Identification and Characterization of Genes for a Second Anthranilate Synthase in *Pseudomonas aeruginosa*: Interchangeability of the Two Anthranilate Synthases and Evolutionary Implications

DAVID W. ESSAR, †* LEE EBERLY, AYELE HADERO, ‡ AND IRVING P. CRAWFORD§

Microbiology Department, University of Iowa, Iowa City, Iowa 52242

Received 15 September 1989/Accepted 26 October 1989

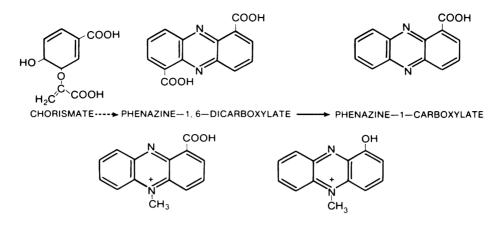
Two anthranilate synthase gene pairs have been identified in Pseudomonas aeruginosa. They were cloned, sequenced, inactivated in vitro by insertion of an antibiotic resistance gene, and returned to P. aeruginosa, replacing the wild-type gene. One anthranilate synthase enzyme participates in tryptophan synthesis; its genes are designated trpE and trpG. The other anthranilate synthase enzyme, encoded by phnA and phnB, participates in the synthesis of pyocyanin, the characteristic phenazine pigment of the organism. trpE and trpG are independently transcribed; homologous genes have been cloned from Pseudomonas putida. The phenazine pathway genes phnA and phnB are cotranscribed. The cloned phnA phnB gene pair complements trpE and trpE(G) mutants of Escherichia coli. Homologous genes were not found in P. putida PPG1, a non-phenazine producer. Surprisingly, PhnA and PhnB are more closely related to E. coli TrpE and TrpG than to Pseudomonas TrpE and TrpG, whereas Pseudomonas TrpE and TrpG are more closely related to E. coli PabB and PabA than to E. coli TrpE and TrpG. We replaced the wild-type trpE on the P. aeruginosa chromosome with a mutant form having a considerable portion of its coding sequence deleted and replaced by a tetracycline resistance gene cassette. This resulted in tryptophan auxotrophy; however, spontaneous tryptophan-independent revertants appeared at a frequency of 10^{-5} to 10^{-6} . The anthranilate synthase of these revertants is not feedback inhibited by tryptophan, suggesting that it arises from PhnAB. phnA mutants retain a low level of pyocyanin production. Introduction of an inactivated trpE gene into a phnA mutant abolished residual pyocyanin production, suggesting that the trpE trpG gene products are capable of providing some anthranilate for pyocyanin synthesis.

We have found that *Pseudomonas aeruginosa* has two anthranilate synthase enzymes; they are homologous, and both have conventional α and β subunits (9b). The two anthranilate synthases have different functions. One participates in tryptophan synthesis; its genes have been designated *trpE* and *trpG* (9b). These genes are quite similar to those of *Pseudomonas putida* (9a). In both pseudomonads, *trpG*, which encodes the β subunit, is cotranscribed with *trpD* and *trpC* in a three-gene operon.

The second anthranilate synthase, previously misidentified as the product of a *trp* gene pair, was obtained on a R-prime plasmid by mating *P. aeruginosa* PAC174 carrying R68.44 with *Escherichia coli* W3110 *tna* $\Delta trpE5$ (8). This R-prime plasmid complements only those *E. coli* auxotrophs blocked in anthranilate synthase, the first enzyme in the tryptophan synthetic pathway. Enzyme assays indicated that both the α and β subunits of anthranilate synthase were produced. The anthranilate synthase-encoding segment of the R-prime plasmid was subcloned into pBR322 (8). DNA sequencing of one of these subclones, pIA14, showed that the genes for the α and β anthranilate synthase subunits were indeed present on the cloned DNA. These genes are adjacent, and their coding sequences overlap by 23 base pairs

§ Deceased 8 October 1989.

(bp) (7). The deduced amino acid sequence for this *P. aeruginosa* small (β , glutamine amidotransferase) subunit differed to a surprising extent from the directly determined amino acid sequence of the glutamine amidotransferase subunit of *P. putida* anthranilate synthase (14). We found that insertional inactivation of the chromosomal version of the cloned β -subunit gene in *P. aeruginosa* did not result in a requirement for tryptophan in low-ammonium medium but instead resulted in cells defective in pyocyanin production. The genes encoding this second anthranilate synthase in *P. aeruginosa* have been designated *phnA* (α subunit) and *phnB* (β subunit) for their role in phenazine synthesis, specifically pyocyanin production in *P. aeruginosa*.


Pyocyanin (Fig. 1) is the characteristic blue-green phenazine pigment produced by *P. aeruginosa*. Pyocyanin is the most thoroughly studied of the phenazine pigments (13, 33). Phenazines are classified as secondary metabolites, i.e., compounds formed during the stationary phase and often having antibiotic properties. Shikimic acid and chorismate have been established as precursors for the phenazines in all cases investigated (33). The hypothetical scheme for pyocyanin biosynthesis (18) is represented in Fig. 1. In this pathway, phenazine-1,6-dicarboxylate is the common precursor of the phenazines. Until now, the identity of the intermediate between chorismate and phenazine-1,6-dicarboxylate has been uncertain; our evidence indicated that this intermediate is anthranilate and that the hypothetical first step is catalyzed by anthranilate synthase.

In this report, the cloning and sequencing of *phnA* and *phnB* from *P. aeruginosa* PAO1 are presented, as well as the

^{*} Corresponding author.

[†] Present address: Root Disease and Biological Control Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Washington State University, Pullman, WA 99164-6430.

[‡] Present address: Department of Pediatrics, SUNY Health Sciences Center at Brooklyn, Brooklyn, NY 11203.

N-METHYLPHENAZINE-1-CARBOXYLATE ------ PYOCYANIN

FIG. 1. Hypothetical scheme for pyocyanin biosynthesis in *P. aeruginosa*. In the synthesis of pyocyanin, phenazine-1,6-dicarboxylate is decarboxylated to yield phenazine-1-carboxylate. N-methylation of phenazine-1-carboxylate yields 5-methylphenazine-1-carboxylate. Oxidative decarboxylation of 5-methylphenazine-1-carboxylate yields pyocyanin (1-hydroxy-5-methylphenazine).

completion of the sequencing of the *P. aeruginosa* PAC174 *phnA* and *phnB* genes. Experiments that implicate this anthranilate synthase in the production of pyocyanin are presented. Evidence is also presented to support the interchangeability of the two *P. aeruginosa* anthranilate synthases.

MATERIALS AND METHODS

Bacterial strains and plasmids. The bacterial strains used are listed in Table 1. Plasmids are listed in Table 2.

Media and antibiotics. Complete medium was Luria broth (LB) (24), and minimal medium was Vogel-Bonner minimal salts medium E (35). For solid LB or Vogel-Bonner minimal medium, 15 g of agar (Difco Laboratories, Detroit, Mich.) was added per liter. 5-Bromo-4-chloro-3-indolyl- β -D-galactopyranoside (X-Gal) plates were used to screen recombinant pUC plasmid derivatives (34, 36). Pseudomonas isolation agar was obtained from Difco. Pseudomonas isolation agar was used to select against *E. coli* donors in bacterial matings with *Pseudomonas* species and to examine pyocyanin production by *P. aeruginosa*. Pseudomonas broth (PB) is a medium developed in this laboratory to maximize pyocyanin production in liquid culture. The composition of PB is 20 g of Bacto-Peptone (Difco), 1.4 g of MgCl₂, and 10 g of K₂SO₄ per liter of distilled water.

Antibiotic concentrations used for *E. coli* were ampicillin at 100 µg/ml, chloramphenicol at 25 µg/ml, kanamycin at 50 µg/ml, tetracycline at 25 µg/ml, mercuric chloride at 15 µg/ml, and cefazolin at 100 µg/ml; for *P. aeruginosa* PAO4290, kanamycin was used at 250 µg/ml; for *P. aeruginosa nosa* PAO1, mercuric chloride was used at 15 µg/ml and tetracycline was used at 100 µg/ml.

DNA isolation, Southern hybridization, and colony hybridizations. Procedures for DNA isolation and Southern hybridization were as previously described (9b). Colony hybridization (12) was used to identify recombinant plasmids carrying the DNA sequences of interest. Stringency washes were the same as for Southern hybridizations.

DNA sequencing. Fragments were usually labeled with ³²P by 3' fill-in labeling with the large fragment of *E. coli* DNA polymerase I and the appropriate α -³²P-labeled radioactive deoxynucleotide triphosphate (4) or by 3' end labeling with terminal transferase and [2',3'- α -³²P]ddATP (37). Occasion-

ally, the 5' ends were labeled with T4 polynucleotide kinase and $[\gamma^{-32}P]ATP$ and then reduced by restriction enzyme cleavage to smaller fragments labeled at one end (23). Labeled fragments were electroeluted from polyacrylamide gels and sequenced by the method of Maxam and Gilbert (23); reaction mixtures were developed by 8% urea-polyacrylamide gel electrophoresis by the method of Sanger and Coulson (25), except the gels contained 25% formamide to minimize compressions. Sequence data were analyzed with the aid of the PCS computer program (17).

Low-melting-temperature agarose ligation. Several of the subcloning experiments were done with DNA fragments isolated from low-melting-temperature agarose gels (31) and as described by Bae et al. (2).

TABLE 1. Bacterial strains

Strain	Genotype or phenotype ^a	Source or reference
Pseudomonas aeruginosa		
PAO1	Wild type	B. Holloway
PAO4290	aphA argF leu-10	H. Matsumoto
PADE E1	TrpE ⁻ Tc ^r	9b
PADE G2	TrpGDC ⁻ Hg ^r	9b
PADE B1	PhnB ⁻ Km ^r exconjugant of PAO4290 with pDE1443	This study
PADE A47	PhnA ⁻ Tc ^r exconjugant of PAO1 with pDE1560	This study
PADE A47E1	PhnA ⁻ TrpE ⁻ Tc ^r Hg ^r exconjugant of PADE A47 with pDE1567	This study
PADE A48	PhnA ⁻ Hg ^r exconjugant of PADE A47 with pDE1595	This study
PADE E1r	Trp ⁺ revertant of PADE E1	This study
Escherichia coli		
JM109	recA1 endA1 gyrA96 thi hsdR17 supE44 rel λ ⁻ Δ(lac-proAB)(F' traD36 proAB lacI ^o ZΔM15)	36
S17-1	[RP4-2 (Tc::Mu)(Km::Tn7) Tra (InCP)] pro hsdR recA Tp ^r Sm ^r	A. Puhler (28)

^a Abbreviations: Hg, mercuric chloride; Km, kanamycin; Sm, streptomycin; Tc, tetracycline; Tp, trimethoprim.

TABI	LE	2.	Plas	mids
------	----	----	------	------

Plasmid	Relevant characteristics ^a	Source or reference
oUC8	Amp ^r , cloning vector	34
oUC9	Amp ^r , cloning vector	34
UC12	Amp ^r , cloning vector	34
UC13	Amp ^r , cloning vector	34
UC18	Amp ^r , cloning vector	36
UC18-XhoI	Amp ^r , pUC18 with a Xhol adaptor inserted into the EcoRI site	
UC19	Amp ^r , cloning vector	9b
DG106	Hg ^r Km ^r	36
DE-Km		B. D. Gambill (10)
	Amp ^r Km ^r , 2.5-kb XhoI-Km ^r fragment from Tn5 inserted into the XhoI site of pUC18- XhoI, high-copy-number source of the XhoI-Km ^r cassette	9b
DE-Tc	Amp ^r Tc ^r , 2.7-kb Bg/II-Tc ^r fragment from Tn5-132 inserted into pUC18-Bg/II, high- copy-number source of the Bg/II-Tc ^r cassette	9b
DE-Hg	Amp ^r Hg ^r 5.2-kb BamHI-PstI Hg ^r fragment from pDG106 inserted into pUC18-XhoI	9b
DE-HgB	Amp ^r Hg ^r , pDE-Hg digested with <i>Hin</i> dIII, Klenow treated, and a <i>Bam</i> HI linker inserted, high-copy-number source of the <i>Bam</i> HI-Hg ^r cassette	This study
SUP205	Cm ^r Tc ^r Mob, mobilizable vector	A D-11 (20)
SUP205-XhoI	Cm ^r Mob, pSUP205 with a <i>XhoI</i> adaptor inserted into the <i>Bam</i> HI site	A. Puhler (29)
IA10		This study
IA10 IA20	Tc ^r , P. aeruginosa PAC174 phnAB	8
	Amp ^r , P. aeruginosa phnB, subclone of pIA10, 1.2-kb KpnI fragment in pUC18	7
IA14	Amp ^r , P. aeruginosa phnB, subclone of PIA10, 1.2-kb BamHI-BglII fragment in pBR322	8
1256	Amp ^r , subclone of pIA10, 1,053-bp PstI-EcoRI phnA fragment inserted into pUC13	This study
1257	Amp ^r , subclone of pIA10, 827-bp BamHI-EcoRI phnA fragment inserted into pUC12	This study
1433	Amp ^r , subclone of pIA10, 1,161-bp <i>PstI phnA</i> fragment inserted into pUC8	This study
1460	Amp ^r , P. aeruginosa trpE	9b
DE1530	Cm ^r Mob, P. aeruginosa trpE-BgIII, 3.0-kb HindIII-Smal trpE-BgIII fragment from	96 9b
DE1567	pDE1528 inserted into <i>Hin</i> dIII- and <i>Eco</i> RV-digested pSUP205 Cm ^r Hg ^r Mob, <i>P. aeruginosa trpE</i> -Hg, pDE1530 digested with <i>Bg</i> /II and the <i>Bam</i> HI-	This study
1326	Hg ^r cassette inserted Amp ^r , 965-bp <i>PstI-ClaI</i> fragment containing the 5' end of <i>P. aeruginosa</i> PAO1 <i>phnA</i>	This study
1514	and approximately 400 bp of upstream DNA inserted into pUC18 digested with <i>PstI</i> and <i>AccI</i> Amp ^r , 4.0-kb <i>KpnI-Eco</i> RI fragment containing the 5' end of <i>P. aeruginosa</i> PAO1	This study
1580	<i>phnA</i> and approximately 3.5 kb of upstream DNA inserted into pUC19 Amp ^r , 2.0-kb <i>Eco</i> RI- <i>Bgl</i> II fragment containing most of <i>P. aeruginosa</i> PAO1 <i>phnA</i> , all	-
1515	of <i>phnB</i> , and 600 bp of downstream DNA inserted into pUC19 Amp ^r , 2.0-kb <i>Eco</i> RI- <i>BgI</i> II fragment from pIA10 inserted into <i>Eco</i> RI- and <i>Bam</i> HI-	This study
IA20-XhoI	digested pUC19, similar in construction to p1580	This study
IA1006	Amp ^r , P. aeruginosa phnB-XhoI, pIA20 digested with SacII and a SacII-XhoI adaptor inserted into phnB	This study
	Tc ^r , pIA10 digested with <i>Kpn</i> I, the 1.2-kb <i>Kpn</i> I fragment removed and replaced with the 1.2-kb <i>Kpn</i> I fragment from <i>Kpn</i> I-digested pIA20- <i>Xho</i> I	This study
DE1412	Amp ^r , 3.7-kb <i>Eco</i> RI <i>phnB-Xho</i> I fragment from pIA1006 inserted into <i>Eco</i> RI-digested pUC9	This study
DE1413	Amp ^r , <i>P. aeruginosa phnB</i> -Km, pDE1412 digested with <i>XhoI</i> and the <i>XhoI</i> -Km ^r cassette from pDE-Km inserted	This study
DE1443	Tc ^r Km ^r Mob, <i>P. aeruginosa phnB</i> -Km, 6.2-kb <i>Eco</i> RI <i>phnB</i> -Km fragment inserted into <i>Eco</i> RI-digested pSUP205	This study
DE1518	Amp ^r , P. aeruginosa phnAB, 4.0-kb KpnI-EcoRI fragment from p1514 and the 2.0-kb EcoRI-HindIII fragment from p1515 ligated into pUC18 digested with KpnI and HindIII	This study
DE1523	Amp ^r , P. aeruginosa phnAB, 6.0-kb SacI-HindIII phnAB fragment from pDE1518 inserted into pUC18-XhoI digested with SacI and HindIII	This study
DE1529	Amp ^r , P. aeruginosa phnA-BgIII, pDE1523 digested with EcoRI-BgIII adaptor inserted into phnA	This study
DE1559	Cm ^r Mob, P. aeruginosa phnAB, 6.0-kb HindIII-XhoI phnAB fragment from pDE1523 inserted into pSUP205-XhoI digested with XhoI and HindIII	This study
DE1560	Cm ^r Tc ^r Mob, <i>P. aeruginosa phnA</i> -Tc, pDE1559 digested with <i>Bam</i> HI and the <i>Bgl</i> II- Tc ^r cassette from pDE-Tc inserted near the 3' end of <i>phnA</i>	This study
DE1585	Amp ^r Hg ^r , <i>P. aeruginosa</i> $\Delta phnA$ -Hg, pDE1529 digested with <i>Bg</i> /II and <i>Bam</i> HI, the 830-bp fragment internal to <i>phnA</i> removed, and the <i>Bam</i> HI-Hg ^r cassette from pDE-Hg inserted	This study
DE1595	Cm ^r Hg ^r Mob, P. aeruginosa ΔphnA-Hg, 10.4-kb XhoI-HindIII ΔphnA-Hg-containing fragment from pDE1585 inserted into XhoI- and HindIII-digested pSUP205-XhoI	This study

^a Abbreviations: Amp, ampicillin; Cm, chloramphenicol; Hg, mercuric chloride; Km, kanamycin; Tc, tetracycline.

Construction of BamHI-Hg^r cassette. The plasmid pDE-Hg (9b) was digested with *Hind*III and treated with the large fragment of DNA polymerase I and the appropriate deoxyribonucleotides, and a *Bam*HI (CGGGATCCCG) linker was inserted; this plasmid is a high-copy-number source of the *Bam*HI-Hg^r cassette and is designated pDE-HgB.

Construction of pDE1433. The construction of pDE1433 used to create a PhnB⁻ Km^r P. aeruginosa mutant is diagrammed in Fig. 2. pIA20 was digested with SacII, and a SacII-XhoI adapter (CCTCGAGGGC) was inserted into phnB to yield pIA20-XhoI. pIA10 was then digested with KpnI, and the 1.2-kilobase (kb) KpnI fragment was removed and replaced with the 1.2-kb KpnI fragment purified from KpnI-digested pIA20-XhoI to yield pIA1006. pIA1006 was digested with EcoRI, and the purified 3.7-kb EcoRI fragment was inserted into EcoRI-digested pUC9 to create pDE1412. pDE1412 was then digested with XhoI, and the 2.5-kb XhoI-Km^r cassette from pDE-Km was inserted to yield the Amp^r Km^r plasmid pDE1413. pDE1413 was subsequently digested with EcoRI, and the purified 6.2-kb fragment was inserted into EcoRI-digested pSUP205 to create the Kmr Tcr Mob plasmid pDE1443.

Construction of pDE1560. The construction of the Cm^r Tc^r Mob plasmid pDE1560 used to create a PhnA⁻ Tc^r P. aeruginosa mutant is illustrated in Fig. 3. p1514 was digested with KpnI and EcoRI, and the 4.0-kb fragment was isolated and purified. p1515 (the 2.0-kb EcoRI-BglII fragment from pIA10 inserted into EcoRI- and BamHI-digested pUC19, similar in construction to p1580) was digested with HindIII and EcoRI, and the 2.0-kb fragment was isolated and purified. The 4.0-kb KpnI-EcoRI fragment from p1514 and the 2.0-kb EcoRI-HindIII fragment from p1515 were then ligated into pUC18 that had been digested with KpnI and HindIII to create pDE1518. pDE1518 was digested with SacI and HindIII, and the 6.0-kb phnA phnB fragment was inserted into pUC18-XhoI digested with SacI and HindIII to yield pDE1523. pDE1523 was then digested with XhoI and HindIII, and the 6.0-kb phnA phnB fragment was inserted into HindIII- and XhoI-digested pSUP205-XhoI (pSUP205 digested with BamHI and a BamHI-XhoI adaptor [GATCT CGA] inserted by ligation) to yield the Cm^r Mob plasmid pDE1559. pDE1559 was subsequently digested with BamHI, and the 2.7-kb BglII-Tcr cassette from pDE-Tc was inserted into the phnA gene to create the Cmr Tcr Mob plasmid pDE1560.

Construction of pDE1567. The plasmid pDE1567 was used to create a *trpE* mutant of *P. aeruginosa* PADE A47. The construction of pDE1567 is outlined in Fig. 4. pDE1530 (9b) was digested with Bg/III, and the 5.2-kb *Bam*HI-Hg^r cassette from pDE-HgB was inserted to yield the Cm^r Hg^r Mob plasmid pDE1567.

Construction of pDE1595. The plasmid pDE1595 was used to create the $\Delta phnA$ Hg^r derivative of PADE A47. The construction of pDE1595 is outlined in Fig. 5. pDE1523 was digested with *Eco*RI, and an *Eco*RI-*BgI*II adaptor (AATTA GATCT) was inserted to yield pDE1529. pDE1529 was subsequently digested with *BgI*II and *Bam*HI to remove an 830-bp fragment internal to *phnA*, and the 5.2-kb *Bam*HI Hg^r cassette from pDE-HgB was inserted to yield the Amp^r Hg^r plasmid pDE1585. pDE1585 was then digested with *Xho*I and *Hind*III, and the 10.4-kb fragment was inserted into *Xho*I- and *Hind*III-digested pSUP205-*Xho*I to create the Cm^r Hg^r Mob plasmid pDE1595.

Transformation and conjugation. E. coli transformations and bacterial matings were done as previously described (9b). We used the method of Simon et al. (28) for the

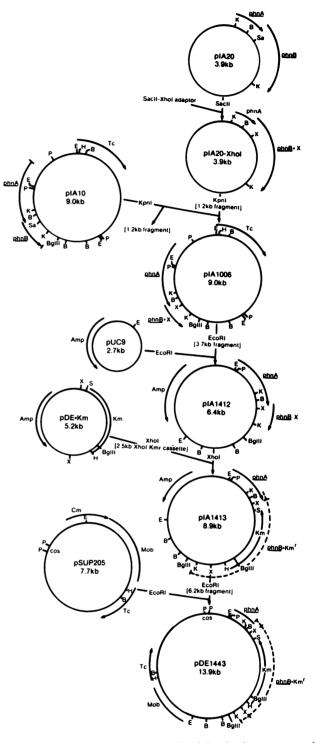


FIG. 2. Construction of pDE1443. The following letters are used to denote different restriction enzyme sites on the maps: B, BamHI; E, EcoRI; H, HindIII; K, KpnI; P, PstI; S, SalI; Sa, SacII; and X, XhoI.

construction of *P. aeruginosa* gene replacement mutants. The insertionally inactivated gene is cloned into a pSUP plasmid vector (28,29) that carries selectable antibiotic resistances and the RP-4-mob site. The RP-4 transfer functions are integrated into the chromosome of the mobilizing *E. coli* donor strain, S17-1. These integrated transfer functions

J. BACTERIOL.

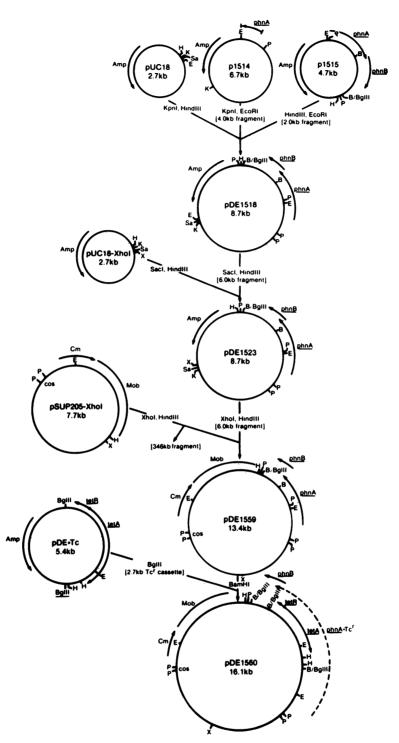


FIG. 3. Construction of pDE1560. The following letters are used to denote different restriction enzyme sites on the maps: B, BamHI; E, EcoRI; H, HindIII; K, KpnI; P, PstI; S, SacI; and X, XhoI.

recognize the *mob* site on the plasmid vector and perform the conjugative transfer into the recipient *Pseudomonas* cells. Donor and recipient cells were grown in liquid culture to the log phase, mixed (1:1) in a sterile Eppendorf tube, centrifuged, and suspended in 200 μ l of LB. Mating mixtures were then spread onto nitrocellulose filters (13-mm diameter, 0.45- μ m pore size) placed on a prewarmed LB agar plate. Matings were incubated for 16 to 20 h at 37°C. The cells were then suspended and diluted in LB and spread onto selective media. Exconjugants were selected for antibiotic resistance on either pseudomonas isolation agar or cefazolin-containing LB agar medium. Since the vector cannot replicate in *Pseudomonas* species, the antibiotic resistance gene must be rescued by homologous recombination. A single crossover leads to insertion of the entire vector into the chromosome and results in a merodiploid having the antibiotic resistances

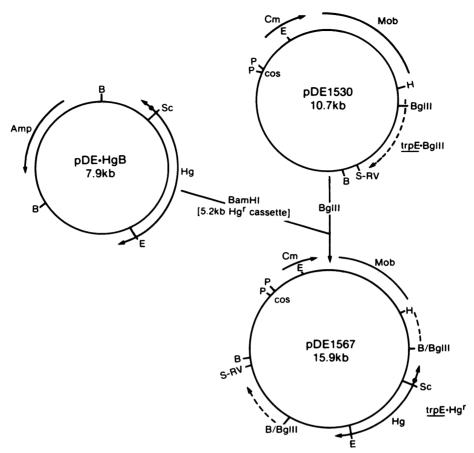


FIG. 4. Construction of pDE1567. The following letters are used to denote different restriction enzyme sites on the maps: B, BamHI; E, EcoRI; H, HindIII; P, PstI; RV, EcoRV; S, SmaI; and Sc, ScaI.

encoded by the vector and the insertional antibiotic cassette. A double crossover (or subsequent resolution of the merodiploid) gives rise to marker exchange. The product strain loses the vector sequences and shows resistance only to the antibiotic inserted into the mutant gene. Southern hybridization (30) was used to show that only the insertionally inactivated gene is present.

Cell extracts and enzyme assays. Preparation of cell extracts by sonication and assays for enzyme activity and protein concentration were as described previously (8).

Pyocyanin quantitation assay. The pyocyanin assay is based on the absorbance of pyocyanin at 520 nm in acidic solution (15, 20). A 5-ml sample of culture grown in PB to maximize pyocyanin production was extracted with 3 ml of chloroform and then reextracted into 1 ml of 0.2 N HCl to give a pink to deep red solution. The absorbance of this solution was measured at 520 nm. Concentrations, expressed as micrograms of pyocyanin produced per milliliter of culture supernatant, were determined by multiplying the optical density at 520 nm (OD₅₂₀) by 17.072 (16).

Preparation of RNA. Total cellular RNA from *P. aeruginosa* was prepared by the method of Aiba et al. (1) with some modifications (2).

RNA slot-blot analysis. RNA samples (30 to 50 μ g) were dissolved in 75 μ l of 50% deionized formamide–6% formaldehyde. Samples were incubated for 1 h at 50°C to denature the RNA and then placed on ice. Gene Screen Plus hybridization transfer membrane (Dupont, NEN Research Products, Boston, Mass.) and a filter pad were then cut to fit a Minifold II Slot-Blotter (Schleicher & Schuell, Inc., Keene, N.H.). The membrane and filter pad were floated on deionized water for 15 min and then placed in the manifold and clamped tightly. Wells of the manifold were washed with $10 \times$ SSC (1 \times SSC is 0.15 M NaCl plus 0.015 M sodium citrate), RNA samples were added to the wells, followed by light suction for 30 to 60 s. The membrane was removed and allowed to air dry. The membrane with the immobilized RNA was then baked at 80°C for 2 h to remove the formaldehyde and placed in a Seal-A-Meal bag.

The hybridization conditions used were the same as for Southern hybridization except that both the prehybridization and hybridization incubations were done at 60° C instead of 65° C.

Analysis of protein sequence data and normalized alignment scores. For the analysis of protein sequence data, we utilized the FATSP program (19) as described by Chang et al. (5). The alignments used were extracted from ones containing more sequences published elsewhere (6). To estimate similarity between homologous or paralogous sequences, we used the method of Doolittle (9). This method is direct, using only identical residues, with a double value given to Cys residues; it imposes a gap penalty (2.5 times the weight of a residue identity) and provides a simple test of homology based on the likelihood of this degree of similarity having occurred by chance (9). The normalized alignment score of Doolittle (9) is approximately 10 times the percentage of identical residues less the gap penalty. For sequences 200 residues long, similarity values greater than 160 indicate that

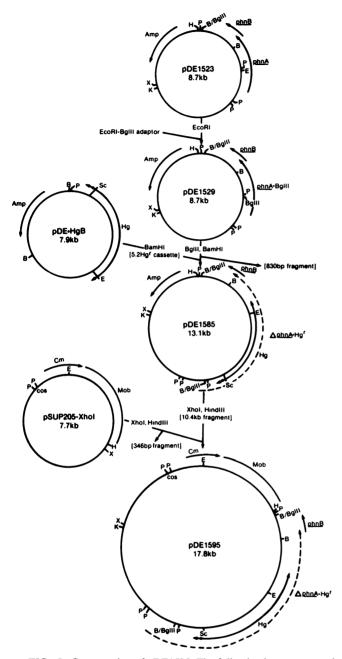


FIG. 5. Construction of pDE1595. The following letters are used to denote different restriction enzyme sites on the maps: B, BamHI; E, EcoRI; H, HindIII; K, KpnI; P, PstI; Sc, ScaI; and X, XhoI.

common ancestry is probable, and values above 280 make it certain; for longer sequences, somewhat lower values are significant (9).

Enzymes and chemicals. All DNA manipulations were performed essentially as described by Maniatis et al. (22) or as recommended by the supplier. Restriction endonucleases were purchased from New England BioLabs, Inc. (Beverly, Mass.), Bethesda Research Laboratories, Inc. (Gaithersburg, Md.), and Boehringer Mannheim Biochemicals (Indianapolis, Ind.). DNA polymerase I, DNA polymerase I Klenow fragment, mung bean nuclease, and calf intestinal alkaline phosphatase were purchased from New England BioLabs. Bacterial alkaline phosphatase was obtained from

Bethesda Research Laboratories. RNase-free DNase I was purchased from Boehringer Mannheim. *N*-lauroyl-sarcosine pronase, X-Gal, and lysozyme were purchased from Sigma Chemical Co. (St. Louis, Mo.). Radiolabeled deoxynucleotide triphosphates were obtained from Amersham Corp. (Arlington Heights, Ill.). Linkers and adaptors were obtained from the University of Iowa Recombinant DNA Core Facility or New England BioLabs. Low-melting-temperature agarose was purchased from FMC Corp. (Philadelphia, Pa.).

RESULTS

Cloning P. aeruginosa phnA and phnB. The phnA and phnB genes from P. aeruginosa PAC174 were cloned, and the DNA sequence of the β -subunit gene, phnB, was obtained earlier (7, 8). We cloned the corresponding genes from P. aeruginosa PAO1 for the following reasons. (i) P. aeruginosa PAO1 is used as the wild-type strain in this and most other laboratories, not P. aeruginosa PAC174, and (ii) the cloned PAC174 phnAB gene pair lacked sufficient DNA upstream from phnA for gene replacement analyses.

We first purified and used as a probe a 1,165-bp *PstI* fragment containing the 5' end of *P. aeruginosa* PAC174 *phnA*, as well as upstream DNA, from plasmid pIA10 (8). This fragment, labeled with ³²P by nick translation, hybridized strongly to *P. aeruginosa* PAO1 chromosomal DNA digests.

We cloned a 4.0-kb KpnI-EcoRI fragment from *P. aeruginosa* PAO1 after electroelution from agarose and ligation into pUC19 DNA that had been digested with KpnI and EcoRI. The ligation mixture was transformed into *E. coli* JM109, and cells containing the desired plasmid, designated p1514, were identified by colony hybridization. This insert contained the 5' end of *phnA* and approximately 3.5 kb of upstream DNA.

We next purified and used as a probe a 1,227-bp KpnI fragment from plasmid pIA20 containing the 3' end of *P. aeruginosa* PAC174 phnA and most of phnB (7). This fragment was labeled with ³²P by nick translation. The probe showed strong hybridization to a 2.0-kb *Eco*RI-*BgI*II fragment from *P. aeruginosa* PAO1 chromosomal DNA digests. This fragment was isolated after electroelution from agarose and cloned into pUC19 digested with *Bam*HI and *Eco*RI in the manner described above for p1514. This plasmid was designated p1580; its insert contained the remainder of phnA, all of phnB, plus approximately 600 bp of DNA downstream from phnB.

The plasmid p1326 had been isolated earlier in this work by shotgun cloning of a *ClaI-PstI* digest of PAO1 chromosomal DNA into pUC18 digested with *AccI* and *PstI*. Cells containing the desired plasmid were identified by colony hybridization with the 1,165-bp *PstI* fragment of pIA10 as a probe. This plasmid was used in the initial sequence comparisons of *phnA* in *P. aeruginosa* PAO1 and PAC174.

Relevant portions of p1326, p1514, and p1580 were sequenced, as well as previously unsequenced portions of pIA10 (subclones p1256, p1257, and p1515). All restriction sites were bridged, and complementary sequences were obtained from both strands.

Sequences of *P. aeruginosa phnA* and *phnB*. The DNA sequences of the *phnA* and *phnB* genes of *P. aeruginosa* PAO1 and PAC174 and their deduced amino acid sequences are presented in Fig. 6. The sequences are nearly identical; nucleotide differences are indicated. The designated start codons were assigned based on alignment with 22 other

PAO1 PAC174	1320 1350 CTGCAGCGTCTGCCGACCCTGCTGCAACTGATCCCGGGACACGGCG
	LQRLPTLLQLIPGHG
1380 GCCTGCTGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1410 1440 CTATACCGAGTGTCTGCGCCCTGTGCCGGCGGTTGCTCTGGCGCCCAGT
G L L R G R L A A D G A E S A	A Y T E C L R L C R R L L W R Q
	1500 1530 CGCCTGGGGTGGGCAGAGCGTCGACTTCCTGCCCGGCGAACTGCACC
	A
SMGESLDELSEELHR	A W G G Q S V D F L P G E L H
	1590 1620
	GCTGCCTCTGGAC <u>TGA</u> GACGGGACATCCATTGCGGCGATCGCGCCCCG G A
LGSMRRMLEILSRQA	LPLD*
1650	1680 1710
ACGGCAGCGGTCGCAATTGGGGGGAAAAGGGGGGGTTACCGATGA T T	TGAACATGCCGTTGCGCGCTAGCGTCGCGC <u>AGG</u> CCAGTCGCCC <u>ATG</u> G
	м
1740 GCGCGAGGAGGTGGCTCGTGAGCGGGGTTGGCTATCGACTGGA G T	1770 1800 Agaaagtctggagtaccgcacgctggtgccggaggcgctgtcgatct
GARRWLVSGVGYRLE G	ESLEYRTLVPEALSI
1830	1860 1890
GGCGCATGGCCGGCGCCAACCGGATGCTGTTCGACTGCTTCGA	1860 1890 CGTGGACAGCAAGGCTGCGCGGCGTAGCGTGGCGATCCTTTCCAGCT
T	
W R M A G A N R M L F D C F D	V D S K A A R R S V A I L S S
WRMAGANRMLFDCFD 1920	VDSKAARRSVAILSS 1950 1980
1920	1950 1980 GTTGAACTCCAACGGACGCGCCTTGCTGGCGCCGCTTGAGCGAGGACT
1920	1950 1980
1920 GCCTGCGCATCGAGTGCTGGGGGGGGGGGGGGGGGGGGG	1950 1950 GTTGAACTCCAACGGACGCGCCCTTGCTGGCGCCGCTGAGCGAGGACT C
1920 GCCTGCGCATCGAGTGCTGGGGGGCGCGCATGTGGTGCTGCGGGC C L R I E C W G R D V V L R A 2010	1950 1950 GTTGAACTCCAACGGACGGCCTTGCTGGCGCCGTTGAGCGAGGGACT L N S N G R A L L A P L S E D A 2040 2070
1920 GCCTGCGCATCGAGTGCTGGGGGGCGCGCATGTGGTGCTGCGGGC C L R I E C W G R D V V L R A 2010	1950 1950 1950 GTTGAACTCCAACGGACGCGCCTTGCTGGCGCCGTTGAGCGAGGACT C L N S N G R A L L A P L S E D A
1920 GCCTGCGCATCGAGTGCTGGGGGGCGCGCATGTGGTGCTGCGGGC C L R I E C W G R D V V L R A 2010	$\begin{array}{c} 1950 \\ 1950 \\ 1950 \\ 1950 \\ 1980 \\ 1980 \\ 1980 \\ 1980 \\ 1980 \\ 1980 \\ 1980 \\ 1980 \\ CTGGCGCCTTCCAACGGACGCGCCCTTGCTGGCGCCCGTTGAGCGAGGGACT \\ C \\ L N S N G R A L L A P L S E D \\ A \\ 2040 \\ CTGGCGCTTCCCCCAGGAAGAGTCGCCATGCCGACGAGTGGCCGACGCC \\ C \\ W R F P Q E E S H A D E W R R \\ \end{array}$
1920 GCCTGCGCATCGAGTGCTGGGGGGGGGGGGGGGGGGGGG	$\begin{array}{c} 1950 \\ 1950 \\ 1950 \\ 1980 \\ 19$
1920 GCCTGCGCATCGAGTGCTGGGGGGGGGGGGGGGGGGGGG	$\begin{array}{c} 1950 \\ 1950 \\ 1950 \\ 1950 \\ 1980 \\ 1980 \\ 1980 \\ 1980 \\ 1980 \\ 1980 \\ 1980 \\ 1980 \\ CTGGCGCCTTCCAACGGACGCGCCCTTGCTGGCGCCCGTTGAGCGAGGGACT \\ C \\ L N S N G R A L L A P L S E D \\ A \\ 2040 \\ CTGGCGCTTCCCCCAGGAAGAGTCGCCATGCCGACGAGTGGCCGACGCC \\ C \\ W R F P Q E E S H A D E W R R \\ \end{array}$
1920 GCCTGCGCATCGAGTGCTGGGGGGGGGGGGGGGGGGGGG	$\begin{array}{c} 1950 \\ 1950 \\ 1950 \\ 1980 \\ 19$

FIG. 6. DNA sequence and deduced amino acid sequence of *P. aeruginosa* PAO1 and PAC174 *phnA* and *phnB* and flanking DNA. The nucleotide and amino acid differences are indicated. Start and stop codons and the presumed Shine-Dalgarno sequences are underlined. *phnA* and *phnB* overlap by 23 bp, not counting the *phnB* Shine-Dalgarno region.

anthranilate synthases (6). The initial 20 amino acids are highly conserved in the small subunit, with four of these residues absolutely conserved in every small-subunit sequence. Several other areas of strong conservation are seen in the small-subunit proteins. *phnA* and *phnB* overlap by 23 bp, not including the *phnB* Shine-Dalgarno region (26). Preliminary results implicate this overlap in translational coupling (data not presented).

Figure 6 also presents the sequences of 285 bp of the 3' end of an upstream open reading frame (ORF), designated ORF1, from *P. aeruginosa*. The entire DNA sequence of ORF1 was obtained in *P. aeruginosa* PAO1, as well as 690 bp of another upstream ORF, designated ORF2. Figure 7 presents the DNA sequences and deduced amino acid sequences for ORF1 and ORF2. A good Shine-Dalgarno sequence (26) exists 10 bp upstream from the suggested start codon for ORF1. The two ORFs overlap by 7 bp, suggesting the possibility of coupled translation. ORF1 has the codon usage characteristic of moderately expressed genes in *Pseudomonas* species (68% of the codons ending in either G or C). Both the DNA and amino acid sequences of ORF1 and ORF2 were used in database searches for similar sequences without finding a significant match.

Analysis of relatedness of the two *P*. aeruginosa anthranilate synthases to homologous enzymes in diverse organisms. In alignment of the amino acid sequences of the β subunits of 17 anthranilate synthase and 5 p-aminobenzoate synthase enzymes from a variety of bacteria and fungi, similarity values range from 206 to 1,000 (6). Table 3 presents the normalized alignment scores (9) derived and condensed from alignments published elsewhere (6) for the β subunits of a selected group of bacteria. TrpG sequences of the enteric bacteria, including Vibrio parahaemolyticus, form a noticeably similar cluster (normalized alignment scores, 591 to 965), with P. aeruginosa PhnB possibly weakly allied to it. Enteric bacterial PabA sequences form a second cluster with TrpG of Bacillus subtilis (Slock et al., manuscript in preparation), P. putida, P. aeruginosa, and Acinetobacter calcoaceticus (similarity values from 570 to 877).

It is interesting that the two *P. aeruginosa* anthranilate synthase β subunits, TrpG and PhnB, are less closely related to each other than to β subunits in other organisms. Both the normalized alignment scores presented in Table 3 and the size and location of gaps used to achieve alignment (data provided on request) indicate that the TrpG proteins of *P. aeruginosa*, *P. putida*, and the somewhat more distantly

	2190 GAACCCTTGCCGGCGCCGGCCGAACCTGCGCGG	2220 CATTGCCCGGACTACCTGTTCCTGGTGC	2250 CCGGAGT
T S F D L A E Q F	E P L P A P A E P A R	HCPDYLFLV	ΡE
TGCTGCTGGACATCGATCACCTGG T	2280 GCGCGCCGGACTTCGCTGCAGGCGTTCGTCCAC A	2310 GATCCGGCCGGGCACGACCGGTTGGCCG	2340 GCCAGCC
	ARRTSLQAFVH	DPAGHDRLA	A S
TGCGCCAGTGTGCCGACGAATTCC A	2370 CATGGCGCCGTGGAGGAGGCTTCCGAGTCGCCG	2400 GGTGGCAGGCGTACGGGCCGGCAACTAC	2430 CAGGTCG
	HGAVEEASESP	VAGVRAGNY	Q V
ACCTGGACGATGCGAGCTTTGCCC	2460 CGCCAGGTAGAGCGCCTGCAGGCCCACGTGAGG A	2490 GGCCGGCGACGTGTTCCAGATCGTACCG T	2520 TCGCGCA
DLDDASFA	RQVERLQAHVR	AGDVFQIVP	SR
	2550 CCCTGGCGGGCCTATCGCCAGTTGTGCCTGCGC	2580 CAACCCCAGCCCGTACCGCTTCTTCCTC	2610 GATGCGG
C S F S M P C A D	PWRAYRQLCLR	NPSPYRFFL	DA
GGGACTTCTGCCTGTTCGGCGCT	2640 TCGCCGGAGTCGGCATTGAAGTACGACGCGGAG	2670 GAGTCGCGAGGTGGAACTCTATCCCATC T	2700 GCCGGCA
GDFCLFGA	S P E S A L K Y D A E		A G
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2730 CCGGGGCGCCATCGATGCGGAACTGGACAATCGG	2760 CCTGGAAGCGGAGTTGCGCCTGGACGCC	2790 CAAGGAGA
Т	R G A I D A E L D N R	т	ĸE
T R P R G R D A C	K G A I D A E L D N K		
TCGCCGAGCACATGATGCTGGTC	2820 CGACCTGGCGCGCAACGATCTGGCGCGCGCGTCTG	2850 CCGCAGCGGTACGCGGCAGGTGCGCGAG C	2880 CATGCTCA
IAEHMMLV	DLARNDLARVC		ML
AGGTCGATCGCTACAGCCACGTG	2910 GATGCACCTGGTCTCGCGCGTGGCTGGCGAACT	2940 GCATGGCGAACTGGATGCGCTGCATGCC C	2970 CTACCGTG
K V D R Y S H V	MHLVSRVAGEL	. H G E L D A L H A	Y R
	FIG. 6—Continued	l	

related A. calcoaceticus more closely resemble the enterobacterial PabA than the enterobacterial TrpG sequence. In contrast, P. aeruginosa PhnB seems closer to the enterobacterial TrpG than to enterobacterial PabA.

Comparing sequence data for the  $\alpha$  subunit of anthranilate synthase and *p*-aminobenzoate synthase is considerably more difficult than for the  $\beta$  subunit (6). Table 3 presents the normalized alignment scores for these  $\alpha$  subunits, based on the best current alignment (6). Since these molecules have approximately 500 amino acid residues, all values are within the range indicative of homology (9). Alignment of the carboxyl-terminal half of the molecules poses no problems. In fact, between position 280 and the end there are 29 locations where all sequences have the same amino acids. Alignment of the amino-terminal half is more arbitrary; there are many gaps, and there is only one position between 1 and 279 where the residues are identical (6). P. aeruginosa and P. putida TrpE are very similar (normalized alignment score of 866); however, among the others, only the first four sequences are clearly related.

**Insertion of pDE1443 into** *P. aeruginosa* **PAO4290 chromosome.** This experiment provided the first indication that the anthranilate synthase genes obtained on the R-prime plasmid were not involved in tryptophan synthesis. These anthranilate synthase genes had been originally designated *trpE*  and trpG because of their ability to complement trpE auxotrophs of *E. coli* (8). We wanted to create a trpG mutant of *P. aeruginosa* and examine its phenotype. Therefore, the presumed trpG was insertionally inactivated with a Km^r cassette, and the insertionally inactivated gene used to replace the normal chromosomal gene. Inactivation of this small-subunit gene on the *P. aeruginosa* chromosome did not result in the expected requirement for tryptophan in low-ammonium media but instead resulted in a strain defective in pyocyanin production. Plasmid pDE1443 was used to create this mutant *P. aeruginosa*.

Replacement of *phnB* on the *P. aeruginosa* chromosome with the Km^r mutant *phnB* gene was demonstrated directly by subjecting DNA from the parental strain PAO4290 and its derivative PhnB⁻ Km^r strain PADE B1 to restriction and hybridization analysis. Southern hybridization analyses with appropriate probes containing either segments of the *phnB* region or Km^r cassette demonstrated that the Km^r cassette was indeed inserted into the mutant *phnB* (data not shown).

Insertion of pDE1560 into *P. aeruginosa* PAO1 chromosome. The *phnB* mutant, PADE B1, was constructed in *P. aeruginosa* PAO4290 because of the kanamycin sensitivity of this strain. PAO4290 is a poor pyocyanin producer. A difference between pyocyanin production in the parent strain and its PhnB⁻ Km^r mutant is discernible, but for further

										300	D										303	0									30	60
CCT	GC	CTG	AAC	AT	GGG	CAG	сст С					CGA	AG	GTC	CGI	rgc	CA	rgc	AG				GCAC	TAC	GAG	GGA	TGG	CT/	TCO	GCGC	-	
A	С	L	N	M	C				v		A	P	K	v	R	A	1	1	Q	L	L	R	Q	Y	E	D	G	3	? I	2 (	5 9	6
ACG	GT			GAT	CGC	GCA	ттс	тсо		309 AGC		GGC/	•AC	стс	GA	ΓΑΟ	CCA	GCA			312 ATC		стсо	GCC	GA	GGT	CCG	CG	AG	GTA	-	
Y	G	G G		I	C	3	I	L	D	s	A	G	N	L	D	1	r :	s	T I	v	I	R	s	A	E	v	R	I	E (	3	[ /	G
GGG	тс				CCC		606	TC		318 СТС			3 <b>4</b> T		000	GC1	227	466			321 GA 4		2060	244		000	сст	'GGI	GG	rgc		240 CCG
R	Т									L		s											R									r
										327	0										330											330
CCG	TG	GCC	GC1	rgc	CGI	4AC	GCG															CT	rcg/	ATT	СТ	TCA	CCI	CAC.	AAC	CTG	GTC	GAG
A	v	A	A	A	I	2	R	E	R	G	Е	R												_	_	-	_	••				
													M	I	2	I	Т	L	L	Ľ	) ]	1 ]	FI	D	S	F	Т	Y	N	L	v	E
CAG	TT	сто	GCC	rgc	TC	GGC	GCC	GGA	GGT	336 CCG	0 GGT	GAT	GCG	CA	ACG	AT	ACG	cco	GTT	GCC	339 CGA(	90 CGA	тсс	AGG	CGG	CAT	TGG	CTG	GCC	GAC		420 TGC
		c									v																					
	~									345	0 TCG		~~~		• • • •		666	TC	с <b>а</b> т	''''''	344 FGG	80 • • T	тес	тсс	CC1	GGG	cc	CGC	GGG	CGC		510 CCG
											R								Т				L								L	
E	L		· ۱	v	L	5	P	G		· .	, K	r		•	U	'n	U	C	1.				5		••		••		-		_	-
				<b>T</b> .C1		CTC				354	ю ССТ	000	°CC1	227	000		GGT	661	CGC	GG	35 TGG	70 GCG	AGG	CGA	GG/	AGO	CCG	ста	CAC	GGC		600 AGC
																							E							G		
v	1	. (	G	V	C	L	G	н			A I			-	~	n	U	U	,	•		60	2				-	-				690
ACC	GTC	CC	TGC	GT	гтс	GAI	rca	GCO	GTC/	363 ACC(	GCI	GTI	CG	ACG	GCA	ATC	GCI	rga	CC	rgc	GCG	тсо	CGC	GC1	AC	CAC	rcg	сто	GTO	GTO	CAG	CGC
T	5	3	L	R	F	D	Q	F	2 1	H I	P I	. F	1	D	G	I	A	D	) ]	L	R	v	A	R	Y	H	S	L	v	v	S	R
ст	GCO	GG	AAG	GT	ттс	GAG	CTG	cci	rgg	37: CCG	20 Atgo	CGA	ATG	GCG	AGA	AT C	CAT	GGC	GA'	TGG	37 CCG	50 ATC	ccGG	GC	AT	CGA	CAG	CT	GGG	CTT	GCA	3780 GTTC
			E		F	D					DS																					
_				-	-	-				38	10										3	840										3870
CA	тс	CCG	AG	rcg	AT	TCT	CAC	CA	ccc																	Т	_					GCCTT
H		P	E	S	I	L	1	[	Т	H	G	Q	R	L	L	E	N	i 1	A	L	L	W	С	G	A	L	R	. 1	/ 1	2 1	5 1	R L
										39	00	~ • •					~ • •		~~~		3	930				FCC				PTC:	500	3960
				GCG	GC	GCT	GCO	GCC A		тсо	ACC	GAT G		CG	GTT	GC	CAG	iGC	CGU	JCG	LAI	661	CGA	AAU	.66	100		(	2		500	CAGGC
R		A	*							30	90										4	020	)									4050
GC	TG	GCC	GGG	CGC	CTT	TCG	GAG	AAA	GCC	GACC	GAA	GCT	GCO	GCT	CGG	GAT	тсо	CAG	CG	CGG	TGT	TGI	CAG1	AGO	CAA	TAC	ACC	TT	GGT	GTC	GAT	GCCGC
сс	GG	TT	CGT	AC/	<b>\</b> GT	тсс	GCT	GAG	GAG	40 CTGC	080 CCAC	GG1	AC	CGT	TGC	GC	AG	GCG	TT	сст	CGA	CG	<b>A</b> A1	[ <b>AA</b> ]	rgc	GGC	GCC	GAT	GCC	CCA	тсс	GACGC
С	GC	TT	CCA	ccı	AGA	CGC	CAG	CAI	GTO	4: CGT	170 CGA/	GTI	TT	CCA	CGA	AAC	GAG	CAC T	CT	TGT	4 CGC	200 2TG/	) ACC(	GGC	CGC	AGC	AG	GTT	CGA	ATG	CTG	4230 CCCGG
AC	GCC	GC	TGC A	CG	AGG	CTO	GAT	сто	GCC	4: GGT	260 AAT1	rgg(	CA	GGC	тс	GCC	GAT	GCI	ſGT	GCA	GGG	GAG	D GCA'	TTG	CAC	AAC	GGG	GTG	сто	CGO	ATO	4320 GGCGA
С	GAG	GA	ACG	CC	TTO	GT	GTA	.GC(	CGA	4 GCA	350 CGC/	ACT			AG G						d											

FIG. 6—Continued

				20																		
ATCCGGGCACAC I R A Q					GGCI								CGCC									
FGCGGCGAGGT( C G E V					TGTI								CCTG								GTG	
GTCAGCGCCGGG V S A G					CTG								CAAC									
CCGGGTAGTGC P G 'S A					GAG/								GTTC									
CATGCCAGCCA H A S Q					GGC								CCTG									
CAACCGAACCT Q P N L	GCGCAT R I	CCTCC L	GATG D	480 CGGTG A V	CAG	GAGC E	AAC Q	TGGG L G	CATT I	rccc P	CAGO Q	51 ACAA H K	GTTC	GCG A	GTG V	ACC T	GTG V	GAT D	CGI R	CTG L	GGC G	540 CAAC N
ATGGCTTCGGC M A S A					GCG								ACAG									
GCGCGACCTG G A T W	GGGCGC G A	GGCG(	CTGT. L	660 ACCGC Y R	AAA	ССТG Р	AGG E	AGGT E V	GAAC N	CCGG R	P_	69 <u>GTTG</u> C * 1 L	AGGC									
ACCTGTGCCTG ) L C L	TTGGGG	GACG	FCCA	750 GGTGC	CGG	TGTI	CCT	GCTG	CGTC	CTCG	GTG	78 AGGCG	0 AGC1	rggg	CGC	TGG	TTG	AAG	GAG	GGGA	TC	810 AGCC
		5	v Q	v	P	VF	Ĺ	L	R	L	GH	ι A	S	W	A	L	v	Ľ	0	-	-	3
GGATGCCGAA	TTGGT	TGGG	CGGA	840 CCTG1	) GCC	GCTO	GGT	CGCC	GACO	CCGT	CCC	87 AGGTG	0 CACI	ГАСТ	GGC	TGA	TCA	ccc	CACA	AGC	CAC	900 TACG
DAE	TTGGT L V	TGGG W A	CGGA A D ACCT	840 CCTGI L 930 GTGTC		GCTG R W GGCI	GGT V V	CGCC ⁄A	GACC D GTAC	CCGT P CAGG	CCC/ S (	87 AGGTG ) V 96 IGGCG	0 CACI H	FACT Y GAGO	GGG W CGG/	TGA L	I I I I I I I I I I I I I I I I I I I	CCC T	ACA H	AAGO K	AC' H	900 TACG Y 990 TCGG
R D A E Accactgcggg D H C G	TTGGT L V CTGCTO L L	TGGG W GCCCTA P	CGGA A D ACCT Y L AGCG	840 CCTGT L 930 GTGTC C 1020 CTTGA	GCC C C C C C C C C C C C C C	GCTG R W GGCI R I	GGT V V GCC 2 P	CGCC A CGAAC N	GACC D GTAC V	CAGG Q GCGG	CCCA S ( TCC: V ]	87 AGGTG V 96 IGGCG L A 105 AGCGG	0 CACT H TCCC S	TACT Y GAGO E	GGG W GGG R GAG0	TGA L ACCI T	I I I C C I GTG	CCC T AGG Q GCCT	ACA H GCCI A	AAGO K rgga W GACO	AC' H AG' K	900 TACG Y 990 TCGG S 1080 CTGC
R D A E ACCACTGCGGC D H C G AAAGCGCGGGG E S A V	TTGGT L V CTGCTC L L CGGGTC R V	TTGGGG W A GCCCTA P T GGTCGA V D	CGGA A D ACCT Y L AGCG E R GCGA	840 CCTGT 930 GTGTCC C 1020 CTTGA L 1110 GTGGGC W	) CCGC P ) AACC N ) CTGG L	GGCT R W GGCT R I GGCA R C	GGGT V V GGCC P AACT Q I	CGCC A CGAAC N CGTTG L GACCG	GACC D GTAC V CGTC R	CAGG Q GCGG A CATC	CCCA S ( TCC V ) AGCA E ( CCC	87 AGGTG V 96 TGGCG L A 105 AGCGG Q R 114 TGCAG L Q	0 CACT H OTCC( S OTTG( L 0 GTC/ V	FACT Y GAGO E CCCCO P	CGGC W CGGA R GAGC E GAGC	L L ACCI T SCCI A	I I I C C C C C C C C C C C C C C C C C	ICCC T AGG Q GCCI A GGCC	CACA H GCCT A F GGG W	AAGC K W GACC D	AAC H AAG K GCT A GAC D	900 TACG Y 990 TCGG S 1080 CTGC L 1170 GATC D
R D A E ACCACTGCGGC D H C G AAAGCGCGGTG E S A V CGGTTCGCGCG P V R A ACGTGGTTTT	TTGGTT L V CTGCTG L L CGGGGTG R V GGTGGCG V A CTACGA	CGACG	CGGA A D ACCT Y L AGCG E R GCGA G E CGAC(	840 CCTGT L 930 GTGTCC C 1020 GCTTGA L 1110 GTGGCC W 1200 GCCGA	) GCCGC P ) AACC N ) CTGG L 0 CCGCC	GCTG R W GGCI R I GGC/ R ( AGC1 E I CTGT	GGGT V V GGCC L P GGGG L C TCT(	CGCC GAAC CGTTG CGTTG C L GACCG G P GCGGG	GACC D GTAC V CGTC R CGGC R CGAT	CCGT P CAGG Q GCGG A CATC H GCCC	CCCA S ( TCC [*] V 1 AGCA E ( CCC [*] R [*]	87 AGGTG V 96 IGGCG L A 105 AGCGGG Q R 114 IGCAG L Q 123 GCGAC	0 CACI H 0 TCCC S 0 TTCC L 0 GTCL V 80 CTCC V	TACT Y GAGO E CCCCO P ATAO I GACO	CGGC W CGGA R GAGC E GAGC	L ACCI T A GCCI A GCCC A	I TGCC C TGTG C C ACC H	AGCCT AGCCT A GGCCCT A GGCCC G	CACA H GCC A F GGG GTG	AAGC K FGGA W GACC D AGCC S	AC' H AG' K GCT A GAC D	900 TACG Y 990 TCGG S 1080 CTGC L 1170 GATC D 1260 CCCCC
R D A E ACCACTGCGGC D H C G AAAGCGCGGGTG E S A V CGGTTCGCGCGG P V R A ACGTGGTTTTG H V V F TGGTGTTCGA	TTGGT L V CTGCTG L L CGGGGT R V GGTGGCC V A CTACGA Y D CGACAT	CGACG	CGGA A D ACCT Y L AGCG E R GCGA G E CGACG R I GCTT/	840 CCTGI 930 CGTGTC CTTGA L 111C GCTGGC W 1200 GCCGA R R 129 ACCTG	) CGCC C P ) AACCC N ) CTGG L 0 CCGCC R 0 GGAGT	GCTC R W GGCT R I GGC/ R C AGCT E I CTGT L	GGGT VV V AACT V I CGGG TCT( F ( TGG/	CGCCC A GGAAC C N GGTTG C L GGCGGG C G AACGT	GACC D GTAC V CGTC R CGAT D	CAGG Q GCGG A CATC H GCCC A	CCCA S ( TCC: V ] AGCA E ( CGCC' R ] CTGG L CGTC	87 AGGTG 2 V 96 TGGCGG L A 105 AGCGGG 2 R 114 TGCAG L Q 122 GCGAG G E 132 TTGCCC	0 CAC1 H TCCC S O TTG C G TTG S G TTC F 20 G ACC	FACT Y GAGC E CCCCC P ATAC I GACC D	GGGC W CGGA R GAGC E GAGC E CTG	CTGA	I TGCC C TGTG C C C C C C C C C C C C C C	ACCC T AGC Q GCCT A GCCC G G G G G G G G G G G G G G G G	CACA H GCC A CACA H GTG V CCG	AAGC K GACC D AGCC S TGGG	AGC H AGC K GCT A GAC D CGG R CAC	900 TACG Y 9900 TCGG S 1080 CTGC L 1170 GATC D 1260 CCGC P 1350 CGGC
R D A E ACCACTGCGGC D H C G AAAGCGCGGGTG E S A V CGGTTCGCGCGG P V R A ACGTGGTTTTG H V V F TGGTGTTCGA	TTGGT L V CTGCTG L L CGGGTG R V SGTGGCC V A CTACGA Y D CGACAT D M GGGGGCG	CGGACGG CCCT7 P CGGCCGA V CGGCGC V CGGGCGCC V CGGGAGCC C CGGCGCCCC	CGGA A D ACCT Y L AGCG E R GCGA G E CGACC R I GCTTA A Y	840 CCTGI J GGTGTC GGTGTC C 102C CTTGA L 111C GCTGGC W 120 GCCGAA R R R 129 ACCTG Y L 138 CGGAT	CGCC C CCGC P AACCC N CTGG CCCCC R 0 CGCCC R 0 CGCCC R 0 CGCCC N 0 CGCCC N 0 CGCC N 0 CGCC N 0 CGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC C CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC N 0 CCGCC CCGCC N 0 CCGCC CCGCC CCGCC N 0 CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCC CCGCCC CCGCC CCGCC CCGCC CCGCC CCGCCC CCGCC CCGCC CCGCCC CCGCCC CCGCCC CCGCCC CCGCCC CCGCCC CCGCCCCCC	GCTC R W GGCT R I GGCA R C AGCT E I CTGT L CTGT L S GCCC GCCC	GGGT V V GGCC P AACT Q I FGGG C C TCT( F ( TGGA L 1 AGT(	CGGCC A CGAAC A CGTTG C C C C C C C C C C C C C C C C C	GACC D GTAC V CGTC R CCGGC R CCGGC R CCGGC D CCTG L	CAGG Q GCGG A CATC H GCCG A CATC Q	CCCA S ( TCC: V ] AGCA E ( CGCC: R ] CTGG L CGTC R GAGT	87 AGGTG 2 V 96 ITGGCG L A 105 AGCCGG 2 R 1114 ITGCAG C A I122 ICGAG C A I122 ICGAG C A I132 ITGCCC L P 141 GTCTC	0 CACT H 0 TTCCC S 0 TTCC S C C S C C C C C C C C C C C C C	FACT Y GAGC P ATAC I GACC D CTGC L CTGC	CGGC W CGGA R GAGO E GAGO E CTG L	L L L L C C A C C A C C A C C A C C G G C C G G C C G G C C C C	I TGCC C TGTG C C CACG H GAGC E CTGA L	ACCC T AGG Q GCCT A GGCC G G G G G G T T T G G T T G G T C G G G G	CACA H GCCC A CGGG W CACA H GTG V CCCG P CTC	AAGC K GACC D AGCC S TGG4 W GGA4 G	CAC H K GCT A GAC D CGG R CAC H	900 TACG Y 990 TCGG S 1080 CTGC L 1170 GATC D 1260 GCCGC G G 1440 CCGGT
R D A E ACCACTGCGGC D H C G AAAGCGCGGGTG E S A V CGGTTCGCGCG P V R A ACGTGGTTTTC H V V F TGGTGTTCGAM L V F D GCCTGCTGCGG	TTGGTT L V CTGCTG L L CCGGGTC R V CTACGA Y D CGACAT D M GGGGGCG G F ATCCCT	CGACGC CGACGC CGACGC CGACGC CGACGC CGACGC CGACGC	CGGA A D ACCT Y L AGCG E R GCGA G E CGACC R I GCCG4 A 2 GCCG4 A 2 GCCG4	840 CCTGI J CGTGTC C C CTTGA C CTTGA C CTTGA C CCTGA C CCTGA C CCCGA R R R 129 ACCTG Y L 138 CGGAT A D 147 TGAGC	CGCC C C CGC P CCGCC N CCGCC R 0 CCGCC R 0 CGCCC R 0 GGGGG G GGGGG G 0 GGGGGG	GCTG R W GGCT R I GGCA R C AGCT E I CTGT L CTGT L CTGT S GCCG A GAGC	GGGT V V CGCC L P AAC1 CGGG L C TGGG L C TGGG L 1 AGT E 1 TGC.	CGCCC A CGTTG A CGTTG C C C C C C C C C C C C C C C C C	GACC D GTAC V CGTC R CGGC CGAT D CCTG L CTAT Y	CCGT P CAGG Q GCGG A CATC H GCCC A CATC Q T TGG	CCCA S ( V 1) AGCA E ( CGCC R 2 CTGG L CGTC R SAGT E GGTG	87 AGGTGG 2 V 96 TGGCGG L A 1055 AGCGGG 2 R 114 TGCAG C L 22 TGCCAC C L 132 TGCCC C L 150 GGCAC	0 CACT H 0 TTCCC S 0 TTTGC L 0 GTTCC V 0 GGTCL V 0 SO C GACC T 10 GCGC R 0 GAGC	TACT Y SAGO E CCCCO P ATAO I GACO L CTGO L CTGO L GTC	CGGC W CGGA R SAGC E SAGC E CTG L CTG C C GAC	CAAA CCCI T GCCCI A GCCCI A GCCCI A GCCCI A CCAAA Q CCAAA Q CCAAA C Q CCAAA C Q CCAAA C CAAAA C C T T C C T	ATCA I I GGCC C C C C C C C C C C C C C C C	ACCC T AGG Q GCCI A GGCC G G G G G G G G T T G G C C C C C	ACA H GCC' A CCCC H GTG V CCCG P CCCC CCCG CCCC CCCC CCCCCCCCCC	AAGC K GACC D AGCC S TGGG W GGAA	AGC H SGCT A SAC D CGG R CAC H CGC R	900 TACG Y 990 TCGG S 1080 CTGC L 1170 GATC D 1260 CCGC P 1350 GGCC G 11440 CCGC G 11530 CCACT
H V V F TGGTGTTCGAA L V F D GCCTGCTGCGG G L L R CCATGGGCGA	TTGGTT L V CTGCTGCTC L L CCGGGTC R V CGTGGCC V A CTACGA Y D CGACAT D M GGGGGCC G F ATCCCT S I	CGACGG CGACGG CGACGG CGACGG CGACGG CGACGG C CGCGACG C CGACGG C CGACGG C CGACGG C CGACGG C CGACGG C CGACGG C C CGACGG C C CGACGG C C C C	CGGA A D ACCT Y L AGCG E R GCGA G E CGACC R I GCCG4 A Y GCCG4 A Y GCCG4 C E C CTGG.	840 CCTGI 930 GGGTGTC C 1020 CTTGA CTTGA CTTGA CTTGA CGGGA R R 129 ACCTG Y L 138 CGGAT A D 147 TGAGC L S 156 AGATT	CGCC C C CCGC P CCGCC N CCGCC R 0 CCGCC C CGCC C C CGCC C C C C C C C C	GCTG R W GGCT R I GGCA R C AGCT E I CTGT L CTGT L CTGT S GCCG A GAGC E	GGGT V V AACT AACT CGGG C C TCT C F C TGG L 1 TGC L 1 TGC L 1	CGCCC A CGAAC A CGTTG C C C C C C C C C C C C C C C C C	GACC D GTAC V CGTC R CGGC R CGAT D CTAT Y CGCC A GCTG	CCGT P CAGG Q GCGG A CATC H GCCC A CAGC Q T TGGG W W CCT	CCCA S ( V 1) AGC/ E ( CGCC' R 2 CTGG L CGTC R GGTG G GGTG G CTGG	87 AGGTGQ 2 V 96 IGGCGG 2 A 1105 AGCGGQ 2 R 1114 IGCCAG 4 Q 122 IGCCAG 6 E 132 IGCCAG 6 E 132 IGCCAG 6 E 132 IGCCAG 7 C 2 L 150 IGCCAG 7 C 150 IGCCAG 7 C 150 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 7 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15 IGCCAG 15	0 CAC1 H 0 TTCC S 0 TTTG G G G G G G G G G G C C C C C C C	GACC P GACC P GACC D CTG L CTG L CTG L CTG C L CTG C L	CGGG W SAGG E SAGG E CTG L CTG C C GAC D	L ACCI T A GCCI A GCCI A GCCI A CAA( Q CAA( R CAA( R TTC) F	TCA I TGCC C C C C C C C C C C C C C C C C C	ACCC T A G G G G G G G G A T C C C C C P	ACA H GCC? A GCC? W CACA H GTG V CCCG P CCCC G GGCC G	AAGC K GACC D AGCC S TGGG G G G G G G G G G G G G G G G G	CAC H K GCT A GAC D CGC R CAC H CGC R CAC L	900 TACG Y 990 TCGG S 1080 CTGC L 1170 GATC D 1260 GATC D 1250 GGCG G 1440 CCGC C P 1530 CCACT H 1620

FIG. 7. DNA sequence and deduced amino acid sequence of ORF1 and ORF2 upstream from *P. aeruginosa phnA*. Start and stop codons and presumed Shine-Dalgarno sequences are underlined.

similarities E.c. TrpE V.p. TrpE P.a. PhnA B.l. TrpE R.m. TrpE S.a. TrpE E.c. PabB P.p. TrpE P.a. TrpE B.s. TrpE	β-Subunit similarities E.c. TrpG S.m. TrpG V.p. TrpG P.a. PhnB E.c. PabA S.t. PabA S.t. PabA S.m. PabA B.s. TrpG P.a. TrpG P.a. TrpG	Organism	>	
	286	S.t. TrpG		F
	839	S.m. TrpG		IADLE .
	622	V.p. TrpG		O. INDIT
	475 470 396 415	P.a. PhnB		anzeu a
	398 409 301	E.c. PabA		"Sumone
	366 372 312 877 877	S.t. PabA		SOLCS 1
	$\begin{array}{ c c c c } & 406 \\ & 395 \\ & 304 \\ & 773 \\ & 762 \\ \end{array}$	S.m. TrpG		invinialized anguintent scores for antinalinate synthase and p-antinopenizoate synthase a
	399 401 607 607	B.s. TrpG		annare s
	383 363 367 676 676 676 676	P.p. TrpG		ymmasc
	396 316 671 718 585 585	P.a. TrpG	Normalized alignment score	anu p-a
	317 302 327 362 278 575 575 575 575 575 575 575 575 575 5	A.c. TīpG	od alignmo	TITIOOCT
580		V.p. TrpE	ent score	Luaic sy
456		P.a. PhnA		IIIIase u
426 415 392		B.I. TrpE		
236 208 198		R.m. TrpE		SILITION
269 275 227 208		S.a. TrpE		ITOTI VA
198 209 184 208 151 213		E.c. PabB		TO SHOLT
255 253 2244 233 214 305 265		P.p. TrpE		and b submits more various organisms
257 260 237 213 305 866		P.a. TrpE		
240 225 205 201 201 201 201 201 201 201 201 201 319		B.s. TrpE		
235 220 204 192 217 217 217 217 251 251 251 255		S.c. TrpE		

S.a., Spirochaeta aurantia; S.c., Saccnaromyces cerevisiae; S.m., Serratia marcescens; S.I., Saimonetia typhimurum; V.p., V. parahaemolyticus. studies on the *phnA* and *phnB* genes, we chose to work with *P. aeruginosa* PAO1, an excellent pyocyanin producer and the wild-type strain used in this and most other laboratories. We constructed a *phnA* mutant of PAO1 by replacing the wild-type chromosomal gene with a mutant *phnA* containing an insertion of a 2.7-kb Tc^r cassette near the 3' end of the gene. The plasmid pDE1560 was used to create this PhnA⁻ Tc^r *P. aeruginosa* mutant.

Replacement of *phnA* on the *P. aeruginosa* chromosome with the Tc^r mutant *phnA* gene was demonstrated directly by subjecting DNA prepared from the parental strain PAO1 and its derivative PhnA⁻ Tc^r strain PADE A47 to restriction and hybridization analysis. Appropriate probes were used in Southern hybridization analyses to verify replacement of the chromosomal *phnA* with the insertionally inactivated mutant *phnA* (data not shown).

**Insertion of pDE1567 into** *P. aeruginosa* **PADE A47 chromosome.** We constructed a double mutant altered in both large-subunit genes, *trpE* and *phnA*. We used pDE1567 to create a *trpE* mutant of *P. aeruginosa* PADE A47.

Replacement of trpE on the *P. aeruginosa* PADE A47 chromosome with the Hg^r mutant trpE was demonstrated directly by subjecting DNA from PAO1, the parental strain *P. aeruginosa* PADE A47, and its derivative TrpE⁻ Hg^r strain PADE A47E1 to restriction and hybridization analysis (data not shown).

Insertion of pDE1595 into *P. aeruginosa* PADE A47 chromosome. Because *P. aeruginosa* PADE A47 retained some pyocyanin production, we wanted to create a more seriously disabled derivative of this strain by replacing its Tc^r mutant *phnA* with a  $\Delta phnA$  containing a substantial deletion in its coding region. This  $\Delta phnA$  construct has an Hg^r cassette inserted into the deleted region to allow selection. Thus, selection for the desired haploid strain could be detected by the loss of Tc^r and the acquisition of Hg^r. The plasmid pDE1595 was used to create the  $\Delta phnA$  Hg^r derivative of PADE A47.

The replacement of the Tc^r mutant *phnA* with the Hg^r mutant  $\Delta phnA$  on the *P. aeruginosa* chromosome was demonstrated directly by subjecting DNA from PAO1, the parental strain PADE A47, and its derivative  $\Delta phnA$  Hg^r strain PADE A48 to restriction and hybridization analysis (data not shown).

**Phenotypic characterization of PADE A47, PADE A48, and PADE A47E1.** PADE A47 and PADE A48 are both prototrophs; they grow without supplementation on Vogel-Bonner minimal medium and on low- or high-ammonia M9 medium. The PhnA⁻ TrpE⁻ mutant PADE A47E1 requires supplementation with either anthranilate of L-tryptophan for growth on minimal medium.

Cultures of PAO1, PADE E1, PADE A47, PADE A48, and PADE A47E1 were grown for 16 to 20 h in 5 ml of PB for quantitation of pyocyanin production. Pyocyanin production by the five strains is shown in Table 4. The results showed that pyocyanin production is greatly reduced in the *phnA* mutants PADE A47 and PADE A48 and eliminated in the double mutant PADE A47E1.

**Characterization of PADE E1r.** During the characterization of PADE E1 (9b), spontaneous tryptophan-independent colonies appeared at a frequency of  $10^{-5}$  to  $10^{-6}$ ; one of these Trp⁺ colonies was isolated and designated PADE E1r. PADE E1r grew without supplementation on Vogel-Bonner minimal medium and on low- or high-ammonia medium. Its parent, PADE E1, required supplementation with either anthranilate or L-tryptophan for growth on minimal medium.

PADE E1r produced more pyocyanin than either PAO1 or

TABLE 4. Spectrophotometric quantitation of pyocyanin production by P. *aeruginosa* PAO1 and its derived mutants^{*a*}

Strain	OD ₅₂₀	Pyocyanin production (µg/ml) ^b	% Wild-type production
PAO1	0.369	6.30	100
PADE E1	0.319	5.44	86
PADE A47	0.125	2.13	34
PADE A48	0.085	1.45	22
PADE A47E1	0.001	0.02	2

 a  Cells were grown for 16 to 20 h in 5 ml of PB at 37  $^\circ C$  with aeration. Extraction procedures are outlined in Materials and Methods.

^b Pyocyanin concentrations are reported as micrograms of pyocyanin produced per milliliter of PB culture.

PADE E1. Pyocyanin production by the three strains was analyzed spectrophotometrically. Table 5 shows the results of this analysis. Pyocyanin production was greatest in PADE E1r, approximately 25% more than PAO1 and 40% more than PADE E1.

Anthranilate synthase (with either ammonia or glutamine as the nitrogen source) and TrpD-derived phosphoribosyl transferase enzymatic activities were measured in extracts from tryptophan-starved cultures (3) of PAO1, PADE E1, PADE E1r, and PADE G2 (9b). The results are shown in Table 6. Anthranilate synthase activity in PAO1 and PADE G2 is completely inhibited by either 150 or 750 µM tryptophan (data not shown), whereas the anthranilate synthase activity of PADE E1r showed no inhibition upon the addition of either concentration of tryptophan. Addition of either 75 or 150 µM pyocyanin to the reaction mixtures also had no effect on anthranilate synthase activity. The anthranilate synthase activity of the cloned phnAB on pIA10 expressed in E. coli is also not feedback inhibited by tryptophan (data not shown), suggesting that the anthranilate synthase activity of PADE E1r arises from *phnAB*.

To verify that the  $Trp^+$  strain PADE E1r was not a merodiploid that had somehow survived the isolation of PADE E1, to show that the Tc^r cassette was still inserted into the mutant *trpE*, and to prove that the prototoph isolated was not a contaminant, we subjected DNA from PAO1, PADE E1, and PADE E1r to restriction and hybridization analyses. These analyses demonstrated that the Tc^r cassette was still inserted into the mutant *trpE*.

Measurement of *trpG* and *phnA* mRNA levels in PAO1, PADE E1, and PADE E1r. mRNA production corresponding to *trpE* and *phnA* was measured in PAO1, PADE E1, and PADE E1r during different growth phases. *trpE* of PADE E1 and PADE E1r contains a deletion/insertion. A preliminary experiment showed little or no *trpE* RNA transcript present in the *trpE* mutants PADE E1 and PADE E1r compared with

TABLE 5. Spectrophotometric quantitation of pyocyanin production by *P. aeruginosa* PAO1, PADE E1, and PADE E1r^a

Strain	OD ₅₂₀	Pyocyanin production (µg/ml) ^b	% Wild-type production
PADE E1r	0.453	7.73	123
PAO1	0.369	6.30	100
PADE E1	0.319	5.44	86

^a Cells were grown for 16 to 20 h in 5 ml of PB at 37°C with aeration. Extraction procedures are outlined in Materials and Methods.

^b Pyocyanin concentrations are reported as micrograms of pyocyanin produced per milliliter of PB culture.

P. aeruginosa	Enzymatic a	Phosphoribosyl transferase	
cell extract	Ammonia	Glutamine	activity ^b
PAO1	0.014	0.058	0.400
PADE E1	0	0	1.07
PADEE1r	0.064	0.086	1.37
PADE G2	0.55	0	0

 TABLE 6. Anthranilate synthase and phosphoribosyl transferase activities of P. aeruginosa PAO1, PADE E1, PADE E1r, and PADE G2^a

wild-type PAO1, possibly due to degradation of the incomplete transcript. Accordingly, we chose to monitor trpGmRNA production because of its known coordinate regulation with trpE (3).

We prepared phnA- and trpG-specific probes for use in hybridization studies against crude mRNA samples. The phnA-specific probe was a 205-bp EcoRV-PstI fragment from p1433 (p1433 contains the 1,161-bp PstI phnA fragment from pIA10 inserted into pUC8.) The trpG-specific probe was a 1.0-kb EcoRV fragment from p1395. These probes were first tested by Southern hybridization against the cloned phnA, phnB, trpE, and trpG genes and PAO1 chromosomal DNA digests to confirm their specificity. Under high-stringency conditions, no cross-hybridizations were seen. These probes were then hybridized to crude mRNA preparations made from cells in various phases of growth.

RNA was prepared from cultures harvested in the early log (OD₅₆₀ = 0.30), late log (OD₅₆₀ = 0.60), and stationary (OD₅₆₀ = 0.75) phases. Samples containing equal amounts of RNA were used undiluted and at 1:10 and 1:50 dilutions. These samples were applied to nylon hybridization membranes with a slot-blot apparatus. The slot blots were then hybridized with the ³²P-labeled 205-bp *Eco*RV-*PstI* fragment from p1433 or the ³²P-labeled 1.0-kb *Eco*RV fragment from p1395. After hybridization, the blots were washed under high stringency.

The slot-blot autoradiographs were subjected to densitometric analysis (Table 7). The results showed that in PADE E1r the quantity of *phnA* mRNA is at least eight times greater than in PAO1 and PADE E1 in the early log phase but that this difference diminishes in the late log and stationary phases. The *trpG* probe showed that *trpG* mRNA levels are greatest in the early log phase and that they diminish markedly by the stationary phase.

#### DISCUSSION

We showed that *P. aeruginosa* has two anthranilate synthases, that they are homologous, and that both have conventional  $\alpha$  and  $\beta$  subunits. One anthranilate synthase, encoded by *trpE* and *trpG*, catalyzes the first step in the tryptophan synthetic pathway. The other anthranilate synthase, encoded by *phnA* and *phnB*, functions in phenazine synthesis. *P. aeruginosa* is unique in this respect, for until now no other procaryote or eucaryote has been shown to have two anthranilate synthases.

The existence of two anthranilate synthases in *P. aeruginosa* explains the differences seen earlier between the two sequences of the small ( $\beta$ , glutamine amidotransferase) subunits of anthranilate synthase in *P. putida* and *P. aeruginosa* (7). The sequence from *P. putida* had been obtained by sequencing the purified protein from the tryptophan synthetic enzyme (14). The other was a DNA sequence obtained from a *P. aeruginosa* PAC174 R-prime plasmid capable of complementing *trpE* mutants of *E. coli* (7, 8). It is now clear that these two genes do not specify the enzyme catalyzing the first reaction of the tryptophan synthetic pathway but in fact encode a second anthranilate synthase in *P. aeruginosa*. These genes are now designated *phnA* and *phnB* for their involvement in the synthesis of phenazines, specifically pyocyanin, in *P. aeruginosa*.

We established the existence of two distinct anthranilate synthases by inactivating the chromosomal version of the cloned P. aeruginosa small-subunit gene. Inactivation did not result in a requirement for tryptophan in low-ammonia medium but instead gave cells defective in the production of pyocyanin. Using the small-subunit gene from the R-prime plasmid as a probe, a second, cross-reacting chromosomal gene in P. aeruginosa PAO1 was identified by Southern hybridization at low stringency. This second gene was cloned and sequenced. The deduced protein sequence of this small-subunit gene proved to be very similar to that obtained earlier by Kawamura et al. (14) from the purified P. putida anthranilate synthase small subunit. This gene is now correctly designated trpG; when insertionally inactivated and inserted into the P. aeruginosa chromosome, replacing the wild-type gene, the predicted phenotype was found, a requirement for tryptophan or anthranilate in low (1 mM  $NH_4^+$ )-ammonia medium but not in high (50 mM  $NH_4^+$ )ammonia media (9b). This trpG mutant produces pyocyanin normally.

The *phnA* and *phnB* genes from *P. aeruginosa* PAC174 had been cloned and the DNA sequence of *phnB* had been obtained (7, 8). We cloned the corresponding genes from *P. aeruginosa* PAO1; the sequences were nearly identical (Fig. 4). We identified two ORFs upstream from *phnA*. A complete DNA sequence was obtained for ORF1, while only a partial DNA sequence was obtained for ORF2. The two ORFs overlapped by 7 bp. We have no clue as to the function of these ORFs, and a database search for similar sequences found no significant matches.

Comparison of TrpE, TrpG, TrpD, and TrpC sequences in *P. putida* and *P. aeruginosa* showed them to be 79 to 87% identical (9a, 9b). PhnA and PhnB are clearly homologous to *P. aeruginosa* TrpE and TrpG but at a much lower level (26 to 39% identity). A detailed analysis of all known anthranilate and *p*-aminobenzoate synthases (6) shows, surprisingly, that PhnA and PhnB are more closely related to *E. coli* 

TABLE 7. Slot-blot analysis of trpG and phnA mRNA production by PAO1, PADE E1, and PADE E1r: densitometric quantitation^a

	Early-	log-phase RNA (O	$D_{560} = 0.30)$	Late-log	-phase RNA (OD ₅₀	$_{50} = 0.60)$	Station	ary-phase RNA (O	$D_{560} = 0.75)$
Probe	PAO1	PADE E1	PADE Elr	PAO1	PADE E1	PADE E1r	PAO1	PADE E1	PADE Elr
trpG phnA	36.3 8.0	25.1 7.5	34.6 64.95	17.05 14.02	5.32 12.7	12.41 65.5	7.06 84.5	1.09 64.96	4.43 66.36

^a Values presented are area  $\times$  mean OD and are an average of the undiluted, 1:10, and 1:50 dilution values.

TrpE and TrpG (46 and 48% identity) than to *Pseudomonas* TrpE and TrpG (26 and 39% identity), whereas *Pseudomonas* TrpE and TrpG are more closely related to *E. coli* PabB and PabA, the genes for the paralogous enzyme synthesizing *p*-aminobenzoate (11) (28 and 68% identity), than to *E. coli* TrpE and TrpG (25 and 40% identity).

The analysis of the evolution of anthranilate synthase genes is complicated by their similarity to the p-aminobenzoate synthase genes and the likelihood that some switching of function may have occurred. Such switching may explain why TrpG in the fluorescent pseudomonads, which does not seem to be involved in folate synthesis, is most similar to enteric bacterial PabA and to the B. subtilis and A. calcoaceticus amphibolic TrpG proteins. Further complicating this matter is the second anthranilate synthase gene pair in P. aeruginosa, phnA and phnB, which is more closely related to the enteric bacterial trpE-trp(G) gene pair but is not normally used in the synthesis of tryptophan. This relationship of the trp enzymes in the fluorescent pseudomonads has some elements needed to make a case for reticulate evolution at the molecular level. The occasional need for two anthranilate synthase genes (one for tryptophan synthesis and the other for secondary metabolism) might increase the likelihood of such role switching.

Clearly, the genes for the two anthranilate synthase enzymes are not the result of a recent duplication. Their sequences are much less alike than the homologous TrpE and TrpG sequences from *P. aeruginosa* and *P. putida*. The *phnA* and *phnB* reading frames overlap by 23 bp, whereas the *trpE* and *trpG* genes are on different transcriptional units separated by 25 kb of DNA (27). It is reasonable that the genes for these two anthranilate synthases arose by duplication of an ancestral gene and began to diverge in sequence much earlier in evolution than the time of speciation of *P. aeruginosa* and *P. putida*.

The PhnAB enzyme is interesting because of its apparent role in secondary metabolism. Our studies of phnAB mutants provide the first genetic evidence that anthranilate is the intermediate between chorismate and phenazine-1,6-dicarboxylate in the phenazine synthetic pathway. Earlier evidence had indicated that anthranilate is not a phenazine precursor (reviewed in reference 33). These studies based their conclusions on the inability of radiolabeled anthranilate added exogenously to be incorporated into phenazines and the fact that an anthranilate synthase mutant (TrpE) still produced phenazines. The latter finding is now explained. One hypothesis to explain the lack of incorporation of exogenous anthranilate into phenazines is that the phnABencoded anthranilate synthase forms a multienzyme complex with the other phn genes and that chorismate, but not anthranilate, can enter this complex. Chorismate is converted to anthranilate, which is then channelled to the next active site. Such multienzyme complexes with catalytic subunits arranged to catalyze successive steps of synthesis are known to be involved in the biosynthesis of some secondary metabolites (21; V. S. Malik, personal communication).

Transplacement experiments clearly implicate *phnA* and *phnB* in pyocyanin production. Inactivation of *phnA* or *phnB* results in defective pyocyanin production. PhnA⁻ mutants PADE A47 and PADE A48 produce pyocyanin at levels 34 and 22%, respectively, that of the wild type, PAO1.

Thomashow and Weller (32) previously identified five unlinked loci required for phenazine biosynthesis in *Pseu*domonas fluorescens 2-79. Further examination of the mutants created in their study has also led to the tentative conclusion that anthranilate is an intermediate in phenazine synthesis (L. Thomashow, personal communication).

The first indication that the two P. aeruginosa anthranilate synthase genes may interchangeable under certain circumstances came during the phenotypic characterization of phnA mutants. The two PhnA⁻ strains PADE A47 and PADE A48 both retain a low level of pyocyanin production. PADE A48 contains a substantial deletion of phnA and an insertion of the Hg^r cassette into this region, whereas PADE A47 has an insertion of the Tc^r cassette near the 3' end of phnA; in either case, phnA should not be functional. Pyocyanin production is not completely abolished unless both phnA and trpE are inactivated, as in strain PADE A47E1. PADE E1, a trpE mutant, shows a 20% reduction in pyocyanin synthesis when compared with the wild-type strain PAO1. Apparently, the tryptophan-specific anthranilate synthase is capable of providing some anthranilate for pyocyanin production. Possibly the *trpE-trpG*-encoded anthranilate synthase may also combine with the other phn gene products in a multienzyme complex. This complex may allow the residual pyocyanin production seen in the PhnA mutants. It may be less effective, since this is not the normal enzyme, but the two enzymes are definitely homologous and such a complex is not impossible.

The second indication of interchangeability came when the *trpE* mutant PADE E1 showed reversion to  $Trp^+$ . The inactivated form of trpE in the PADE E1 chromosome has a significant portion of its coding sequence deleted, yet during its characterization, spontaneous tryptophan-independent colonies appeared at a frequency of  $10^{-5}$  to  $10^{-6}$ . Southern hybridization analysis showed no differences in the trpEregion between PADE E1 and the Trp⁺ strain, PADE E1r, and confirmed that PADE E1r was not a merodiploid. Several lines of evidence lead to the conclusion that the anthranilate synthase activity in PADE E1r arises from the phnAB gene products. (Similar trpE mutants of P. putida, a non-phenazine producer, do not revert. Hybridizations at low stringency with phnAB DNA as a probe showed no cross-hybridization with P. putida chromosomal DNA digests [data not shown].) The anthranilate synthase activity of PADE E1r is not feedback inhibited by tryptophan, whereas that of the trpE-trpG-encoded enzyme is. The anthranilate synthase activity of the cloned phnAB gene product expressed in E. coli is also not feedback inhibited by tryptophan. PADE E1r produces more pyocyanin than either PAO1 or PADE E1. But the most definitive experiment was a quantitative analysis of mRNA from PAO1, PADE E1, and PADE E1r. RNA samples were prepared from the three strains during the early log, late log, and stationary growth phases and hybridized with either a phnA-specific or a trpG-specific probe. The results of these hybridizations showed that PADE E1r produced at least eight times more phnA transcript in the early log phase than PAO1 and PADE E1. This experiment also showed that normally the production of phnA transcript increases throughout the growth phase and is maximal during the stationary phase, whereas the production of trpG transcript is maximal in the early log phase and has decreased sharply by the stationary phase. The high level of production of phnAB mRNA by PADE E1r in the early log phase may explain the Trp⁺ phenotype. Excess production of the PhnAB anthranilate synthase early in growth, more than can enter into enzyme complexes with the other Phn-specific enzymes, may leave functional enzyme free in the cytoplasm capable of producing anthranilate for tryptophan synthesis.

Why is there no production of the PhnAB anthranilate

synthase in the early and late log phases by PAO1 and PADE E1? mRNA analysis indicates that a low level of *phnAB* transcript is produced in both the early and late log phases by the two strains. However, anthranilate synthase activity is totally feedback inhibited by tryptophan in enzyme assays in PAO1 in the late exponential phase; no residual anthranilate synthase activity, as expected if a fraction of the activity arose from the *phnA* and *phnB* genes, is observed. Moreover, PADE E1 shows no anthranilate synthase activity in enzyme assays. The possibility exists that this *phnAB* message is not translated in PAO1 and PADE E1, perhaps because additional control mechanisms exist specific for genes of secondary metabolism.

It is now clear that *P. aeruginosa* has two anthranilate synthases. One anthranilate synthase, encoded by trpE and trpG, catalyzes the first step in the tryptophan synthetic pathway; trpE and trpG are independently transcribed. The other anthranilate synthase, encoded by *phnA* and *phnB*, participates in the synthesis of the phenazine pigment pyocyanin; *phnA* and *phnB* are cotranscribed. These two anthranilate synthase gene pairs are regulated differently transcriptionally; a difference in feedback inhibition by tryptophan is seen in the two anthranilate synthases produced. This case illustrates how biosynthetically essential genes are exploited via duplication and divergence for secondary metabolism.

## ACKNOWLEDGMENTS

This work was supported by grant DMB 8606653 from the National Science Foundation. Computer resources for the database search were provided by the National Institutes of Health-sponsored BIONET National Computer Resource for Molecular Biology (Public Health Service grant 1 U41 RR01685).

We thank R. Milkman and C. Yanofsky for critically reading the manuscript and V. Malik and L. Thomashow for providing unpublished data.

## LITERATURE CITED

- Aiba, H., S. Adhya, and B. de Crombrugghe. 1981. Evidence for two functional gal promoters in intact Escherichia coli cells. J. Biol. Chem. 256:11905–11910.
- 2. Bae, Y. M., E. Holmgren, and I. P. Crawford. 1989. *Rhizobium meliloti* anthranilate synthase gene: cloning, sequence, and expression in *Escherichia coli*. J. Bacteriol. 171:3471–3478.
- Calhoun, D. H., D. L. Pierson, and R. A. Jensen. 1973. The regulation of tryptophan biosynthesis in *Pseudomonas aeruginosa*. Mol. Gen. Genet. 121:117-132.
- 4. Challberg, M. D., and P. T. Englund. 1980. Specific labeling of 3' termini with T4 DNA polymerase. Methods Enzymol. 65: 39-43.
- Chang, M., A. Hadero, and I. P. Crawford. 1989. Sequence of the *Pseudomonas aeruginosa trp1* activator gene and relatedness of *trp1* to other procaryotic regulatory genes. J. Bacteriol. 171:172–183.
- Crawford, I. P. 1989. Evolution of a biosynthetic pathway: the tryptophan paradigm. Annu. Rev. Microbiol. 43:567–600.
- Crawford, I. P., and L. Eberly. 1986. Structure and regulation of the anthranilate synthase genes in *Pseudomonas aeruginosa*. I. Sequence of *trpG* encoding the glutamine amidotransferase subunit. Mol. Biol. Evol. 3:436-448.
- Crawford, I. P., A. Wilde, E. M. Yelverton, D. Figurski, and R. W. Hedges. 1986. Structure and regulation of the anthranilate synthase genes in *Pseudomonas aeruginosa*. II. Cloning and expression in *Escherichia coli*. Mol. Biol. Evol. 3:449–458.
- 9. Doolittle, R. F. 1986. Of urfs and orfs: a primer on how to analyze derived amino acid sequences. University Science Books, Mill Valley, Calif.
- 9a.Essar, D. W., L. Eberly, and I. P. Crawford. 1990. Evolutionary differences in chromosomal locations of four early genes of the

tryptophan pathway in fluorescent pseudomonads: DNA sequences and characterization of *Pseudomonas putida trpE* and *trpGDC*. J. Bacteriol. **172:867–883**.

- 9b.Essar, D. W., L. Eberly, C.-Y. Han, and I. P. Crawford. 1990. DNA sequences and characterization of four early genes of the tryptophan pathway in *Pseudomonas aeruginosa*. J. Bacteriol. 172:853-866.
- 10. Gambill, D. B., and A. O. Summers. 1985. Versatile mercuryresistant cloning and expression vectors. Gene 39:293-297.
- 11. Goncharoff, P., and B. P. Nichols. 1984. Nucleotide sequence of *Escherichia coli pabB* indicates a common evolutionary origin of *p*-aminobenzoate synthetase and anthranilate synthetase. J. Bacteriol. 159:57–62.
- Grunstein, M., and D. Hogness. 1975. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. USA 72:3961–3965.
- Ingram, J. M., and A. C. Blackwood. 1970. Microbial production of phenazines. Adv. Appl. Microbiol. 13:267–282.
- Kawamura, M., P. S. Keim, Y. Goto, H. Zalkin, and R. L. Heindrickson. 1978. Anthranilate synthetase component II from *Pseudomonas putida*: covalent structure and identification of the cysteine residue involved in catalysis. J. Biol. Chem. 253:4659–4668.
- Kurachi, M. 1958. Studies on the biosynthesis of pyocyanine. I. On the culture conditions for pyocyanine formation. Bull. Inst. Chem. Res. Kyoto Univ. 36:163-173.
- Kurachi, M. 1958. Studies on the biosynthesis of pyocyanine. II. Isolation and determination of pyocyanine. Bull. Inst. Chem. Res. Kyoto Univ. 36:174–187.
- Lagramini, L. M., S. T. Brentano, and J. E. Donelson. 1984. A DNA sequence analysis package for the IBM personal computer. Nucleic Acids Res. 12:605–614.
- Leisinger, T., and R. Margraff. 1979. Secondary metabolites of the fluorescent pseudomonads. Microbiol. Rev. 43:422–442.
- 19. Lipman, D. J., and W. R. Pearson. 1985. Rapid and sensitive protein similarity searches. Science 227:1435-1441.
- MacDonald, J. C. 1967. Pyocyanine, pp. 52–65. In D. Gottlieb and P. D. Shaw (ed.), Antibiotics, vol. 2, biosynthesis. Springer-Verlag, New York.
- Malik, V. S. 1982. Genetics and biochemistry of secondary metabolism. Adv. Appl. Microbiol. 28:27-115.
- 22. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499-559.
- 24. Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Sanger, F., and A. R. Coulson. 1978. The use of thin acrylamide gels for DNA sequencing. FEBS Lett. 87:107–110.
- Shine, J., and L. Dalgarno. 1974. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosomal binding sites. Proc. Natl. Acad. Sci. USA 71:1342-1346.
- Shinomiya, T., S. Shiga, and M. Kageyama. 1983. Genetic determinant of pyocin R2 in *Pseudomonas aeruginosa* PAO. I. Localization of the pyocin R2 gene cluster between the *trpCD* and *trpE* genes. Mol. Gen. Genet. 189:375–381.
- Simon, R., M. O'Connell, M. Labes, and A. Puhler. 1985. Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria. Methods Enzymol. 118:640-659.
- Simon, R., V. Preifer, and A. Puhler. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology 1:784– 791.
- Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503-517.
- Struhl, K. 1985. A rapid method for creating recombinant DNA molecules. BioTechniques 3:452–453.
- 32. Thomashow, L. S., and D. M. Weller. 1988. Role of a phenazine

antibiotic from *Pseudomonas fluorescens* in biological control of *Gaeumannomyces graminis* var. *tritici.* J. Bacteriol. 170: 3499–3508.

- Turner, J. M., and A. J. Messenger. 1986. Occurrence, biochemistry, and physiology of phenazine pigment production. Adv. Microbiol. Physiol. 27:211-275.
- Vieira, J., and J. Messing. 1982. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with universal primers. Gene 19:259-268.
- 35. Vogel, H. J., and D. M. Bonner. 1956. Acetylornithinase of *Escherichia coli*: partial purification and some properties. J. Biol. Chem. 218:97–106.
- 36. Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119.
- 37. Yousaf, S. I., A. R. Carroll, and B. E. Clarke. 1984. A new and improved method for 3'-end labeling DNA using [α-³²P]ddATP. Gene 27:309-313.