated

that burying polar side chains and salt bridges in a relatively

hydrophobic environment is generally an unfavorable pro-

cess and, therefore, could slow down folding (37,41,64), even

though the desolvation penalty of burying the charged resi-

dues may be compensated to some degree by their interaction

energy (65). Apparently, breaking up nonnative salt bridges,

either present in the denatured conformational ensemble (66)

or formed during the folding process, would also retard the

rate of folding. Considering the fact that Con-T does not pos-

sess a hydrophobic core, its slower folding rate, when com-

pared with that of alanine-based peptides, could arise from

two possible scenarios: 1), the formation of salt bridges is an

intrinsically slower process; or 2), folding requires breaking

up nonnative charge-charge interactions. Since the T-jump-

induced relaxation process of Con-T encounters an activation

energy (;9 kcal/mol) that is comparable to that observed for

alanine-base peptides (5), it is therefore unlikely that we can

attribute its slower folding rate to the formation of nonnative

salt bridges. This conclusion is further supported by the fact

that increasing the ionic strength of the peptide solution (i.e.,

by addition of 2.0 M NaCl) leads to a decrease in the relaxation

4080 Du et al.
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rate of Con-T (Fig. 5), an indication that the free energy

barrier for both folding and unfolding is increased. In other

words, increasing ionic strength has a larger effect on the

transition state than on the unfolded state in the case pre-

sented here. Interestingly, it has been shown that for alanine-

based peptides the addition of salt increases the relaxation

rate after a T-jump (23).

Our results seem to suggest that the overall folding rates of

monomeric helices correlate with their intrinsic helical pro-

pensities, with faster folding corresponding to a higher propen-

sity. Although this correlation requires further verification

in future studies, the idea that the rate of helix formation is

sequence-dependent is not new and may carry important

implications for protein folding mechanisms and models. For

example, a recent simulation study by Daggett and co-workers

(67) has shown that individual helical segments in barnase

and protein A exhibit very different folding times, and the

folding of those segments having low intrinsic helical pro-

pensities is initiated by side-chain interactions through the

formation of salt bridges or hydrophobic contacts. Akin to

the role of the folding nucleus in the nucleation-condensation

model of protein folding (49), such side-chain contacts, ei-

ther native or nonnative, could provide a scaffold for further

growth of the native structure. On the other hand, those seg-

ments with higher helical propensity may fold independently,

thereby providing a framework for constructing the tertiary

structure.

CONCLUSION

In summary, using CD and FTIR spectroscopies and a laser-

induced T-jump IR technique, we have studied the thermal

unfolding transition and folding kinetics of Con-T, a 21-

residue, naturally occurring helical peptide whose native con-

formation is largely stabilized by charge-charge interactions

or salt bridges. Compared to that of alanine-based model he-

lical peptides, the folding rate of Con-T is distinctly slower.

Therefore, this result suggests that the folding time of mo-

nomeric helices is sequence-dependent and that the formation

of one or multiple salt bridges in the rate-limiting step retards

the rate of helix formation.

We gratefully acknowledge financial support from the National Science

Foundation (CHE-0094077).
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