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The computational sampling of rare, large-scale, conformational
transitions in proteins is a well appreciated challenge—for which
a number of potentially efficient path-sampling methodologies
have been proposed. Here, we study a large-scale transition in a
united-residue model of calmodulin using the ‘‘weighted ensem-
ble’’ (WE) approach of Huber and Kim. Because of the model’s
relative simplicity, we are able to compare our results with brute-
force simulations. The comparison indicates that the WE approach
quantitatively reproduces the brute-force results, as assessed by
considering (i) the reaction rate, (ii) the distribution of event
durations, and (iii) structural distributions describing the hetero-
geneity of the paths. Importantly, the WE method is readily applied
to more chemically accurate models, and by studying a series of
lower temperatures, our results suggest that the WE method can
increase efficiency by orders of magnitude in more challenging
systems.

transition path � path sampling � weighted ensemble �
conformational transition

I t has long been appreciated that conformational changes in
proteins are critical to biological function. Examples including

allosteric proteins like hemoglobin, enzymes like adenylate
kinase, signaling proteins like calmodulin, and motor proteins
like myosin are only the most famous textbook cases (1). The
dynamic nature of biological processes observed from the organ
level to the intracellular level is equally evident at the molecular
level.

Traditional molecular simulations are limited to �100 ns (2),
making them inadequate to the task of studying large confor-
mational transitions in macromolecules, which may occur on
microsecond to millisecond time scales or beyond (3). Yet, the
situation is actually worse than it first appears: even if such long
simulations could be achieved, the observation of a single
transition event would hardly be a full scientific description of the
process. Because structural transitions are driven in part by
thermal fluctuations, some degree of variability among events
must be expected, in turn requiring the observation of many
events to draw statistically satisfactory conclusions. Indeed, a key
unanswered question is, What degree of variation exists in
biological transition dynamics? Experiments are only beginning
to probe the details of transition variability (4). Therefore, the
present work maintains a statistical viewpoint (5–8) as we
explore pathways and variability in long-time protein dynamics.
Such a statistical outlook has most famously been exploited in
studies of protein folding paths (e.g., refs. 9–12).

Three basic approaches to the problem of long-time macro-
molecular dynamics have been explored by a number of inves-
tigators. Coarse-graining is probably the oldest strategy, dating
from the very earliest molecular simulations (13, 14). By reduc-
ing the number of degrees of freedom, coarse-grained models of
proteins can drastically reduce the intrinsic cost of simulating a
time step, as well as increasing the duration of each step. The
strategy has been pursued for many different problems over the

years from protein folding to aggregation to conformational
change (8, 15–27). Although coarse-grained models fail to
capture atomistic detail and may have limited biochemical
accuracy, recent work may permit the use of simplified ensem-
bles in accelerating atomistic sampling (28, 29).

A second approach pursues a severe discretization of
conformation-state space that enables the use of master-
equation stochastic kinetics (30–32). Although an exact kinetic
description can be obtained, a comprehensive and accurate
discretization of configuration space is required. In other words,
all states must be known with equilibrium probabilities and
transition rates. Thus, at present, such a description is limited to
cases where rather complete sampling can be obtained by some
other means.

The third strategy, path sampling, is of greatest relevance to
the present work. Path sampling approaches (5–7, 33–42) can, in
principle, employ models of any level of detail, without approx-
imation to the correct statistical mechanics. The potential for
efficiency in these approaches stems from an extreme separation
of time scales: rare events are rare because they are infrequent,
not because the events are slow. As shown in Fig. 1, the duration
of an event itself (denoted here as tb) typically is orders of
magnitude less than the associated waiting time between events
(i.e., the first passage time or inverse rate k�1), so that tb �� k�1

(5, 43). Path-sampling approaches make practical use of this
separation by focusing computer resources exclusively on rare
transition events, as opposed to random equilibrium motions
that prove unproductive of transitions. We note that a number
of ad hoc path-generating approaches have been developed for
biological systems (38, 44–51), but these do not lead to properly
distributed path ensembles or time scales. Many earlier efforts
have also been directed to determining single, optimal paths (50,
52–58). Path-sampling approaches, it should be noted, have
recently been applied to atomistic models of proteins and nucleic
acids (38, 41, 42).

Despite these important studies, a critical question remains:
Do the path sampling methods work? That is, do they yield
unbiased results that would be obtained with sufficient resources
by means of brute-force simulation? Although the question has
been answered in the affirmative for some toy models (36, 43, 59,
60), molecular systems include major difficulties not present in
simpler cases. The present study appears to be unique among
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path-sampling investigations of proteins because we verify the
results by comparison with brute-force simulations.

We study conformational transitions in a ‘‘double-native’’ Go�
model introduced in ref. 8 and since adapted to other contexts
(61–63). It is a united-residue model of calmodulin’s N-terminal
domain constructed to be stable in two highly distinct experi-
mentally determined conformations (8), one corresponding to
the calcium-bound state (Holo) and the other being calcium-free
(Apo). These structures are depicted in Fig. 1. Despite its
simplicity, the 72-residue model possesses 72 � 3 � 6 � 210
degrees of freedom and incorporates the basic conformational
complexity of a protein. Calmodulin itself is an ideal system for
our study: It is a key signaling protein involved in many cellular
processes (e.g., ref. 64), it is small, and it exhibits a particularly
large structural rearrangement.

We employ the ‘‘weighted ensemble’’ (WE) approach (36) to
generate an unbiased ensemble of paths for the calmodulin
transition and, simultaneously, the reaction rate. Previously, WE
sampling has been applied to study diffusion effects in binding
(36, 65) and the folding of a simple protein model (66). The WE
method was chosen to investigate conformational transitions for
three reasons. First, among path sampling algorithms, it is
particularly elegant and straightforward to implement. Second,

the WE method appears to be particularly well suited for
sampling multiple, structurally distinct pathways in a statistically
correct way. Third, it yields both a path ensemble and the
reaction rate from a single simulation. The WE method embod-
ies a strategy of replicating success (‘‘enrichment’’), which had
earlier been introduced in the construction of polymer config-
urations (ref. 67; also see ref. 68). As illustrated in Fig. 2, the
strategy has three essential steps and maintains a rigorous
statistical weighting throughout: (i) initiation of multiple trajec-
tories; (ii) replication of trajectories that advance along a
progress coordinate; and (iii) occasional pruning of low-weight
trajectories. The pruning ensures manageable computational
cost. Issues surrounding the selection of a progress coordinate,
which need not be a reaction coordinate in the traditional sense,
are discussed in detail below.

Our data show that WE path-sampling of calmodulin transi-
tions provides excellent quantitative agreement with brute-force
results, which include substantial pathway heterogeneity. Be-
cause the WE simulations consume a fraction of the brute-force
simulation time, they appear to be a promising choice for the
study of more realistic protein models.

Results
To validate the WE method, we first considered the temperature
kBT/� � 0.5 as in the previous study (8). As a reference for
comparison, brute-force simulations were run on several CPUs,
yielding 373 independent transition events from the Apo to Holo
structure of our model of calmodulin. The total cost of these
simulations is equivalent to �18 months of single-processor CPU
time (Xeon, 3.2 GHz).

WE simulation, by contrast, required considerably less com-
puter time, although identical code was used for running the
embedded dynamical Monte Carlo (MC). The WE simulation
was run on a single CPU (Xeon, 3.2 GHz) for 4 weeks, yielding
33,576 correlated transitions. We made the simple choice of
using the distance RMSD (DRMSD) [see supporting informa-
tion (SI) Text] (69) to the Holo state (DRMSDHolo) as the
progress coordinate and cut this one-dimensional space into 40
bins, with M � 40 simulations allowed in each bin. After every
� � 72,000 MC steps, the embedded brute-force simulations are
paused, then combined and split without introducing bias, as
described in Materials and Methods (also see Fig. 2).

Distribution of Event Durations. We first studied the distribution of
transition event durations �b(t) (43, 70). The duration of a
transition event is a short time scale characteristic of the reaction
pathway itself (by contrast to the more common first-passage
time). It is defined as the time elapsed from the last exit from the
initial/reactant state until the first entry to final/product state
(see Fig. 1). The distribution of these durations is the simplest
quantitative measure of the heterogeneity expected in the
ensemble of transition events. For conformational change in
calmodulin, transition event durations were calculated based on
a reactant state defined such that DRMSDApo � 1.5 Å and the
product state by DRMSDHolo � 1.5 Å.

In Fig. 3, we show the WE simulation result for �b(t) compared
with that from brute-force simulation. They match well. Fig. 3
Inset shows results from the two methods using equal quantities
of CPU time. It is clear that the WE method is more efficient
than the brute-force simulation even at the relatively high
temperature kBT/� � 0.5.

The Transition Rate. For chemical and biological reactions and
transitions, the reaction rate k is one of the most important
quantities and is impossible to obtain by brute-force simulation
if the first-passage time is long (71). Distinguished from other
path-sampling methods, WE simulation yields not only the path
ensemble but also the reaction rate simultaneously. In WE

Fig. 1. The N-terminal domain of calmodulin undergoes a large-scale struc-
tural change when it binds calcium. (a) The calcium-free Apo structure (1CFD)
and the calcium-bound Holo structure (1CLL) are shown. (b) A sample trajec-
tory from the simulation of the ‘‘double-native’’ Go� model of calmodulin
exhibits several transition events, one of which is detailed in c. The approxi-
mate duration of the event tb is indicated by the arrow.
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simulation, after a transient period reflecting the finite event
durations, the average current arriving to the product state
(Holo) gives the transition rate. For kBT/� � 0.5, we obtained
kWE � (1.9 � 0.4) � 10�10 per MC step, which is in excellent
agreement with the brute-force result, kBF � (2.1 � 0.2) � 10�10

per MC step.

Structural Cross-Sections of the Path Ensemble. We also compared
structural properties of the path ensembles generated by the two
methods, following the approach taken in our previous work (8).
Specifically, we examined the distributions of intermediate struc-
tures isolated along several ‘‘cross-sections’’ of a two-
dimensional reaction surface. The two coordinates of this sur-
face—each a distance between residues located at the ends of
helices—were chosen to assay heterogeneity in the path ensem-
ble (8). As shown in Fig. 4a, five cross-sectional ‘‘planes’’ were
placed orthogonally to a straight line drawn between the two

states. Histograms were made of the position, relative to the
center line, at which each trajectory first crossed a given plane.

These cross-sectional histograms were produced by both sim-
ulation methods and again compare favorably. They also dem-
onstrate the structural heterogeneity in the path ensemble of this
simple model system. Fig. 4 b–e shows the distributions, with the
error bars representing an �90% confidence interval. This
sensitive structural analysis further underscores the accuracy of
the WE method.

Efficiency. The previous results indicate the accuracy of the WE
approach—i.e., that it properly corrects for bias as claimed.
Nevertheless, the ‘‘bottom line’’ measure of a path-sampling
approach is its efficiency, and especially its potential for effi-
ciency in more chemically realistic and larger systems. We
measured efficiency by calculating the ratio of single-processor
CPU times required by WE and brute-force simulations to
estimate the reaction rate with a given statistical precision.
Similar results are found if the average event duration is used.

By studying a range of lower temperatures to assay the promise
of WE simulation in more challenging systems, we found very
encouraging results. First, for the temperature studied above
(kBT/� � 0.5), we found a modest efficiency gain of somewhat
more than a factor of five; that is, WE simulation requires less
than one-fifth of the CPU expenditure for a given level of
statistical precision. However, as the system becomes more
difficult to simulate by brute-force simulation at lower values of
kBT/�, the WE approach becomes relatively more efficient.
Equally importantly, the WE simulations require essentially the
same overall amount of CPU time regardless of the temperature.
For kBT/� � 0.45, we found an efficiency gain of a factor of �15,
and for kBT/� � 0.4, it increased to �100.

In greater detail, for kBT/� � 0.45, 3 weeks of WE simulation
yielded 32,464 correlated transition trajectories, along with the
estimate kWE � (6.4 � 1.3) � 10�11 per MC step. By contrast 30
months of brute-force simulation generated 172 trajectories and
kBF � (7.4 � 1.2) � 10�11 per MC step. The distributions of event
durations also agree very well. For kBT/� � 0.4, the WE method
gives the reaction rate kWE � (8.4 � 1.8) � 10�12 per MC step
from 3 weeks of simulation, whereas brute-force simulation was
too slow to yield even a single transition event in the time we
allotted to it. However, based on the reaction rate from WE

Fig. 2. Schematic illustration of the WE method, using n � 3 bins and M � 2 simulations per bin following ref. 65. After initiating M trajectories, unbiased
dynamics are simulated for a time �, after which the locations (bins) are checked. Trajectories are split or combined to maintain M trajectories per bin, while
preserving the correct probabilities in each bin. Dynamics are again initiated, and the process is repeated. The box at the lower right shows the corresponding
evolution of the probability histogram.
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simulation and the simple statistics of Poisson processes ex-
pected for brute-force simulation, the efficiency gain can be
estimated as �100. (We also confirmed that such estimation
based on Poisson statistics reproduced the efficiency estimates of
the higher temperatures.)

Use of a Two-Dimensional Progress Coordinate. To investigate
whether the WE simulations for calmodulin were sensitive to the
choice of progress coordinate—and also to explore potentially
useful strategies for more complex systems—we investigated a
two-dimensional progress coordinate. Specifically, we used two-
dimensional bins where the first coordinate was the DRMSDHolo
distance as described in Materials and Methods, and the second
coordinate was DRMSDApo. Our results were essentially indis-
tinguishable from those based on a one-dimensional coordinate
for the kBT/� � 0.5 condition we investigated.

Although using DRMSDproduct as a single coordinate might be
expected to be a fairly robust choice for many systems, generally
one cannot expect a single dimension to be sufficient because
there could be barriers transverse to the chosen coordinate (59)
(i.e., free energy saddle points within a single bin). We further
probes this issue in the next section.

Discussion: Applying WE to More Complex Systems
Whereas WE simulation has proven highly successful in the
present application of a simplified protein model, strategies for

applying the approach robustly in more complex systems are
important to consider. However, before describing such strate-
gies, it should be recognized that the WE algorithm is statistically
correct for sufficiently long simulations regardless of the choice
of progress coordinate. This can be seen heuristically by noting
that, because the WE approach records statistical weights and
does not use a biasing force or potential, unnatural transitions
will only occur rarely and with very low weight. Each full
transition trajectory is simply a concatenation of unbiased
segments with proper statistical weights. Eventually, the impor-
tant transition trajectories will occur, and their weights will
(correctly) dominate the results. In other words, the choice of
coordinate(s) and binning should affect the efficiency of the WE
approach but not its asymptotic correctness.

There are many possible strategies for using for using higher-
dimensional binning while maintaining the overall number of
bins at a practicable level. To be concrete, assume that an initial
one-dimensional progress coordinate, such as DRMSDproduct,
has already been divided into bins. Additional ‘‘sub-bins’’ can be
added that will encourage transitions across possible saddles in
the free energy landscape that may be orthogonal to the initial
coordinate. For instance, the first bin (only) can be divided into
sub-bins based on DRMSD1, the distance from the starting
structure in the first bin. Once a trajectory arrives in the second
bin, a set of sub-bins there can be defined based on DRMSD2,
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the distance from the first configuration recorded in bin 2. By
repeating this process, ‘‘transverse’’ sub-bins are always defined
locally to maximize the chances for transverse motion with each
bin.

Other strategies may also be useful. For instance, one could
use just a single (‘‘reactant’’) structure and the corresponding
DRMSDreactant as an initial coordinate, along with orthogonal
sub-bins defined on-the-fly, as above. In other words, one can let
the simulation find the product state(s). Furthermore, one can
use bins of nonuniform sizes, possibly adjusted on-the-fly, or
populate bins with different numbers of particles—and still
maintain conformity with the statistical assumptions of the WE
method.

The main point is that there is enormous flexibility to con-
struct structurally suitable bins. We believe that this f lexibility
will ultimately lead to robust strategies suitable for a wide range
of biomolecular systems.

Conclusions
We have applied the WE approach of Huber and Kim (36) to the
study of a protein conformational transition and shown that it is
a remarkably straightforward and successful approach. Because
we used a tractable united-residue model for a 72-residue
domain of calmodulin (8), we verified the quantitative correct-
ness of the results, by comparison to brute-force simulations. The
WE results were also obtained in a fraction of the brute-force
simulation time. To our knowledge, no previous path-sampling
study of a nontrivial protein model performed such comparisons.
Furthermore, efficiency relative to brute-force simulation was
found to increase dramatically as the system was made ‘‘difficult’’
by lowering the temperature, with minimal increase in absolute
cost.

Although our model exhibits substantial heterogeneity in its
transition-path ensemble, it remains an open and fundamental
biochemical question as to whether real proteins are more
precisely tuned. Although proteins need to be robust (insensitive
to many mutations), they are also precisely calibrated to their
specific function. How is the balance achieved?

It is certainly premature to choose a single method as best for
path sampling in biomolecular systems, but the WE approach
appears to be quite promising: (i) it estimates the reaction rate
simultaneously with generating the transition path ensemble; (ii)
it has the ability to sample heterogeneous pathways indepen-
dently, avoiding trapping; and (iii) it is extremely easy to
implement. Additionally, we have described a method that
overcomes a potential weakness of the approach: effective,
low-dimensional progress coordinates can be defined for any
system in a simple, automated way that does not require any
previous knowledge of the system beyond two structures of
interest (or even just one). Of course, the ultimate proof will be
in the future application to more difficult problems, but these
initial, verified results in a nontrivial model mark the passing of
a critical test. We also note that structurally diverse pathways
determined via WE, possibly in simplified models, can be refined
using transition path sampling (59).

Materials and Methods
Path Sampling Using the WE Approach. Full theoretical details of the
WE method are given in the original paper by Huber and Kim
(36), but we briefly summarize the approach. Fig. 2 illustrates the
basic idea—to propagate trajectories along a ‘‘progress coordi-
nate’’ divided into bins by replicating (splitting) those trajecto-
ries that move to empty bins. The progress coordinate is so
named because it need not correspond to a reaction coordinate,
which is a strength of the WE method and elaborated on in
Discussion.

The following steps are used in the WE method.

1. Divide an arbitrarily chosen progress coordinate into N bins
or regions. Each bin will contain no more than M simulations.

2. Initially, M independent trajectories are started from the
same configuration. Each carries a weight 1/M.

3. Run all of the simulations for a fixed time �.
4. Check each bin to see whether it has become populated. If

there are fewer than M trajectories, split the trajectory (or
trajectories) in the bin so that there are M total. The weights
must also be split accordingly. If a bin contains more than M
trajectories, combine the lowest-weight simulations. These
steps are performed without introducing statistical bias (see
ref. 36 for details).

5. Go back to step 3.

In Fig. 2, we show a schematic example of the WE method for
a double-well potential in one dimension. The progress coordi-
nate is divided into n � 3 bins, and each bin will allow M � 2
simulations. After 3�, one trajectory carrying probability P � 1/8
has arrived to the third bin.

For our calmodulin simulations, the progress coordinate was
chosen to be the negative of the DRMSD (see SI Text) (69) to
the Holo state. The simulation starts from the Apo state and
progresses toward Holo. SI Fig. 5 shows the evolution of the
probability in one WE simulation of calmodulin.

Bistable Go� Model of United-Residue Calmodulin (N-Terminal Domain).
One of the authors previously designed a united-residue poten-
tial and associated software to enable brute-force generation of
an ensemble of unbiased large-scale conformational transitions
(full details are given in ref. 8). As in the previous study, only the
N-terminal domain (residues 4–75) of calmodulin was studied
(72). Although a Go� model will not capture realistic biochem-
istry or detailed kinetics, it serves as an ideal system for testing
algorithms. Furthermore, the degree of activation can be tuned
by lowering the temperature as we have done.

In brief, our united-residue ‘‘double-Go� ’’ model (see SI Text
and SI Figs. 6 and 7) (8) consists of �-carbon interaction centers
with pairwise contact interactions. Infinite wells ensure chain
connectivity, and, for nonbonded pairs, standard square-well
(contact) interactions occur below an 8.0-Å cutoff, along with
hard-core repulsions. When two residues are in contact, the
interactions are attractive if the pair is also in contact in either
of the reference structures (Apo and Holo, here) but repulsive
for nonnative contacts. This potential guarantees that the two
native structures (1CFD and 1CLL) have low total energies and
that the transition between the two is possible. The temperature
is given in units of kBT/�, where � describes the well depths. To
make the brute-force simulations run as quickly as possible, the
model was implemented on a fine grid—importantly, with grid
spacing much smaller than any other length scale (8).

We used ‘‘dynamical MC’’ for the calmodulin model; i.e.,
Metropolis MC employing only small, physically reasonable trial
moves. This is a natural choice for any square-well potential; but
furthermore, when small trial steps are used, one can expect
dynamical MC to provide dynamics similar to overdamped
Langevin dynamics (73, 74). The reason is that, considering an
energy landscape consisting of many barrier-separated basins,
small-step dynamical MC should cross barriers according to the
standard Arrhenius factor without any unphysical, large jumps.
In our simulations, the only trial move attempted was a single-
particle translation of one grid-spacing (0.13 Å) to a randomly
chosen grid point among the 26 closest in the surrounding 3 �
3 � 3 cube.

Although neither the model nor the dynamics is fully accurate,
the key point is that both our WE and brute-force simulations
were performed with the identical computer code, ensuring a
fair comparison in a tractable system.
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Error Analysis by Block Averaging. The transition paths generated
by the WE method are correlated, ruling out the use of simple
statistical analyses. We therefore used a standard statistical
block-averaging approach based on that of ref. 75, which is a
reliable algorithm for calculating the statistical errors embodied
in time-correlated data. In brief, one divides the sequence of
data into n blocks and calculates the standard deviation among
the block averages, �n, for the quantity of interest. The length of
blocks is continually increased until the quantity SE � �n/�n
reaches a plateau, which indicates that the blocks have become

significantly longer than any correlation times and yields the
effective standard error (i.e., scale of statistical uncertainty) of
the estimate. All statistical uncertainties and error bars in the
figures are given as �2 SE.

We benefited from many informative discussions on path-sampling over
the years, including those with David Chandler, Mark Dykman, Ron
Elber, Rohit Pappu, and Thomas Woolf. Group members Marty
Ytreberg, Ed Lyman, Artem Mamonov, and Xin Zhang provided helpful
advice. This work was supported by National Institutes of Health Grant
GM070987 (to D.M.Z.).
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