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ABSTRACT Directed cell motility is preceded by cell polarization—development of a front-rear asymmetry of the cytoskeleton
and the cell shape. Extensive studies implicated complex spatial-temporal feedbacks between multiple signaling pathways in
establishing cell polarity, yet physical mechanisms of this phenomenon remain elusive. Based on observations of lamellipodial
fragments of fish keratocyte cells, we suggest a purely thermodynamic (not involving signaling) quantitative model of the cell
polarization and bistability. The model is based on the interplay between pushing force exerted by F-actin polymerization on the
cell edges, contractile force powered by myosin II across the cell, and elastic tension in the cell membrane. We calculate the
thermodynamic work produced by these intracellular forces, and show that on the short timescale, the cell mechanics can be
characterized by an effective energy profile with two minima that describe two stable states separated by an energy barrier and
corresponding to the nonpolarized and polarized cells. Cell dynamics implied by this energy profile is bistable—the cell is either
disk-shaped and stationary, or crescent-shaped and motile—with a possible transition between them upon a finite external stim-
ulus able to drive the system over the macroscopic energy barrier. The model accounts for the observations of the keratocyte
fragments’ behavior and generates quantitative predictions about relations between the intracellular forces’ magnitudes and the
cell geometry and motility.

INTRODUCTION

Directed cell motility—a fundamental phenomenon underly-

ing morphogenesis, wound healing, and cancer—results from

a complex combination of protrusion, adhesion, and contrac-

tion activity of the cell (1–3) based on treadmilling of the

actin-myosin arrays (2,4). A nonmotile cell is spread on a sub-

strate and has a roughly circular morphology. Its transition

into the motile state is preceded by cell polarization—a sym-

metry breaking between two opposite edges of the cell and

establishing a front-rear structural and functional asymmetry

of the actin-myosin arrays (5) and the cell shape. This tran-

sition establishes the cell front where there is almost no

myosin, and the growing barbed ends of actin filaments face

the direction of the upcoming crawling. The opposite, myosin-

rich, edge becomes the cell rear at which the cell body is

dragged forward (6).

Cell polarization may result from external cues such as

gradients of chemoattractants (1,5) or mechanical stimuli (7),

but in some cases a cell self-polarizes spontaneously and main-

tains the polar motile state for a long time (8,9). Extensive

studies implicated complex and redundant spatial-temporal

feedbacks between multiple signaling pathways and the actin-

microtubule cytoskeleton in the cell polarization (3,5,10,11).

Most studies focused on polarization as a result of signaling

reaction-diffusion processes, with the single exception of a

qualitative mechanical-restriction idea assuming that an ex-

tension at the front of the cell is physically coupled to a re-

traction at the rear (reviewed in (5)). However, cell is a

mechanical system (2,12), and here we suggest and examine

quantitatively a physical mechanism of the cell symmetry

breaking (in cells with lamellipodia on flat surfaces) (2) based

solely on intracellular mechanical interactions and indepen-

dent of the extracellular signals or biochemical signaling.

This mechanism is applicable directly to the much studied

motile cells on flat surfaces.

We base our model on observations of fragments of epi-

thelial keratocyte cells, the migration of which is crucial in

wound healing (13). These cells are streamlined for locomo-

tion. They glide individually remarkably fast (;0.05–0.25

mm/s (4,6,14,15) and steadily. The cell’s motile appendage is

the lamellipod, a broad, flat sheetlike structure enveloped by

the cell membrane and consisting of a branched polarized

treadmilling array of actin filaments with myosin at the rear

(6). Keratocytes can crawl without microtubules (16), indi-

cating that at least one, and maybe more than one, signaling

pathway implicated in polarity maintenance (10) is absent in

these cells.

Strikingly, keratocyte fragments separated from the cell

lamellipodium and lacking the major cell organelles and micro-

tubules retain the ability to establish the front-rear polarity

and to crawl directionally with speed and characteristic

crescentlike shape similar to that of the intact keratocyte (7).

Though signaling-based polarization cannot be definitively

ruled out in these fragments, it is less likely than that in the

whole cells, and mechanics-based polarization is a strong pos-

sibility. The fragments are either stationary, symmetric, and

discoid (Fig. 1 a); or motile, polarized, and crescent-shaped

(Fig. 1, b and c) (7). The stationary fragments can be de-

formed by a weak transient hydrodynamic load, after which

the fragment remains stationary and recovers its discoid
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shape (7). However, if the load is strong, the fragment de-

forms to an almost half-disk shape, and then, even when the

load is removed, the symmetry is broken; the crescent-

shaped motile fragment evolves and crawls steadily for hours

(7). On a rare occasion, when a motile fragment encounters

an obstacle, it stalls and resumes the discoid nonmotile shape,

which remains steady without further perturbation. These ob-

servations indicate that the keratocyte fragment representing

a relatively simple actin-myosin-membrane system is bistable:

both stationary disk and motile crescent are locally stable,

while global perturbations can switch the fragment between

these two states.

In the discoid stationary state, fragment’s actin network is

isotropic. The filaments’ barbed ends polymerize along the edge

very slowly (;0.02 mm/s (5, 7)); this polymerization is bal-

anced by slow F-actin centripetal flow (7). Myosin II mole-

cules form large (;0.4 mm) clusters that have multiple heads

(6) developing local contractile stresses (18), which, in the

stationary fragments, are distributed evenly across the frag-

ments and are stationary relative to the actin network (7). In

contrast, the actin-myosin distribution in the crescent-shaped

motile fragments is highly anisotropic (7). The polarized ac-

tin network density decreases from the front to the rear. At the

rear, the network is disintegrated; the filaments are reoriented

in parallel with each other and form an arc-shaped bundle

underlying the rear edge. The myosin distribution is shifted

toward the rear, colocalizing with the actin bundle.

A qualitative scenario for creation and stabilization of the

fragment polarized state was proposed based on a hypothet-

ical rearrangement of the actin-myosin system upon an asym-

metrical mechanical stimulus of the cell (7). At the same

time, the physical mechanism underlying the existence of the

stable nonpolarized and polarized states of a keratocyte

fragment separated by a kinetic barrier controlling the tran-

sition between them is unknown. Here we propose such a

mechanism based on the interplay between the forces of the

actin polymerization, myosin-driven contraction, and mem-

brane tension. In addition to explaining the cell bistability and

the related symmetry breaking, the model describes quan-

titatively the crescentlike motile shape of a keratocyte frag-

ment and makes predictions about the relationships between

the intracellular forces’ magnitudes and the motile cell geometry.

Model

We consider a keratocyte lamellipodial fragment on a flat sub-

strate as a two-dimensional (2D) object since the linear di-

mension of its projection on the substrate plane is close, ;10

mm exceeding by orders of magnitude its thickness h ; 0.1–

0.2 mm (7,14) (Fig. 2 a). Mechanically, the fragment interior

consists of the actin-myosin network and is enveloped by the

cell membrane (Fig. 2 a). For simplicity, we will refer to the

fragment as the cell. We limit this study to the transition be-

tween the symmetric (Fig. 2 a) and polarized (Fig. 2 b) states

of the cell and do not address the downstream motile stage,

therefore, the cell center will be assumed not to move relative

to the substrate. We first present the model for the non-

polarized state and discuss the cell shape, the cytoskeleton

distribution, and the physical forces (Fig. 2 b). Then, we

describe how shape, distribution, and forces change in the

transition to the polarized state. Finally, we analyze the ther-

modynamic work associated with these changes, the stability

of the two states and the transition between them. After we

solve the model equations, we discuss the model assumptions

and results.

Nonpolarized state

In the nonpolarized state, the fragment is a disk of radius R0

with area A ¼ pR2
0 (Fig. 2 b), which remains constant, A ¼

const, in the course of polarization. This is based on previous

observations of other cells (17), and on data on the whole

keratocyte cells and their fragments (44). Though more com-

plex interpretations are possible, we interpret this condition

as follows: given the way the keratocyte fragments are

formed (they are torn out of the lamellipodium), the total

FIGURE 1 Shapes of keratocyte lamellipodial fragments. (a) Nonpolarized

circular state. (b and c) Polarized state characterized by crescentlike shapes

(reproduced from (7)). (d and e) Theoretically predicted shapes corresponding

to the parameter values sB/f ¼ 0.15, and sB/f ¼ 0.25, respectively.
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plasma membrane area in fragments is conserved and the

membrane is pulled taut around the flat actin network. Mem-

brane folds and intracellular membrane pools observed in many

motile cells are probably either absent in the fragments, or ex-

change with the plasma membrane on the timescales, much

more slowly than those relevant for the polarization. (In the

whole cells, the membrane dynamics is likely more complex

(18).) The membrane is unstretchable and uncompressible. As

the thickness h of the keratocyte fragment (Fig. 2 a) is very

small, the total fragment area is simply equal to the constant

plasma membrane area divided by 2 (ventral and dorsal

surfaces).

Based on the observations (7), we assume that in the non-

polarized state the F-actin and myosin are distributed ap-

proximately uniformly and homogeneously across the ringlike

area of width D near the fragment edge (Fig. 2 b). For sim-

plicity, we assume that the ring of the actin-myosin net-

work in the nonpolarized state reaches the cell half radius,

so D¼ R0/2. Three major cell structures—actin, myosin, and

membrane—are the sources of the three principal forces.

First, the uncapped barbed ends of the actin filaments abut-

ting the cell edge generate pushing force at the cell boundary

(20) (Fig. 2 b). The source of this force is most likely the

polymerization ratchet mechanism (21); other mechanisms

(22) lead to the same mathematical model. This force can be

quantified by the 2D pressure P applied to the membrane at

the fragment boundary and equal to the normal force per unit

length of the circumference, or by the total normal force

f given by the integral of the pressure over the fragment

perimeter, f ¼ »PdL. In the symmetric state, f ¼ 2pR0P.

Second, the actin pushing generates lateral tension gmem in

the cell membrane (Fig. 2, b and c). Since the membrane has

properties of a 2D fluid, the tension gmem is isotropic and

constant in the membrane plane. Finally, myosin generates

an average contractile stress gnet in the actin network (18) (Fig.

2, b and c), which will be assumed constant. (Distributions of

actin and myosin in the fragments are not completely homo-

geneous and isotropic, but away from the edges anisotropies

and inhomogeneities are weak (15).) Its units, same as those

of membrane tension or actin pressure, are force per unit length.

Polarized state

In short, we hypothesize that when a mechanical load sig-

nificantly deforms one side of the discoid fragment, the fol-

lowing events take place within a few seconds: First, at the

deformed side, the isotropic actin network is collapsed into

the bundle underlying the boundary at that side referred to as

the rear edge. Quantitative mechanism of the bundle for-

mation is beyond our model’s framework; we only analyze

contribution of the bundle to the cell energy. However, qual-

itative microscopic and mechanistic explanation of the bundle

formation exists (23): compression of the fragment boundary

both induces breaks in the actin network, and aligns many

broken-off actin filaments parallel to the boundary and each

FIGURE 2 Model of keratocyte fragment. (a) Three-dimensional view.

(b) Two-dimensional model of the nonpolarized state. The red arrows illus-

trate the actin normal force at the edge, the purple arrows represent the mem-

brane tension. The gray area corresponds to the actin-myosin network. (c)

Two-dimensional model of the polarized state. The bold line at the rear

denotes the actin-myosin bundle forming in the course of polarization; other

notations are the same as in panel b.
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other, and increases concentration of both such filaments and

myosin clusters at the boundary. Then, myosin clusters fur-

ther align the filaments into the bipolar bundle, which is

contractile, because most of the actin filaments within the

bundle are not cross linked (3). All myosin molecules that

were distributed evenly throughout the lamellipodial net-

work at the rear edge also collapse into the bundle making it

contractile—we assume, following the literature (24–26), that

a line tension, sB, is developed along this bundle by the myo-

sin contractile stress. At the opposite side, referred to as the

front edge, actin filaments keep polymerizing and, hence,

pushing on the membrane.

We consider the deformed fragment to be crescent-shaped

and characterized by the convex front edge arc of radius R,

by the concave rear edge arc of radius r, and by the angle u
that determines the degree of the shape asymmetry, and which

we refer to as the polarization angle (Fig. 2 c). The symmetric

nonpolarized shape is characterized by u ¼ 0, whereas

progressing cell polarization is described by the growing value

of u. The area conservation assumption provides a relation

between the radii R and r and the polarization angle u.

When the fragment is deformed, its shape momentarily

changes in such a way that the membrane tension is relieved,

and then actin rapidly, within seconds, polymerizes freely in

the radial direction into the ring of the expanding front edge

until the membrane is stretched again (15) (Fig. 2 c) (char-

acteristic distances are the mm-range, while the polymeriza-

tion rate at protruding leading edge is ;0.1 mm/s (5,27)). We

assume that all growing actin filaments rapidly redistribute to

the front edge and disappear from the rear (F-actin network

adjusts to activations/inhibitions within seconds (4)), so the

total actin normal force acting on the front edge remains

equal to f, same as in the symmetric state, and independent of

u. Meanwhile, tens of seconds are needed for the myosin

redistribution (7), so we assume that the myosin does not spread

into the ring of the expanding front edge (Fig. 2 c), resulting

in formation next to the cell front of the arc-shaped area filled

by the newly polymerized actin but free of myosin. Nor does

the inner boundary of the ring filled with myosin shifts, con-

serving its initial radius R0/2 (Fig. 2 c) (10).

We assume that the linear actin-myosin bundle grows or

shrinks in length together with evolution of the cell rear edge,

hence, supporting the rear edge membrane at all stages of

polarization. Formation of such bundle with two ends an-

chored in the large adhesions at the corners between the front

and rear edges is supported by multiple observations (2,6,

7,28,29). Since we assume that all myosin molecules from

the section of the actin-myosin ring above the emerging rear

edge condense into the actin-myosin bundle, the number of

myosin molecules per unit length of the bundle equals the

density of myosin in the actin-myosin ring integrated from

the outer to the inner radii of the ring. This leads us to the

simple assumption that the line tension (force) in the rear bundle

sB, resulting from the additive action of the condensed my-

osin molecules, is equal to the contractile stress in the 2D

actin-myosin ring gnet multiplied by the width of the ring R0/

2: sB ¼ gnetR0/2, or gnet ¼ 2sB/R0.

Energy of cell polarization

Intracellular forces do thermodynamic work changing the

free energy of the system in the course of transition between

the nonpolarized and polarized states. Below we discuss sub-

tleties of this nontrivial statement. The 2D pressure P or,

equivalently, the total actin normal force f, performs a posi-

tive thermodynamic work when each element of the front

edge of the cell moves in the normal direction by dR. This is

accompanied by decrease of the free energy of the polymer-

izing actin system Fpolym,

dFpolym ¼ �P � LfrontdR ¼ �f � dR; (1)

where the pressure P is assumed to be constant along the front

edge following the constant density of the actin filaments,

and Lfront is the length of this edge. The work done by the

contractile myosin tension gnet is related to the change of the

lamellipodial area Anet containing myosin. The corresponding

change of the free energy of the actin-myosin system is

dFnet ¼ gnet � dAnet; (2)

implying that the energy decreases with contraction (area

decrease) of the actin-myosin network.

The work of the contractile line tension sB generated

within the actin-myosin bundle at the cell rear is proportional

to variation of the bundle length LB, and the corresponding

change of the free energy of the bundle is

dFB ¼ sB � dLB: (3)

The potential thermodynamic work performed by the fourth

force factor, the isotropic membrane tension gmem, is propor-

tional to the change of the cell membrane area. We assume

conservation of the latter, so the membrane tension does not

directly contribute to the energy of the cell polarization, but,

as shown below, it influences the energy indirectly by cou-

pling the pushing at the front and the shape of the rear edge.

The total change of the free energy is the sum of all three

contributions (Eqs. 1–3). Since we assume that the force param-

eters f, gnet, and sB remain constant in the course of the cell

polarization, the total free energy, which is a first-order homo-

geneous function of the extensive thermodynamic variables

including R, Anet, and LB (30), can be written in the inte-

grated form,

Ftot ¼ �f � R 1 gnet � Anet 1 sB � LB � F0

¼ �f � R 1 sB � ðLB 1 2Anet=R0Þ � F0; (4)

where F0 is part of the free energy independent of R, Anet,

and LB.

Model equations

To analyze the system free energy (Eq. 4) as a function of the

polarization angle u and find the conditions for the bistable
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cell behavior, the variables R, Anet, and LB have to be ex-

pressed in terms of the angle u. Conditions of mechanical

equilibrium at the fragment boundary and conservation of

total area of the fragment Amem lead to the geometrical con-

nections between R, r, LB, and u.

To address the equilibrium of the front edge, we consider

an infinitesimal element of the edge, which has a shape of a

convex circular arc of radius R and the arc angle dx so that

the element length is dl ¼ R � dx. There are three forces

acting on the edge element in the normal direction. First, the

force generated by the 2D pressure P of the pushing actin

filaments, which is equal to P � R � dx. Second, the force

coming from the membrane tension and equal to �gmem � R �
dx, where the minus sign indicates that the membrane ten-

sion gmem, which is generated as a result of the actin pressure

pushing the cell edge, is directed oppositely to the pressure P

(Fig. 2, b and c). Finally, the edge can be, generally, char-

acterized by line tension sfront accounting for an excess of

the membrane free energy at the edge compared to the flat

part of the cell membrane. This excess energy includes con-

tributions of the energy of the membrane tension, ;gmemh,

and of the membrane bending at the edge, ;k/h, where h is

the lamellipodium thickness and k is the membrane bending

modulus (31). Since, on one hand, the line tension is tan-

gential to the front profile, and, on the other hand, the profile

has a circular convex shape, the contribution of sfront to the

normal force acting on the edge element is�sfront � dx. Mech-

anical equilibrium of the edge element corresponds to van-

ishing sum of these three forces. This leads to the equation

P� gmem ¼ sfront � 1=R; which is a two-dimensional analog

of the Laplace equilibrium equation of interfaces. An esti-

mate taking into account the relevant values of the pressure

P � 100 pN/mN (20,22) and the value of the membrane

bending modulus k � 10�19 J (31) shows that the contri-

bution to the edge line tension sfront of the membrane bending

energy ;k/h is negligible in comparison with that of the

membrane tension gmem generated by the actin pushing. Fur-

thermore, inserting into the equilibrium equation above the

contribution of gmem to sfront renders sfront/R � gmemh/R�
gmem, meaning also that this contribution can be neglected

and the mechanical equilibrium at the front edge is expressed

by the simple equation gmem ¼ P. Taking into account the

relationships P � Lfront ¼ f and Lfront ¼ (2p � u) � R, we

obtain:

gmem ¼
f

ð2p � uÞ � R: (5)

The rear edge is subjected to action of the membrane

tension gmem and the line tension of the actin-myosin bundle

sB (Fig. 2 c), which, is considerable and cannot be neglected.

Direction of gmem with respect to the rear edge requires a con-

cave shape of the latter (Fig. 2 c). Consideration analogous to

the above one renders the equation of equilibrium at the rear

edge:

gmem ¼
sB

r
: (6)

Simple, yet tedious, geometric-algebraic calculation, using

Eqs. 5 and 6 and area conservation, results in the formulas

Ftot ¼ f � R � � 1� R0

R

� �
� sB

f
� 3R0

4R
� u

�

1
sB

f

� �2

� ð2p � uÞ � c
�
; (7)

where

c ¼ 2 � arcsin
f

sB

sin
u
2

� �
2p � u

0
@

1
A; (8)

R¼R0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2p
ðu� sinuÞ� 1

2p
� sB

f

� �2

ð2p�uÞ2ðc�sincÞ

s ;

(9)

and the terms independent of the polarization angle u such as

F0 are omitted.

Equations 7–9 determine the system free energy as a func-

tion of the degree of the cell polarization described by the

polarization angle u. Remarkably, this function depends on

the single dimensionless factor, sB/f—the ratio between the

myosin powered tension in the rear bundle and the pushing

force produced by the actin polymerization.

RESULTS

The first and second terms in the right-hand side of Eq. 7

describe, respectively, the negative contributions of the actin

pushing and network contractile forces into the fragment’s

free energy. These factors favor the cell polarization causing

the energy decrease with growing polarization angle u: allow-

ing actin polymerization to move forward the front edge

lowers free energy of the actin system, while decreasing the

area of the actin-myosin ring effectively contracts the actin-

myosin network and lowers its energy. The third term in the

right-hand side of Eq. 7 is positive and accounts for the re-

sistance to the cell polarization coming from the expanding

rear edge due to the increase of the energy when the contrac-

tile bundle is elongated.

Asymptotic analysis of Eqs. 7–9 reveals that when polar-

ization is weak, u � 1, the actin polymerization energy is

proportional to u3 and is negligibly small compared to the

two myosin contributions, which are proportional to u. The

effect of the expanding rear contractile bundle turns out to be

stronger than that of the shrinking actin-myosin network, and

as a result, the total free energy increases with the angle: F�
sB � R0 � u/4. For greater values of the polarization angle,

u $ 1, a sufficiently large total normal force f $ 1.5

sB overcomes the resistance of the rear bundle and results in

Model of Cell Polarization 3815
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decrease of the free energy. The resulting nonmonotonic

energy profile is illustrated in Fig. 3 for the ratio between the

bundle tension and the total normal force sB/f ¼ 1/4.

According to the energy dependence on the polarization

angle F(u) (Fig. 3), the cell has two distinct states of minimal

free energy. The first corresponds to u ¼ 0 and, hence,

represents the nonpolarized discoid state. The second is

characterized by a nonvanishing polarization angle u* and

describes the polarized state. The two states are separated by

an energy barrier F* (Fig. 3) that guarantees stability of the

two states and a need of finite energy input for transition be-

tween them. The height of the energy barrier decreases with

the ratio sB/f, as illustrated in Fig. 4 showing the energy

barrier F* between the nonpolarized and polarized states.

This means that the stronger is the total normal force com-

pared to the rear bundle tension, the easier is the transition

from the nonpolarized to the polarized state of the cell. Al-

together, the system properties predicted based on the energy

profile (Fig. 3) correspond to the bistable behavior of the cell

observed experimentally.

The value of the polarization angle u* determines the cell

shape in the stable polarized state and depends on the ratio

sB/f, as illustrated in Fig. 5. The smaller the bundle tension

sB compared to the total normal force f, the smaller the

polarization angle u* of the crescentlike shape that stabilizes

the cell in the polarized state. To estimate the relevant values

of the ratio sB/f, we found its values corresponding to the

polarization angles u* that describe the characteristic shapes

of the keratocyte fragments observed experimentally in

Verkhovsky et al. (7). The comparison of the real and modeled

cell shapes is presented in Fig. 1, b–e, for sB/f ¼ 0.25 and

sB/f ¼ 0.15. Hence, the suggested model is able to predict

the realistic shapes of the cells in the polarized states by rea-

sonably small variations of the single parameter sB/f.

Model assumptions

There are several assumptions underlying the model, but the

most fundamental issue is the use of the notions of free

energy and thermodynamic work for description of the cell

behavior. A cell has features of both mechanical system

generating and balancing elastic stresses of its cytoskeletal

and membrane components, and of a thermodynamically

nonequilibrium structure (3,10) in which chemical energy is

constantly released and dissipated through viscoelastic macro-

scopic flows of polymer networks (29) and cytoplasm (3,10).

We propose that the event of polarization of a cell fragment

is determined by the mechanical behavior of the cell com-

ponents, and is, therefore, treatable thermodynamically, whereas

the irreversible processes of ATP hydrolysis by actin and

myosin generate constant forces and tensions within the three

actin subsystems considered by our model. In other words,

and analogously to the general thermodynamic approach to

treatment of systems in contact with external reservoirs, the

steady-state ATP hydrolysis and related dissipative processes

are assumed to ensure existence of thermodynamic reservoirs

of constant tensions imposed on the intracellular actin sub-

systems. For each subsystem, the specific mechanism of

FIGURE 3 Dependence of the free energy of the cell Ftot measured in unit

of thermal energy, kBT, on the polarization angle u measured in degrees. The

parameter values are R0 ¼ 10 mm, f ¼ 6 nN, and sB/f ¼ 0.25.

FIGURE 4 Dependence of the polarization angle u* in the stable polarized

state on the ratio between the intracellular forces sB/f. The parameter values

are as in Fig. 3.

FIGURE 5 Dependence of the energy barrier F* corresponding to transi-

tion from the nonpolarized to the polarized state on the ratio between the

intracellular forces sB/f. The parameter values are as in Fig. 3.
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functioning of such an effective thermodynamic reservoir may

be different. For example, for the polymerizing actin filaments

pushing the cell edge, the total normal force f, and, hence, the

tensions within the actin network and the membrane, are de-

termined, ultimately, by maintaining a G-actin concentration

near the filament barbed ends. Constancy of this concentration

and the related steadiness of the stresses are guaranteed by a

regulated depolymerization of the filament pointed ends,

which is controlled by the rate of hydrolysis of the fila-

mentous ATP-actin into the ADP-actin. Similarly, hydroly-

sis maintains the ability of actin-myosin complexes to turn

over and generate constant contractile stresses. The respec-

tive energy flows are complex, but from the macroscopic

mechanical point of view, both growing actin filaments and

myosin clusters perform mechanical work (1). Detailed con-

sideration of physics of these effective reservoirs and anal-

ysis of the conditions where their capacities are sufficient to

maintain constant tensions in the course of cell polarization

are outside the scope of this simple model. Thermodynamic

analysis does not predict actual movements or the rate at

which energy is transferred to work, but it does predicts ten-

dencies: as long as a transition is associated with a decrease

in free energy, this transition will proceed spontaneously.

This is the only law of thermodynamics that we use.

Our calculation of the free energy is based on the follow-

ing essential assumptions (other than those listed in the model

description): The mechanical rigidity of the lamellipodial

F-actin network and adhesions is sufficiently high to guar-

antee negligible deformations of these structures upon the

stresses developed within the system. Otherwise, the elastic

deformation energy would have to be considered as a part of

the total free energy. This assumption is justified: kerato-

cyte’s lamellipodial Young modulus Y ; 5 � 104 pN/mm2

(32). The total traction force in the keratocyte, presumably

generated by the myosin contraction, is ;104 pN (33). At

least half of this force is generated by the tangential con-

traction of the actomyosin bundle at the lamellipodial rear, so

it is fair to assume that ,T ; 5 � 103 pN is applied to the

lamellipodial network. The order of magnitude of the defor-

mation, e, of the actin lamellipodial network can be estimated

as the ratio of this myosin-generated force to the network’s

Young modulus multiplied by the cross-section area of the

lamellipod to which this force is applied, e ; T/(Yhl), where

h is the height of the lamellipod, and l is its width. Sub-

stituting h ; 0.1 mm, l ; 10 mm, we estimate e ; 0.1, so the

elastic deformation is insignificant. Also, adhesion com-

plexes have to adjust very fast to the cell shape changes. There

are no quantitative data on adhesion turnover, but keratocyte

adhesions are known to be very dynamic (29).

We assumed that the intracellular forces, namely, the total

actin normal force f and the contractile stresses gnet and sB

generated by myosin remain constant in the course of the cell

polarization. Steadiness of f can simply mean that the total

number of growing filaments at the cell edge is constant.

Constancy of gnet and sB implies that the numbers of the

actin-myosin force generating elements per unit length of the

bundle and per unit area of the network remain constant in

the course of polarization. Though there is no relevant data,

these assumptions are plausible. Variations in the force param-

eters would change the quantitative but not the qualitative

character of the model predictions. For example, constancy

of the actin polymerization-induced pressure P instead of the

total normal force f would impede to some extent the cell

polarization. The same effect would follow from increase of

the rear bundle tension sB.

We assumed the width of the actin-myosin network to be

equal to the half radius of the nonpolarized cell shape, D ¼
R0/2. While the exact location of the inner boundary of the

actin-myosin network cannot be exactly determined from

the experimental data, our assumption corresponds, approx-

imately, to the observations (7). Change of the value of D, as

well as possible anisotropy and inhomogeneities of myosin

and actin distributions and stresses, would not change the

qualitative character of the model results. Similarly, devia-

tions from the relation sB¼ gnet �D do not change the model

predictions qualitatively. This assumption is plausible if the

contractile stresses are determined by the numbers of myosin

molecules per cross section of the actin-myosin bundle and

the actin-myosin network, respectively, and if, in the course

of cell polarization, the myosin molecules do not move re-

lative to F-actin.

DISCUSSION

We suggest a physical mechanism for the phenomenon of

cell polarization—a key stage at the onset of the cell direc-

tional motility (5). The model is based on the observations of

the lamellipodial fish keratocyte fragments (7), probably the

simplest system exhibiting polarization and directional crawl-

ing. The essence of the proposed mechanism is in the thermo-

dynamic work and the related free energy changes of the

system, generated by the following intracellular forces: the

pushing force produced by polymerizing actin at the cell

edge, the membrane tension generated by this force, and the

myosin contractile stress throughout the cell and in the rear

actin-myosin bundle. Direct and indirect measurements of

these forces, stresses, and tensions (18,20,33) and other data

(34) indicate that all of them are crucial for cell migration and

spreading.

We calculated the dependence of this free energy on the

degree of polarization, and discovered that it is nonmono-

tonic and characterized by two minima corresponding to

symmetric nonmotile and polarized motile cell states. The

two states are locally stable and separated by a finite energy

barrier, which explains the observed property of bistability of

keratocyte fragments (7). First, the model predicts that the

cell can reside practically indefinitely in distinct nonpola-

rized and polarized states. Second, it predicts that these states

are interconvertible upon an external stimulus that drives the

system over the energy barrier. Since the barrier constitutes a
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macroscopic amount of energy of the order of 104 kBT (where

kBT, the product of the Boltzmann constant and the absolute

temperature, is the molecular thermal energy), the transi-

tion between the states requires a strong external stimulus,

i.e., a direct mechanical force coming from fluid stream or

microneedle (7). Such force can also come from the cell-cell

collisions that were observed to trigger transitions between

the nonpolarized and motile states (7). Further, the model

reproduces the observed crescentlike shapes of the polarized

keratocyte fragments (7). In the model, the shapes are deter-

mined by the single parameter—the ratio of the myosin-

powered tension in the rear actin-myosin bundle to the total

normal force generated by the actin polymerization, sB/f.
The model predicts that the observed shapes correspond to

the values of this ratio ;0.15–0.25. No direct measurements

of these forces were made, but the data (20,33) indicates that

both f and sB have similar magnitudes ;10 nN, so this pre-

diction is feasible. The model also predicts that as this ratio

increases, the push needed to polarize the discoid fragment

has to become stronger, while the motile fragment would be

less circular and more crescentlike. This prediction can, in

principle, be tested in the future and used to assess the model.

The model only explains the cell polarization and does not

address the upcoming cell movement, which likely involves

additional mechanical and transport mechanisms. Thus,

Verkhovsky et al. (7) proposed an elegant qualitative scenario

explaining the polarization maintenance during the cell mo-

tion as a result of the following positive feedback loop:

F-actin barbed ends grow at the front advancing the leading

edge and keeping the network polarized, while myosin con-

traction at the rear constantly relieves the membrane tension

allowing protrusion of the front and retraction of the rear.

Myosin concentrates at the rear because its clusters detach

from the actin network slowly, and so they end up at the rear

of the rapidly crawling cell. Meanwhile, actin assembles at

the front and disassembles everywhere else maintaining rigid

network at the front rendered stationary by adhesion (28,29)

and weak contracting network at the rear. It is likely that the

resulting spatially graded distributions of protrusion and re-

traction along the cell boundary (8,26) explain the observed

bent-rectangle-like shapes of mature motile cell fragments.

Detailed model of this process is still pending.

Another essential factor determining the cell shape and

polarity maintenance is the dynamic adhesions (28,29) that

transmit the forces developed by the actin-myosin system to

extracellular substrates. The adhesion complexes are influ-

enced by the myosin stresses (35) and, at the same time,

affect the myosin-powered centripetal flow of actin (36). In

the nonpolarized state, the symmetrically distributed cyto-

skeleton elements apply to the cell adhesions isotropic forces

directed to the cell center. Hence, there is no resultant force

tending to move the cell in a certain direction. In the po-

larized state, the tension in the actin-myosin bundle at the

rear is likely to facilitate development of the observed strong

adhesions concentrated in the sharp corners between the

front and rear edge (2,6,7,28,29). The myosin tension is

applied to these adhesion and results in strong traction forces

transverse to the direction of locomotion (33), as well as in

weak traction in the direction of locomotion (33). These forces

and their influence on the cytoskeleton distribution and cell

shape have to be considered to understand the motile cells

dynamics.

The model we propose is applicable directly to the much

studied cells with lamellipodia on flat surfaces. In cells much

larger than the specialized, fast-moving keratocytes, or in im-

portant amoeboid motility (e.g., during development or cancer

cell migration), the same principles as those described in this

article should hold, but additional levels of redundant spatial

and temporal regulation (specifically, signaling cascades and

more complex, not dendritic, actin arrays) are likely required

to initiate and maintain the cell treadmill (2,10). Interest-

ingly, polarized morphology in whole keratocyte cells arise

spontaneously (15) with greater frequency than that in frag-

ments. This is possibly related with complex rGTPase-de-

pendent pathways (44). Also, complex membrane dynamics

in motile keratocytes (37) could be involved.

It is tempting to speculate that simple mechanical systems

are robustly bistable, while additional mechanochemical path-

ways vary cell sensitivity to external cues. Further research is

needed to address this idea, as well as to find generality and

differences between symmetry-breaking phenomena of vary-

ing complexity, including the simplest biomimetic actin-no

myosin-no membrane (38,39) and actin-myosin-membrane

(40,41) assays. Relation between the proposed physical mech-

anism and other models of actin network polarization based

on simple autocatalytic F-actin branching (42) and more com-

plex reaction-diffusion-drift processes (43) has to be exam-

ined. Our model is but one of the first steps in this important

direction.
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