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ABSTRACT Necrotizing enterocolitis is the leading cause of death from gastrointestinal disease in preterm infants. It results
from an injury to the mucosal lining of the intestine, leading to translocation of bacteria and endotoxin into the circulation. Intestinal
mucosal defects are repaired by the process of intestinal restitution, during which enterocytes migrate from healthy areas to sites of
injury. In this article, we develop a mathematical model of migration of enterocytes during experimental necrotizing enterocolitis.
The model is based on a novel assumption of elastic deformation of the cell layer and incorporates the following effects: i), mobility
promoting force due to lamellipod formation, ii), mobility impeding adhesion to the cell matrix, and iii), enterocyte proliferation. Our
model successfully reproduces the behavior observed for enterocyte migration on glass coverslips, namely the dependence of
migration speed on the distance from the wound edge, and the finite propagation distance in the absence of proliferation that results
in an occasional failure to close the wound. It also qualitatively reproduces the dependence of migration speed on integrin
concentration. The model is applicable to the closure of a wound with a linear edge and, after calibration with experimental data,
could be used to predict the effect of chemical agents on mobility, adhesion, and proliferation of enterocytes.

INTRODUCTION

The ability of the cells that line the surface of the intestine to

move plays a critical role in the ability of the body to heal any

injury to the intestinal lining. The process by which such

cells—called enterocytes—move is of great scientific interest.

For example, there are certain conditions in which enterocyte

migration is inhibited, therefore rendering the body suscep-

tible to further injury and illness. One such condition is termed

necrotizing enterocolitis (NEC), a disease that affects young

babies and is characterized by impairment in the ability of

enterocytes to move effectively, resulting in impaired healing

(1–5). Mucosal healing also requires the generation of new

enterocytes from precursors that are located deep within crypts

of the mucosal lining, a process termed enterocyte prolifer-

ation (6). Enterocyte proliferation takes days before new cells

are generated, as compared to enterocyte migration that may

be completed within hours. Accordingly, it has become appar-

ent that mucosal healing is largely determined by enterocyte

migration (7), at least during the early phases. An under-

standing of the mechanisms that govern enterocyte migration

is therefore of vital importance to gain insights into the regu-

lation of intestinal physiology during conditions of both health

and disease. Importantly, little information exists to charac-

terize the factors that regulate enterocyte migration under con-

ditions that are associated with intestinal inflammation such as

occurs in NEC.

Although many molecules may act in concert to inhibit

enterocyte migration in the development of NEC, bacterial

endotoxin (lipopolysaccharide (LPS)) is likely to act as one of

the earliest. LPS, which is found on the outer wall of gram

negative bacteria, is a potent immunostimulant that exerts a

large effect on the ability of enterocytes to migrate, given the

large concentrations present within the lumen of the intestine.

Mathematical modeling is emerging as an approach by which

to address the complexity of inflammation in general (8) and

of NEC in particular (9). To design experimental and math-

ematical models to predict the development of NEC, we there-

fore turned to an in vitro system in which small intestinal

enterocytes (IEC-6 cells) were exposed to LPS at concentra-

tions known to be present in the lumen of animals with

experimental NEC (100 ng/ml to 50 mg/ml). The exposure of

enterocytes to LPS in this concentration range leads to a pro-

found, dose-dependent inhibition of enterocyte migration (10).

Studies directed at elucidating the mechanisms that could

mediate this migration inhibitory effect showed that LPS in-

creases the adhesion of cells to the underlying matrix. This

increased adhesion occurred due to a profound increase in the

number of attachment sites—termed focal adhesions (10)—as

well as an increase in the expression of binding receptors,

called integrins, on the surface of the cell (11), in response to

LPS.

The primary motivation for development of the model

described herein is that the ability to predict the effect(s) of

LPS and integrins on migration of enterocytes could have

tremendous significance in understanding, and perhaps cor-

recting, the factors leading to the defect in mucosal healing

that characterizes NEC. We give a mathematical description

of the moving enterocyte layer and describe its properties by

three constants related to the adhesion of cells to substrate,

the elasticity of the layer, and the force exerted by lamelli-

podia, which are foot-like projections from the cell surface
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that allow the cell to move forward. We calibrate our model

with real-time observations of cell migration and obtain es-

timates of these parameters. Finally, we find that with natural

assumptions regarding the dependence of adhesion and

lamellipod force on integrin concentration, the model yields

results that are in qualitative agreement with experimental

observations of the effect of adhesion on cell migration speed

(12,13).

THEORY AND METHODS

Existing mathematical models of wound healing are generally based on

reaction-diffusion formalism in which moving edge of the cell layer is rep-

resented as a traveling wave of cell concentration. For adult epidermal wound

healing, Sherratt and Murray (14) proposed a two-component model in which

the epithelial layer is described by giving cell density per unit area and the

time-dependence of this density is related to the concentration of the mitosis-

regulating chemical. For embryonic epidermal wound healing Sherratt (15)

developed a model involving actin filament network formation, based on a

mechanochemical model for the deformation of epithelial sheets proposed

by Murray and Oster (16). Recently Walker et al. (17,18) used an agent-based

model to simulate the wounded epithelial cell monolayers and suggested that

simple rules are sufficient to qualitatively predict the calcium-dependent

pattern of wound closure observed in vitro. In dermal wound healing, the

mathematical model derived by Tranquillo and Murray (19) includes the

mechanism of dermal wound contraction. More complicated models including

multiple cell types and multiple types or phases of the viscoelastic extracel-

lular matrix (ECM) have been developed, some including additional equations

for chemicals (such as growth factors) that modulate cell proliferative, mo-

tile, and contractile behavior (20,21). A detailed model of the dependence of

cell speed on adhesion-receptor/ligand binding was proposed by DiMilla

et al. (22). Most recently, we have used an agent-based model to describe the

interactions between inflammation and healing in the setting of chronic, non-

healing diabetic foot ulcers (23).

In this article, we focus on modeling the natural, unimpeded, cell migra-

tion during healing of the damaged intestinal mucosa. To design experi-

mental and mathematical models to predict the development of the migration

defect that characterizes NEC, we utilized a system in which small intestinal

enterocytes (IEC-6 cells) are cultured on a glass coverslip, grown to conflu-

ence, and then scraped with a pipette or cell scraper to create a gap that repre-

sents the wound. The cells undergo motion, deformation, and proliferation.

We have observed that the enterocyte cell layer is only one cell deep, and

that during migration cells do not separate from the edge and no holes are

formed in the interior of the layer. In addition, during migration cells at the

edge and in the interior of the layer move generally toward the wound and

never away from it (see Fig. 4). Therefore, instead of a collection of diffusing

cells, the cell layer can be described as an elastic continuum in which cells

are connected, albeit loosely, to each other. The cells appear to move in

accord with the so-called ‘‘sliding mechanism’’, in which cells in the interior

respond passively to the pull of the cells at the edge (24–26).

Mathematical formulation

The motion of cells is assumed to be driven by the cells at the edge of the

wound through the formation of lamellipodia, which produce the driving

force (27). The cells in the interior do not form lamellipodia and hence are

not directly actuating the motion. However, they are tightly connected to the

cells at the boundary. Tight junctions between the cells prevent separation

(28) and hence the edge cells pull with them the cells in the interior of the

layer. The cell layer stretches because of the tension applied by the edge

cells, and the motion of the cells is slowed down by the adhesion between

cells and the substrate.

The cell layer is represented by a one-dimensional elastic continuum

capable of deformation, motion, and material growth (see Fig. 1). Initially,

the continuum is uniform and free from internal stresses. After part of the

layer is scraped, a net external force F acting on the layer will develop at the

resulting boundary as a result of lamellipod formation. This force, which will

cause the layer to move and deform, will be opposed by the tension in the

continuum resulting from stretching of the cells in the layer, and also by the

adhesion between the continuum and the substrate during the motion.

Our model differs from published viscoelastic continuum models of

epithelial sheets (19) in that we ascribe elasticity to the cell layer itself, but

not to the substrate matrix. The forces considered in Tranquillo and Murray

(19) are elastic forces and traction forces arising from the actin filament net-

work between the cells and substrate that attaches to the cells. In our model,

because we are concerned with in vitro experiments in which IEC-6 cells are

planted on glass coverslips, we can safely ignore the elasticity of the substra-

tum and only consider the forces coming from the lamellipod of the cells at

edge and interaction between cells.

We employ the variable s to describe the position of a cell in the original

layer. A proliferating cell generates two ‘‘offsprings’’. We adhere to the

convention that the offspring that is closer to the moving edge of the layer

carries the s-value of the original cell and we employ the variable xðt; sÞ to

denote the position of cell s in the layer at time t. In other words, xðt;sÞ;
0 # s # s; is the position at time t of the offsprings of cells originally located

between 0 and s. In addition, we introduce the variable ŝðt; sÞ that describes

the hypothetical position of cell s at time t if all deformation in the layer was

instantaneously removed. Thus, ŝðt;sÞ; 0 # s # s; would be the position at

t of the offsprings of cells originally located between 0 and s if we accounted

for growth but not deformation (see Fig. 1).

Let us now consider a segment of cells that are the offsprings of cells

between s and s 1 ds of the original layer with ds assumed small. At

time t, such a segment extends between xðt; sÞ and xðt; s 1 dsÞ; its velocity

is _xðt; sÞ ¼ @xðt; sÞ=@t; and acceleration ẍðt; sÞ ¼ @2xðt; sÞ=@t2: Balance of

momentum implies that

Mðt; sÞẍðt; sÞ1 Bðt; sÞ _xðt; sÞ ¼ f ðt; s 1 dsÞ � f ðt; sÞ; (1)

where Mðt; sÞ is the time-dependent mass of the segment, Bðs; tÞ is the co-

efficient describing the sliding resistance due to adhesion of the cells to the

substrate, and f the resultant force on a cross section of the layer.

It is reasonable to assume that the coefficient Bðs; tÞ is proportional to the

extent of contact of the segment with the substrate (10,11) and hence

BðtÞ ¼ ðxðt; s 1 dsÞ � xðt; sÞÞb; (2)

where b is the adhesion constant, which has the units of force times time

divided by length squared. In addition, for slow motions one may neglect the

acceleration term in Eq. 1 and hence, in view of Eq. 2, one obtains

ðxðt; s 1 dsÞ � xðt; sÞÞb _xðt; sÞ ¼ f ðt; s 1 dsÞ � f ðt; sÞ; (3)

which, in the limit ds/0; becomes,

b
@x

@s

@x

@t
¼ @f

@s
: (4)

The strain (deformation gradient) in the cell layer can be described by the

quantity e ¼ @x=@ŝ� 1; with e . 0 corresponding to stretch and �1 ,

e , 0 corresponding to compression. The model must be completed by an

appropriate choice of the constitutive relation describing the dependence of

f on e. When e is small, one could assume that the resultant force is a linear

function of the strain (Hooke’s law):

f ¼ ke ¼ k
@x

@s

@ŝ

@s

� ��1

�1

 !
: (5)

Here the stretching modulus of the layer k has the unit of force as the cell-

layer thickness is assumed constant. The drawback of Eq. 5 is that the
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resultant force (and hence the strain) remains finite if the material is com-

pressed to infinitesimal volume. A more appropriate choice, which we make

here, yields infinite magnitude of the resultant force for both e/�1 and

e/N:

f ¼ klnðe 1 1Þ ¼ k ln
@x

@s

� �
� ln

@ŝ

@s

� �� �
: (6)

(The difference between Eqs. 5 and 6 is exhibited only when the cell layer

is subjected to extreme deformation. We have verified that the choice of

Eq. 5 instead of Eq. 6 would yield results essentially indistinguishable from

those presented in this article.)

Any deformation of a cell is accompanied by an active remodeling of the

cytoskeleton, which generally results in a viscoelastic stress-strain response

(29). In Eqs. 5 and 6 it is implicitly assumed that the stretching modulus k of

the cell layer is time independent and hence the cell layer responds in-

stantaneously and passively to the forces generated on it. This assumption is

made due to the fact that the timescale of the motion of the layer (order of

hours) is slow compared to the relaxation time of single-cell deformation,

which is of the order of tens of seconds (30). Therefore, one should think of k

as the residual stretching modulus of the layer after cytoskeleton relaxation.

Material growth and decay of the layer can be described using the growth

gradient gðt; sÞ ¼ @ŝ=@s; which obeys

@gðt; sÞ
@t

¼ r gðt; sÞ; (7)

where the growth rate r may generally depend on s, t, but also e or g itself. If

one assumes that the growth rate is time and strain independent, the solution

of Eq. 7 with initial condition gð0; sÞ ¼ 1 is easily obtained as

gðt; sÞ ¼ erðsÞt
: (8)

From Eqs. 4, 6, and 8 we obtain resulting equation:

@x

@s

@x

@t
¼ k

b

@

@s
ln

@x

@s

� �
� rðsÞt

� �
: (9)

We assume that the location of the left boundary of the cell layer (at

s ¼ 0) is fixed whereas the right boundary (at s ¼ 1 in dimensionless units)

is free to move, and that the force applied at the right boundary is constant

and equal to F. Thus, the initial and boundary conditions are, in view of

Eq. 5,

xð0; sÞ ¼ s; 0 # s # 1

xðt; 0Þ ¼ 0; 0 # t

@xðt; 1Þ
@s

¼ eðF=kÞ1rð1Þt
; 0 , t : (10)

Note that the constants b, k, and F appear in the problem only as the ratios

k ¼ k=b (units of length squared divided by time) and f ¼ F=k (dimension-

less). The differential equation Eq. 9 with boundary and initial conditions

Eq. 10 can be solved numerically using finite difference methods (see Appendix).

FIGURE 1 (A) Sketch of the experimental setup for

monitoring in vitro mobility. Confluent IEC-6 cells were

plated on glass coverslips, scraped with a cell scraper, and

then mounted on the stage of an Olympus 1X71 (Tokyo,

Japan) inverted microscope warmed to 37�C. Fresh me-

dium was continuously perfused across the cells. Differ-

ential interference contrast images were obtained every

5 min. (B) Schematic representation of the cell layer as

one-dimensional continuum (only one side of the wound

is shown): i), initial state; ii), hypothetical state at time

t accounting for growth but not deformation; iii), true

configuration of the layer at time t.
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Constant growth rate

If the growth rate r is spatially independent, the problem of Eqs. 9 and 10

further simplifies as

@x

@t
¼ k

@
2
x

@s
2

@x

@s

� ��2

xð0; sÞ ¼ s; 0 # s # 1

xðt; 0Þ ¼ 0; 0 # t

@xðt; 1Þ
@s

¼ e
f 1 rt

; 0 , t : (11)

Fig. 2 gives an example of the typical features of solutions of Eqs. 11 with

a constant, positive growth rate. The initial motion is dominated by the force

applied by the lamellipodia on the edge of the layer. The velocity of the edge

is decreasing as a result of increasing tension and increasing adhesion in the

extended layer. The cells in the interior of the layer remain static for a time

period proportional to their distance from the edge. At later times the motion

of the layer becomes dominated by cell proliferation and the velocity of the

edge increases again. The tensile strain decreases and eventually becomes

positive. At this stage, the proliferation of new material, which pushes the

old cells out of the way, is the driving force behind the motion of the layer.

Calibration in the absence of proliferation

In the case of migration of enterocytes on glass coverslips considered in this

article, we have observed that the proliferation rate is very low. In this case,

r can be neglected and the problem Eq. 11 becomes

@x

@t
¼ k

@
2
x

@s
2

@x

@s

� ��2

xð0; sÞ ¼ s; 0 # s # 1

xðt; 0Þ ¼ 0; 0 # t

@xðt; 1Þ
@s

¼ e
f

0 , t : (12)

The differential equation in Eq. 12 has an equilibrium (i.e., time-

independent) solution xðsÞ ¼ efs that obeys the prescribed boundary con-

ditions (but not the initial condition). This solution is a limiting case of the

time-dependent solution and it implies that the maximum distance the right

edge of the layer can reach is xmax ¼ ef:

RESULTS

The parameters k and f of the model in Eq. 12 can be

determined by calibration with experimental data obtained in

vitro. In the experiment described in Cetin et al. (5), IEC-6

cells were grown on glass coverslips to 100% confluence,

serum-starved for 12 h, scraped with a cell scraper, and then

transferred to the stage. Pictures were taken every five min-

utes for 17 h to record the migration profiles of the cells. Fig.

3 shows examples of such pictures. We used the recorded

pictures of migrating cells to track the motion of selected 10

cells located near the edges and in the interior of the layer.

The cells are marked L1-L10 (in the lower right layer) and

U1-U10 (in the upper left layer) (see Fig. 4). The distance

traveled by the cells was measured in the direction perpen-

dicular to the axis of the wound.

From these measurements, we fit the average position of

the group of cells L1-L5 in the interior of the lower right

layer and the group of cells L6-L10 near the edge. The model

parameters were estimated using numerical solution of Eq.

12 and a routine nonlinear unconstrained minimization of the

least square error. The distance of the wound edge from the

fixed edge of the cell layer was assumed to be very large com-

pared to the gap size and cell diameter. In our optimization

code, we observed that the results are insensitive to this value

(data not shown). The following values were obtained for the

motion of the lower edge:

FIGURE 2 Generic behavior at constant proliferation

rate. Here r ¼ 0:2; k ¼ 1; and f ¼ 0:4: (A) Graphs of the

position x of cells with s ¼ 0.25, 0.5, 0.75, 1 as a function

of time (in hours). (B) Resultant force f in the layer versus

position s for t ¼ 0, 2, 4, 6, 8 h. (C) Velocity of the edge as

a function of time (in hours).

3748 Mi et al.

Biophysical Journal 93(11) 3745–3752



k ¼ 5:92 mm
2
=h; f ¼ 0:86:

We repeated the data fitting for the upper left layer where

we averaged the position of cells U1-U5 located in the

interior of the layer and the position of cells U6-U10 located

near the edge. We obtain the following values:

k ¼ 3:87 mm
2
=h; f ¼ 1:04:

The averages over both layers are k ¼ 4.9 mm2/h and

f ¼ 0.9. As shown in Fig. 5, the velocity of the cells at the

edge is gradually decreasing whereas the velocity of cells in

the interior of the layer is initially zero and then slowly in-

creasing.

Dependence of migration on
integrin concentration

The adhesion of cells to the substrate and the force exerted

by lamellipodia are modulated by adhesion receptors, such

as integrins, that connect the cell to the extracellular matrix.

Integrin concentration and integrin-ligand affinity have been

found to affect the speed of migrating cells (12).

This model allows us to investigate the effect of integrins

on migration speed by examining the dependence of the

constants b, k, and F on integrin concentration I. At this time

this dependence is not known, however, the following assump-

tions appear reasonable: i), the adhesion constant b should be

proportional to I, ii), the lamellipod force F should be pro-

portional to
ffiffi
I
p
; and iii), the stretching modulus k of the layer

should be independent of I. The difference in scaling be-

tween b and F stems from the fact that adhesion is generated

on the entire cell-matrix contact surface, whereas the force of

the lamellipod is only exerted at the cell edge. Since our one-

dimensional model represents a two-dimensional layer of

cells, b is proportional to the area of contact between the cell

and the substrate whereas F is proportional to length of the

cell edge. Remarkably, under these simple assumptions the

graph of migration velocity versus integrin concentration in

Fig. 6 shows the characteristic bell-shaped curve with low

velocity corresponding to low or high integrin concentration

and maximum velocity corresponding to intermediate in-

tegrin concentration (12,13). This observation is not meant to

replace the detailed and quantitatively accurate model of the

dependence of cell speed on adhesion (22), but rather to give

some insight into the possible causes of observed velocity

variability, such as may occur during inflammatory states.

DISCUSSION

The model developed in this article accounts for the three

effects influencing cell migration, i.e., the driving force of

FIGURE 3 Snapshots of IEC-6 cells

migrating on a glass coverslip at (A) t¼
0, (B) t ¼ 5 h, and (C) t ¼ 10 h. The

tracked cells are labeled as U1. . .U10

and L1. . .L10.

FIGURE 4 The observed paths of cells U1. . .U10 and

L1. . .L10 of Fig. 3. The positions of edges at t ¼ 0 are

indicated by solid lines. The direction of motion, along

which traveled distances were measured, is shown as dash-

dotted line.
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lamellipodia, the motion impeding adhesion between cells

and the substrate, and the elasticity of the cell layer. In the

case of constant proliferation, the model predicts increasing

velocity of the wound edge. In the case of negligible pro-

liferation the model predicts that the velocity of cells at the

edge is initially greater and decreases with time, as is seen ex-

perimentally (31). This prediction differs dramatically from

predictions of models based on reaction-diffusion equations

in which the motion of the edge has constant or gradually

increasing velocity. The velocity of cells in the interior of the

layer is initially zero and then slowly increases, again in

accord with observations. In contrast, none of the existing

reaction-diffusion models makes predictions about the mi-

gration speed of cells in the interior of the layer.

One important consequence of the model is that in the

absence of proliferation the maximum distance traveled by

any edge is finite. It follows that if the gap of the wound is

sufficiently large, the remaining enterocyte layer may not be

able to close the wound. This phenomenon was observed

experimentally in studies of enterocytes cultured on glass

coverslips (see Fig. 7) and is not easily explained by a model

based on reaction-diffusion equations.

At its present form the model yields ratios of the quantities

of interest (k characterizes the ratio of the stretching modulus

k of the layer to the adhesion coefficient b, and f is the ratio

of the force F exerted by lamellipodia to the stretching

modulus k) and hence the model enables us to make relative

comparisons between these effects. To obtain true magni-

tudes of F, b, or k, one would need to perform an inde-

pendent measurement of at least one of the three quantities.

Prass et al. (32) have measured the cell stall force for ker-

atinocytes using atomic force microscopy catilever and ob-

tained a value ;40 nN. If enterocytes migrating on glass

coverslips exert similar force, then the corresponding value

of the cell-layer stretching modulus k would be ;44 nN and

adhesion/friction constant b would be ;0.11 h nN/mm2.

Two different fits were performed to determine the co-

efficients k and f, one for the lower and one for the upper

edge of the wound, yielding two different sets of parameters.

There are several possibilities as to likely sources of this

difference. One possibility is that the coverslip was locally

inhomogeneous in adhesion properties, which would have

affected both k and f constants. Other sources of discrep-

ancy could be local inhomogeneities in initial cell density or

cell maturity.

The model described herein is sufficiently general in that it

allows for more general growth rate laws to be incorporated.

One extension would be to implement spatially variable

growth rate rðsÞ. There are indications that the proliferation

is increased in the area near the edge shortly after creation

of the wound. Another possibility is to make growth rate

FIGURE 5 Dependence of traveled distance (mm) on time (h) for cells in

(A) the upper left layer and (B) the lower right layer. Average distance

traveled by cells in the direction perpendicular to the wound edge is shown

as hollow circles (U1-U5 or L1-L5) and triangles (U6-U10 or L6-L10).

Computed predictions are shown as solid (edge), dashed, and dotted curves.

FIGURE 6 Dependence of edge migration velocity (mm/h) on integrin

concentration for three different time instants: t ¼ 2 h (s), t ¼ 4 h (3),

t ¼ 6 h (n). Here r ¼ 0; k ¼ 4:90; and f ¼ 1:16:
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dependent on the stretch in the layer—stretched layer may be

more likely to reproduce than compressed, crowded one.

In summary, we have developed a simple model that

accurately describes the migration of the enterocyte cell layer

(both at the edge and in the interior) in terms of three char-

acteristics: the adhesion of cells to substrate, the elasticity of

the layer, and the force exerted by lamellipodia. Fitting of the

model to measured data enables one to determine the mag-

nitude of each of these characteristics as a function of the

treatment conditions (such as the concentration of LPS).

It is important to point out that although this model is clearly

applicable to the situation of scrape wounding of enterocyte

monolayers on glass coverslips in vitro, it also provides for

useful—albeit partial—information regarding the applicabil-

ity to in vivo wound healing. For instance, although wound

healing in vitro occurs in three dimensions and may be in-

fluenced by the presence of inflammatory cells that could

serve to modify the rate and extent of healing that occurs, we

have recently demonstrated that the fundamental forces that

drive wound healing within the intestine in vivo bear striking

similarity to the in vitro situation described in this study. The

similarities between in vitro migration of enterocytes and in

vivo healing as occurs in NEC include a dependence on intact

gap junction mediated cell-cell contacts for migration to occur

(33), the inhibition of migration by inflammatory cytokines

(e.g., IFN-g) (33), and nitric oxide (34), and marked inhibition

by proinflammatory macrophages that may be present within

the subepithelial lamina propria (R. Anand, C. Leaphart, C.

Rippel, and D. Hackam, unpublished data). Moreover,

although proliferation of enterocytes must occur to replace

cells that are lost due to damage, the role of enterocyte

proliferation in the modulation of mucosal healing is signif-

icantly more important during chronic inflammatory states as

opposed to the acute inhibition of healing as occurs during

exposure to LPS (C. Leaphart, R. Anand, and D. Hackam,

unpublished data). Taken in aggregate, we submit that the

current model provides important insights into enterocyte

migration in vitro with useful correlates for the in vivo

situation, both under basal conditions and during conditions

of intestinal inflammation such as NEC.

APPENDIX

We present the numerical method used to solve Eq. 9. Let 0 ¼ s1,

s2, � � �,sN ¼ 1 be a subdivision of (0,1), such that sj11 � sj ¼ 1=N ¼ Ds;

the mesh size. Let Dt.0 be a given step size and let ti ¼ iDt: Let xj
i

denote the numerical approximation of xðti; sjÞ Equation 9 is rewritten as:

@x

@t
¼ k

ð@2
x=@s

2Þ
ð@x=@sÞ2

� r9ðsÞt
@x=@s

� �
: (A:1)

Using the finite difference approximations of the partial derivatives of x, we

obtain the following combined implicit/explicit scheme that is second order

in space and first order in time (note that explicit difference has been used in

the denominator and implicit difference in the numerator):

x
j

i11 � x
j

i

Dt
¼ k

4ðxj11

i11 � 2x
j

i11 1 x
j�1

i11Þ
ðxj11

i � x
j�1

i Þ
2 � 2Dsr9ðsjÞti11

xj11

i � xj�1

i

 !
;

i $ 0; 2 # j # N � 1:

(A:2)

After rearranging the terms, we obtain:

M
j

ix
j 11

i 11 � ð2M
j

i 1 1Þxj

i 11 1 M
j

ix
j�1

i 11

¼ �x
j

i 1 u
i

j; i $ 0; 2 # j # N � 1;
(A:3)

with Mj
i and uj

i are as defined below:

M
j

i ¼
4kDt

ðxj 11

i � x
j�1

i Þ
2

u
j

i ¼
2kDtDsr9ðsjÞti 1 1

x
j 11

i � x
j�1

i

: (A:4)

The initial condition is simply xj
0 ¼ sj and the boundary conditions yield:

x
1

i ¼ 0; x
N

i ¼ x
N�1

i 1 Dse
f 1 rð1Þti

; i $ 0: (A:5)

The solution xj
i11 at the time step i 1 1 can be found by solving the linear

system

A

x2

i11

x3

i11

..

.

x
N�2

i11

x
N�1

i11

0
BBBBBB@

1
CCCCCCA
¼

�x
2

i 1 u
2

i

�x
3

i 1 u
3

i

..

.

�x
N�2

i 1 u
N�2

i

�x
N�1

i 1 u
N�1

i �M
N�1

i ½Dse
f 1rð1Þti 11

�

0
BBBBBBB@

1
CCCCCCCA
;

(A:6)

where

FIGURE 7 Enterocyte migration is incomplete under

conditions of excessive wound formation. IEC-6 cells were

plated on glass coverslips, scraped to induce a wound, then

allowed to undergo wound closure over the ensuing 24 h.

The position of the wound edge (A) at the beginning of the

experiment and (B) 24 h later is indicated by the dotted

line. In panel B the dark cells in the wound have undergone

apoptosis.
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